Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp-5r | Structured version Visualization version GIF version |
Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 24-May-2022.) |
Ref | Expression |
---|---|
simp-5r | ⊢ ((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
2 | 1 | ad5antlr 731 | 1 ⊢ ((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: catcocl 17311 catass 17312 monpropd 17366 subccocl 17476 funcco 17502 funcpropd 17532 mhmmnd 18612 pm2mpmhmlem2 21876 neitr 22239 restutopopn 23298 ustuqtop4 23304 utopreg 23312 cfilucfil 23621 psmetutop 23629 dyadmax 24667 2sqmo 26490 tgifscgr 26773 tgcgrxfr 26783 tgbtwnconn1lem3 26839 tgbtwnconn1 26840 legov 26850 legtrd 26854 legso 26864 miriso 26935 perpneq 26979 footexALT 26983 footex 26986 colperpex 26998 opphllem 27000 midex 27002 opphl 27019 lnopp2hpgb 27028 trgcopyeu 27071 dfcgra2 27095 inaghl 27110 f1otrg 27136 2ndresdju 30887 nn0xmulclb 30996 omndmul2 31240 psgnfzto1stlem 31269 cyc3genpm 31321 nsgqusf1olem3 31502 elrspunidl 31508 rhmimaidl 31511 rhmpreimaprmidl 31529 mxidlprm 31542 ssmxidl 31544 lbsdiflsp0 31609 qtophaus 31688 locfinreflem 31692 cmpcref 31702 pstmxmet 31749 lmxrge0 31804 esumcst 31931 omssubadd 32167 signstfvneq0 32451 afsval 32551 matunitlindflem1 35700 heicant 35739 sstotbnd2 35859 dffltz 40387 flt4lem7 40412 eldioph2b 40501 diophren 40551 pell1234qrdich 40599 iunconnlem2 42444 limcrecl 43060 limclner 43082 icccncfext 43318 ioodvbdlimc1lem2 43363 ioodvbdlimc2lem 43365 stoweidlem60 43491 fourierdlem51 43588 fourierdlem77 43614 fourierdlem103 43640 fourierdlem104 43641 smfaddlem1 44185 smfmullem3 44214 |
Copyright terms: Public domain | W3C validator |