Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp-5r | Structured version Visualization version GIF version |
Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 24-May-2022.) |
Ref | Expression |
---|---|
simp-5r | ⊢ ((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
2 | 1 | ad5antlr 732 | 1 ⊢ ((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: catcocl 17394 catass 17395 monpropd 17449 subccocl 17560 funcco 17586 funcpropd 17616 mhmmnd 18697 pm2mpmhmlem2 21968 neitr 22331 restutopopn 23390 ustuqtop4 23396 utopreg 23404 cfilucfil 23715 psmetutop 23723 dyadmax 24762 2sqmo 26585 tgifscgr 26869 tgcgrxfr 26879 tgbtwnconn1lem3 26935 tgbtwnconn1 26936 legov 26946 legtrd 26950 legso 26960 miriso 27031 perpneq 27075 footexALT 27079 footex 27082 colperpex 27094 opphllem 27096 midex 27098 opphl 27115 lnopp2hpgb 27124 trgcopyeu 27167 dfcgra2 27191 inaghl 27206 f1otrg 27232 2ndresdju 30986 nn0xmulclb 31094 omndmul2 31338 psgnfzto1stlem 31367 cyc3genpm 31419 nsgqusf1olem3 31600 elrspunidl 31606 rhmimaidl 31609 rhmpreimaprmidl 31627 mxidlprm 31640 ssmxidl 31642 lbsdiflsp0 31707 qtophaus 31786 locfinreflem 31790 cmpcref 31800 pstmxmet 31847 lmxrge0 31902 esumcst 32031 omssubadd 32267 signstfvneq0 32551 afsval 32651 matunitlindflem1 35773 heicant 35812 sstotbnd2 35932 dffltz 40471 flt4lem7 40496 eldioph2b 40585 diophren 40635 pell1234qrdich 40683 iunconnlem2 42555 limcrecl 43170 limclner 43192 icccncfext 43428 ioodvbdlimc1lem2 43473 ioodvbdlimc2lem 43475 stoweidlem60 43601 fourierdlem51 43698 fourierdlem77 43724 fourierdlem103 43750 fourierdlem104 43751 smfaddlem1 44298 smfmullem3 44327 |
Copyright terms: Public domain | W3C validator |