Step | Hyp | Ref
| Expression |
1 | | simpll 765 |
. . 3
β’ (((πΉ β (Word β β
{β
}) β§ (πΉβ0) β 0) β§ π β (0..^(β―βπΉ))) β πΉ β (Word β β
{β
})) |
2 | 1 | eldifad 3959 |
. 2
β’ (((πΉ β (Word β β
{β
}) β§ (πΉβ0) β 0) β§ π β (0..^(β―βπΉ))) β πΉ β Word β) |
3 | | eldifsni 4792 |
. . . 4
β’ (πΉ β (Word β β
{β
}) β πΉ β
β
) |
4 | 3 | ad2antrr 724 |
. . 3
β’ (((πΉ β (Word β β
{β
}) β§ (πΉβ0) β 0) β§ π β (0..^(β―βπΉ))) β πΉ β β
) |
5 | | simplr 767 |
. . 3
β’ (((πΉ β (Word β β
{β
}) β§ (πΉβ0) β 0) β§ π β (0..^(β―βπΉ))) β (πΉβ0) β 0) |
6 | 4, 5 | jca 512 |
. 2
β’ (((πΉ β (Word β β
{β
}) β§ (πΉβ0) β 0) β§ π β (0..^(β―βπΉ))) β (πΉ β β
β§ (πΉβ0) β 0)) |
7 | | simpr 485 |
. 2
β’ (((πΉ β (Word β β
{β
}) β§ (πΉβ0) β 0) β§ π β (0..^(β―βπΉ))) β π β (0..^(β―βπΉ))) |
8 | | fveq2 6888 |
. . . 4
β’ (π = π β ((πβπΉ)βπ) = ((πβπΉ)βπ)) |
9 | 8 | neeq1d 3000 |
. . 3
β’ (π = π β (((πβπΉ)βπ) β 0 β ((πβπΉ)βπ) β 0)) |
10 | | neeq1 3003 |
. . . . . . . 8
β’ (π = β
β (π β β
β β
β β
)) |
11 | | fveq1 6887 |
. . . . . . . . 9
β’ (π = β
β (πβ0) =
(β
β0)) |
12 | 11 | neeq1d 3000 |
. . . . . . . 8
β’ (π = β
β ((πβ0) β 0 β
(β
β0) β 0)) |
13 | 10, 12 | anbi12d 631 |
. . . . . . 7
β’ (π = β
β ((π β β
β§ (πβ0) β 0) β
(β
β β
β§ (β
β0) β 0))) |
14 | | fveq2 6888 |
. . . . . . . . 9
β’ (π = β
β
(β―βπ) =
(β―ββ
)) |
15 | 14 | oveq2d 7421 |
. . . . . . . 8
β’ (π = β
β
(0..^(β―βπ)) =
(0..^(β―ββ
))) |
16 | | fveq2 6888 |
. . . . . . . . . 10
β’ (π = β
β (πβπ) = (πββ
)) |
17 | 16 | fveq1d 6890 |
. . . . . . . . 9
β’ (π = β
β ((πβπ)βπ) = ((πββ
)βπ)) |
18 | 17 | neeq1d 3000 |
. . . . . . . 8
β’ (π = β
β (((πβπ)βπ) β 0 β ((πββ
)βπ) β 0)) |
19 | 15, 18 | raleqbidv 3342 |
. . . . . . 7
β’ (π = β
β (βπ β
(0..^(β―βπ))((πβπ)βπ) β 0 β βπ β (0..^(β―ββ
))((πββ
)βπ) β 0)) |
20 | 13, 19 | imbi12d 344 |
. . . . . 6
β’ (π = β
β (((π β β
β§ (πβ0) β 0) β
βπ β
(0..^(β―βπ))((πβπ)βπ) β 0) β ((β
β β
β§
(β
β0) β 0) β βπ β (0..^(β―ββ
))((πββ
)βπ) β 0))) |
21 | | neeq1 3003 |
. . . . . . . 8
β’ (π = π β (π β β
β π β β
)) |
22 | | fveq1 6887 |
. . . . . . . . 9
β’ (π = π β (πβ0) = (πβ0)) |
23 | 22 | neeq1d 3000 |
. . . . . . . 8
β’ (π = π β ((πβ0) β 0 β (πβ0) β 0)) |
24 | 21, 23 | anbi12d 631 |
. . . . . . 7
β’ (π = π β ((π β β
β§ (πβ0) β 0) β (π β β
β§ (πβ0) β 0))) |
25 | | fveq2 6888 |
. . . . . . . . 9
β’ (π = π β (β―βπ) = (β―βπ)) |
26 | 25 | oveq2d 7421 |
. . . . . . . 8
β’ (π = π β (0..^(β―βπ)) = (0..^(β―βπ))) |
27 | | fveq2 6888 |
. . . . . . . . . 10
β’ (π = π β (πβπ) = (πβπ)) |
28 | 27 | fveq1d 6890 |
. . . . . . . . 9
β’ (π = π β ((πβπ)βπ) = ((πβπ)βπ)) |
29 | 28 | neeq1d 3000 |
. . . . . . . 8
β’ (π = π β (((πβπ)βπ) β 0 β ((πβπ)βπ) β 0)) |
30 | 26, 29 | raleqbidv 3342 |
. . . . . . 7
β’ (π = π β (βπ β (0..^(β―βπ))((πβπ)βπ) β 0 β βπ β (0..^(β―βπ))((πβπ)βπ) β 0)) |
31 | 24, 30 | imbi12d 344 |
. . . . . 6
β’ (π = π β (((π β β
β§ (πβ0) β 0) β βπ β
(0..^(β―βπ))((πβπ)βπ) β 0) β ((π β β
β§ (πβ0) β 0) β βπ β
(0..^(β―βπ))((πβπ)βπ) β 0))) |
32 | | neeq1 3003 |
. . . . . . . 8
β’ (π = (π ++ β¨βπββ©) β (π β β
β (π ++ β¨βπββ©) β
β
)) |
33 | | fveq1 6887 |
. . . . . . . . 9
β’ (π = (π ++ β¨βπββ©) β (πβ0) = ((π ++ β¨βπββ©)β0)) |
34 | 33 | neeq1d 3000 |
. . . . . . . 8
β’ (π = (π ++ β¨βπββ©) β ((πβ0) β 0 β ((π ++ β¨βπββ©)β0) β
0)) |
35 | 32, 34 | anbi12d 631 |
. . . . . . 7
β’ (π = (π ++ β¨βπββ©) β ((π β β
β§ (πβ0) β 0) β ((π ++ β¨βπββ©) β β
β§ ((π ++ β¨βπββ©)β0) β
0))) |
36 | | fveq2 6888 |
. . . . . . . . 9
β’ (π = (π ++ β¨βπββ©) β (β―βπ) = (β―β(π ++ β¨βπββ©))) |
37 | 36 | oveq2d 7421 |
. . . . . . . 8
β’ (π = (π ++ β¨βπββ©) β
(0..^(β―βπ)) =
(0..^(β―β(π ++
β¨βπββ©)))) |
38 | | fveq2 6888 |
. . . . . . . . . 10
β’ (π = (π ++ β¨βπββ©) β (πβπ) = (πβ(π ++ β¨βπββ©))) |
39 | 38 | fveq1d 6890 |
. . . . . . . . 9
β’ (π = (π ++ β¨βπββ©) β ((πβπ)βπ) = ((πβ(π ++ β¨βπββ©))βπ)) |
40 | 39 | neeq1d 3000 |
. . . . . . . 8
β’ (π = (π ++ β¨βπββ©) β (((πβπ)βπ) β 0 β ((πβ(π ++ β¨βπββ©))βπ) β 0)) |
41 | 37, 40 | raleqbidv 3342 |
. . . . . . 7
β’ (π = (π ++ β¨βπββ©) β (βπ β
(0..^(β―βπ))((πβπ)βπ) β 0 β βπ β (0..^(β―β(π ++ β¨βπββ©)))((πβ(π ++ β¨βπββ©))βπ) β 0)) |
42 | 35, 41 | imbi12d 344 |
. . . . . 6
β’ (π = (π ++ β¨βπββ©) β (((π β β
β§ (πβ0) β 0) β βπ β
(0..^(β―βπ))((πβπ)βπ) β 0) β (((π ++ β¨βπββ©) β β
β§ ((π ++ β¨βπββ©)β0) β 0)
β βπ β
(0..^(β―β(π ++
β¨βπββ©)))((πβ(π ++ β¨βπββ©))βπ) β 0))) |
43 | | neeq1 3003 |
. . . . . . . 8
β’ (π = πΉ β (π β β
β πΉ β β
)) |
44 | | fveq1 6887 |
. . . . . . . . 9
β’ (π = πΉ β (πβ0) = (πΉβ0)) |
45 | 44 | neeq1d 3000 |
. . . . . . . 8
β’ (π = πΉ β ((πβ0) β 0 β (πΉβ0) β 0)) |
46 | 43, 45 | anbi12d 631 |
. . . . . . 7
β’ (π = πΉ β ((π β β
β§ (πβ0) β 0) β (πΉ β β
β§ (πΉβ0) β 0))) |
47 | | fveq2 6888 |
. . . . . . . . 9
β’ (π = πΉ β (β―βπ) = (β―βπΉ)) |
48 | 47 | oveq2d 7421 |
. . . . . . . 8
β’ (π = πΉ β (0..^(β―βπ)) = (0..^(β―βπΉ))) |
49 | | fveq2 6888 |
. . . . . . . . . 10
β’ (π = πΉ β (πβπ) = (πβπΉ)) |
50 | 49 | fveq1d 6890 |
. . . . . . . . 9
β’ (π = πΉ β ((πβπ)βπ) = ((πβπΉ)βπ)) |
51 | 50 | neeq1d 3000 |
. . . . . . . 8
β’ (π = πΉ β (((πβπ)βπ) β 0 β ((πβπΉ)βπ) β 0)) |
52 | 48, 51 | raleqbidv 3342 |
. . . . . . 7
β’ (π = πΉ β (βπ β (0..^(β―βπ))((πβπ)βπ) β 0 β βπ β (0..^(β―βπΉ))((πβπΉ)βπ) β 0)) |
53 | 46, 52 | imbi12d 344 |
. . . . . 6
β’ (π = πΉ β (((π β β
β§ (πβ0) β 0) β βπ β
(0..^(β―βπ))((πβπ)βπ) β 0) β ((πΉ β β
β§ (πΉβ0) β 0) β βπ β
(0..^(β―βπΉ))((πβπΉ)βπ) β 0))) |
54 | | neirr 2949 |
. . . . . . . 8
β’ Β¬
β
β β
|
55 | 54 | intnanr 488 |
. . . . . . 7
β’ Β¬
(β
β β
β§ (β
β0) β 0) |
56 | 55 | pm2.21i 119 |
. . . . . 6
β’ ((β
β β
β§ (β
β0) β 0) β βπ β (0..^(β―ββ
))((πββ
)βπ) β 0) |
57 | | fveq2 6888 |
. . . . . . . . . . . 12
β’ (π = π β ((πβπ)βπ) = ((πβπ)βπ)) |
58 | 57 | neeq1d 3000 |
. . . . . . . . . . 11
β’ (π = π β (((πβπ)βπ) β 0 β ((πβπ)βπ) β 0)) |
59 | 58 | cbvralvw 3234 |
. . . . . . . . . 10
β’
(βπ β
(0..^(β―βπ))((πβπ)βπ) β 0 β βπ β (0..^(β―βπ))((πβπ)βπ) β 0) |
60 | 59 | imbi2i 335 |
. . . . . . . . 9
β’ (((π β β
β§ (πβ0) β 0) β
βπ β
(0..^(β―βπ))((πβπ)βπ) β 0) β ((π β β
β§ (πβ0) β 0) β βπ β
(0..^(β―βπ))((πβπ)βπ) β 0)) |
61 | 60 | anbi2i 623 |
. . . . . . . 8
β’ (((π β Word β β§ π β β) β§ ((π β β
β§ (πβ0) β 0) β
βπ β
(0..^(β―βπ))((πβπ)βπ) β 0)) β ((π β Word β β§ π β β) β§ ((π β β
β§ (πβ0) β 0) β βπ β
(0..^(β―βπ))((πβπ)βπ) β 0))) |
62 | | simplr 767 |
. . . . . . . . . . . 12
β’
(((((((π β Word
β β§ π β
β) β§ ((π β
β
β§ (πβ0)
β 0) β βπ
β (0..^(β―βπ))((πβπ)βπ) β 0)) β§ ((π ++ β¨βπββ©) β β
β§ ((π ++ β¨βπββ©)β0) β 0))
β§ π β
(0..^(β―β(π ++
β¨βπββ©)))) β§ π β (0..^(β―βπ))) β§ π = β
) β π β (0..^(β―βπ))) |
63 | | noel 4329 |
. . . . . . . . . . . . . 14
β’ Β¬
π β
β
|
64 | | fveq2 6888 |
. . . . . . . . . . . . . . . . . 18
β’ (π = β
β
(β―βπ) =
(β―ββ
)) |
65 | | hash0 14323 |
. . . . . . . . . . . . . . . . . 18
β’
(β―ββ
) = 0 |
66 | 64, 65 | eqtrdi 2788 |
. . . . . . . . . . . . . . . . 17
β’ (π = β
β
(β―βπ) =
0) |
67 | 66 | oveq2d 7421 |
. . . . . . . . . . . . . . . 16
β’ (π = β
β
(0..^(β―βπ)) =
(0..^0)) |
68 | | fzo0 13652 |
. . . . . . . . . . . . . . . 16
β’ (0..^0) =
β
|
69 | 67, 68 | eqtrdi 2788 |
. . . . . . . . . . . . . . 15
β’ (π = β
β
(0..^(β―βπ)) =
β
) |
70 | 69 | eleq2d 2819 |
. . . . . . . . . . . . . 14
β’ (π = β
β (π β
(0..^(β―βπ))
β π β
β
)) |
71 | 63, 70 | mtbiri 326 |
. . . . . . . . . . . . 13
β’ (π = β
β Β¬ π β
(0..^(β―βπ))) |
72 | 71 | adantl 482 |
. . . . . . . . . . . 12
β’
(((((((π β Word
β β§ π β
β) β§ ((π β
β
β§ (πβ0)
β 0) β βπ
β (0..^(β―βπ))((πβπ)βπ) β 0)) β§ ((π ++ β¨βπββ©) β β
β§ ((π ++ β¨βπββ©)β0) β 0))
β§ π β
(0..^(β―β(π ++
β¨βπββ©)))) β§ π β (0..^(β―βπ))) β§ π = β
) β Β¬ π β (0..^(β―βπ))) |
73 | 62, 72 | pm2.21dd 194 |
. . . . . . . . . . 11
β’
(((((((π β Word
β β§ π β
β) β§ ((π β
β
β§ (πβ0)
β 0) β βπ
β (0..^(β―βπ))((πβπ)βπ) β 0)) β§ ((π ++ β¨βπββ©) β β
β§ ((π ++ β¨βπββ©)β0) β 0))
β§ π β
(0..^(β―β(π ++
β¨βπββ©)))) β§ π β (0..^(β―βπ))) β§ π = β
) β ((πβ(π ++ β¨βπββ©))βπ) β 0) |
74 | | simp-6l 785 |
. . . . . . . . . . . . 13
β’
(((((((π β Word
β β§ π β
β) β§ ((π β
β
β§ (πβ0)
β 0) β βπ
β (0..^(β―βπ))((πβπ)βπ) β 0)) β§ ((π ++ β¨βπββ©) β β
β§ ((π ++ β¨βπββ©)β0) β 0))
β§ π β
(0..^(β―β(π ++
β¨βπββ©)))) β§ π β (0..^(β―βπ))) β§ π β β
) β π β Word β) |
75 | | simp-6r 786 |
. . . . . . . . . . . . 13
β’
(((((((π β Word
β β§ π β
β) β§ ((π β
β
β§ (πβ0)
β 0) β βπ
β (0..^(β―βπ))((πβπ)βπ) β 0)) β§ ((π ++ β¨βπββ©) β β
β§ ((π ++ β¨βπββ©)β0) β 0))
β§ π β
(0..^(β―β(π ++
β¨βπββ©)))) β§ π β (0..^(β―βπ))) β§ π β β
) β π β β) |
76 | | simplr 767 |
. . . . . . . . . . . . 13
β’
(((((((π β Word
β β§ π β
β) β§ ((π β
β
β§ (πβ0)
β 0) β βπ
β (0..^(β―βπ))((πβπ)βπ) β 0)) β§ ((π ++ β¨βπββ©) β β
β§ ((π ++ β¨βπββ©)β0) β 0))
β§ π β
(0..^(β―β(π ++
β¨βπββ©)))) β§ π β (0..^(β―βπ))) β§ π β β
) β π β (0..^(β―βπ))) |
77 | | signsv.p |
. . . . . . . . . . . . . 14
⒠⨣ =
(π β {-1, 0, 1}, π β {-1, 0, 1} β¦
if(π = 0, π, π)) |
78 | | signsv.w |
. . . . . . . . . . . . . 14
β’ π = {β¨(Baseβndx), {-1,
0, 1}β©, β¨(+gβndx), ⨣
β©} |
79 | | signsv.t |
. . . . . . . . . . . . . 14
β’ π = (π β Word β β¦ (π β
(0..^(β―βπ))
β¦ (π
Ξ£g (π β (0...π) β¦ (sgnβ(πβπ)))))) |
80 | | signsv.v |
. . . . . . . . . . . . . 14
β’ π = (π β Word β β¦ Ξ£π β
(1..^(β―βπ))if(((πβπ)βπ) β ((πβπ)β(π β 1)), 1, 0)) |
81 | 77, 78, 79, 80 | signstfvp 33570 |
. . . . . . . . . . . . 13
β’ ((π β Word β β§ π β β β§ π β
(0..^(β―βπ)))
β ((πβ(π ++ β¨βπββ©))βπ) = ((πβπ)βπ)) |
82 | 74, 75, 76, 81 | syl3anc 1371 |
. . . . . . . . . . . 12
β’
(((((((π β Word
β β§ π β
β) β§ ((π β
β
β§ (πβ0)
β 0) β βπ
β (0..^(β―βπ))((πβπ)βπ) β 0)) β§ ((π ++ β¨βπββ©) β β
β§ ((π ++ β¨βπββ©)β0) β 0))
β§ π β
(0..^(β―β(π ++
β¨βπββ©)))) β§ π β (0..^(β―βπ))) β§ π β β
) β ((πβ(π ++ β¨βπββ©))βπ) = ((πβπ)βπ)) |
83 | | simpr 485 |
. . . . . . . . . . . . . 14
β’
(((((((π β Word
β β§ π β
β) β§ ((π β
β
β§ (πβ0)
β 0) β βπ
β (0..^(β―βπ))((πβπ)βπ) β 0)) β§ ((π ++ β¨βπββ©) β β
β§ ((π ++ β¨βπββ©)β0) β 0))
β§ π β
(0..^(β―β(π ++
β¨βπββ©)))) β§ π β (0..^(β―βπ))) β§ π β β
) β π β β
) |
84 | | simp-5l 783 |
. . . . . . . . . . . . . . 15
β’
(((((((π β Word
β β§ π β
β) β§ ((π β
β
β§ (πβ0)
β 0) β βπ
β (0..^(β―βπ))((πβπ)βπ) β 0)) β§ ((π ++ β¨βπββ©) β β
β§ ((π ++ β¨βπββ©)β0) β 0))
β§ π β
(0..^(β―β(π ++
β¨βπββ©)))) β§ π β (0..^(β―βπ))) β§ π β β
) β (π β Word β β§ π β β)) |
85 | | simplrr 776 |
. . . . . . . . . . . . . . . 16
β’
(((((π β Word
β β§ π β
β) β§ ((π β
β
β§ (πβ0)
β 0) β βπ
β (0..^(β―βπ))((πβπ)βπ) β 0)) β§ ((π ++ β¨βπββ©) β β
β§ ((π ++ β¨βπββ©)β0) β 0))
β§ (π β
(0..^(β―β(π ++
β¨βπββ©))) β§ π β (0..^(β―βπ)) β§ π β β
)) β ((π ++ β¨βπββ©)β0) β
0) |
86 | 85 | 3anassrs 1360 |
. . . . . . . . . . . . . . 15
β’
(((((((π β Word
β β§ π β
β) β§ ((π β
β
β§ (πβ0)
β 0) β βπ
β (0..^(β―βπ))((πβπ)βπ) β 0)) β§ ((π ++ β¨βπββ©) β β
β§ ((π ++ β¨βπββ©)β0) β 0))
β§ π β
(0..^(β―β(π ++
β¨βπββ©)))) β§ π β (0..^(β―βπ))) β§ π β β
) β ((π ++ β¨βπββ©)β0) β
0) |
87 | | simpll 765 |
. . . . . . . . . . . . . . . . . 18
β’ (((π β Word β β§ π β β) β§ π β β
) β π β Word
β) |
88 | | s1cl 14548 |
. . . . . . . . . . . . . . . . . . 19
β’ (π β β β
β¨βπββ©
β Word β) |
89 | 88 | ad2antlr 725 |
. . . . . . . . . . . . . . . . . 18
β’ (((π β Word β β§ π β β) β§ π β β
) β
β¨βπββ©
β Word β) |
90 | | lennncl 14480 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β Word β β§ π β β
) β
(β―βπ) β
β) |
91 | 90 | adantlr 713 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π β Word β β§ π β β) β§ π β β
) β
(β―βπ) β
β) |
92 | | fzo0end 13720 |
. . . . . . . . . . . . . . . . . . 19
β’
((β―βπ)
β β β ((β―βπ) β 1) β (0..^(β―βπ))) |
93 | | elfzolt3b 13640 |
. . . . . . . . . . . . . . . . . . 19
β’
(((β―βπ)
β 1) β (0..^(β―βπ)) β 0 β (0..^(β―βπ))) |
94 | 91, 92, 93 | 3syl 18 |
. . . . . . . . . . . . . . . . . 18
β’ (((π β Word β β§ π β β) β§ π β β
) β 0 β
(0..^(β―βπ))) |
95 | | ccatval1 14523 |
. . . . . . . . . . . . . . . . . 18
β’ ((π β Word β β§
β¨βπββ©
β Word β β§ 0 β (0..^(β―βπ))) β ((π ++ β¨βπββ©)β0) = (πβ0)) |
96 | 87, 89, 94, 95 | syl3anc 1371 |
. . . . . . . . . . . . . . . . 17
β’ (((π β Word β β§ π β β) β§ π β β
) β ((π ++ β¨βπββ©)β0) = (πβ0)) |
97 | 96 | neeq1d 3000 |
. . . . . . . . . . . . . . . 16
β’ (((π β Word β β§ π β β) β§ π β β
) β (((π ++ β¨βπββ©)β0) β 0
β (πβ0) β
0)) |
98 | 97 | biimpa 477 |
. . . . . . . . . . . . . . 15
β’ ((((π β Word β β§ π β β) β§ π β β
) β§ ((π ++ β¨βπββ©)β0) β 0)
β (πβ0) β
0) |
99 | 84, 83, 86, 98 | syl21anc 836 |
. . . . . . . . . . . . . 14
β’
(((((((π β Word
β β§ π β
β) β§ ((π β
β
β§ (πβ0)
β 0) β βπ
β (0..^(β―βπ))((πβπ)βπ) β 0)) β§ ((π ++ β¨βπββ©) β β
β§ ((π ++ β¨βπββ©)β0) β 0))
β§ π β
(0..^(β―β(π ++
β¨βπββ©)))) β§ π β (0..^(β―βπ))) β§ π β β
) β (πβ0) β 0) |
100 | | simp-5r 784 |
. . . . . . . . . . . . . 14
β’
(((((((π β Word
β β§ π β
β) β§ ((π β
β
β§ (πβ0)
β 0) β βπ
β (0..^(β―βπ))((πβπ)βπ) β 0)) β§ ((π ++ β¨βπββ©) β β
β§ ((π ++ β¨βπββ©)β0) β 0))
β§ π β
(0..^(β―β(π ++
β¨βπββ©)))) β§ π β (0..^(β―βπ))) β§ π β β
) β ((π β β
β§ (πβ0) β 0) β βπ β
(0..^(β―βπ))((πβπ)βπ) β 0)) |
101 | 83, 99, 100 | mp2and 697 |
. . . . . . . . . . . . 13
β’
(((((((π β Word
β β§ π β
β) β§ ((π β
β
β§ (πβ0)
β 0) β βπ
β (0..^(β―βπ))((πβπ)βπ) β 0)) β§ ((π ++ β¨βπββ©) β β
β§ ((π ++ β¨βπββ©)β0) β 0))
β§ π β
(0..^(β―β(π ++
β¨βπββ©)))) β§ π β (0..^(β―βπ))) β§ π β β
) β βπ β
(0..^(β―βπ))((πβπ)βπ) β 0) |
102 | 58, 101, 76 | rspcdva 3613 |
. . . . . . . . . . . 12
β’
(((((((π β Word
β β§ π β
β) β§ ((π β
β
β§ (πβ0)
β 0) β βπ
β (0..^(β―βπ))((πβπ)βπ) β 0)) β§ ((π ++ β¨βπββ©) β β
β§ ((π ++ β¨βπββ©)β0) β 0))
β§ π β
(0..^(β―β(π ++
β¨βπββ©)))) β§ π β (0..^(β―βπ))) β§ π β β
) β ((πβπ)βπ) β 0) |
103 | 82, 102 | eqnetrd 3008 |
. . . . . . . . . . 11
β’
(((((((π β Word
β β§ π β
β) β§ ((π β
β
β§ (πβ0)
β 0) β βπ
β (0..^(β―βπ))((πβπ)βπ) β 0)) β§ ((π ++ β¨βπββ©) β β
β§ ((π ++ β¨βπββ©)β0) β 0))
β§ π β
(0..^(β―β(π ++
β¨βπββ©)))) β§ π β (0..^(β―βπ))) β§ π β β
) β ((πβ(π ++ β¨βπββ©))βπ) β 0) |
104 | 73, 103 | pm2.61dane 3029 |
. . . . . . . . . 10
β’
((((((π β Word
β β§ π β
β) β§ ((π β
β
β§ (πβ0)
β 0) β βπ
β (0..^(β―βπ))((πβπ)βπ) β 0)) β§ ((π ++ β¨βπββ©) β β
β§ ((π ++ β¨βπββ©)β0) β 0))
β§ π β
(0..^(β―β(π ++
β¨βπββ©)))) β§ π β (0..^(β―βπ))) β ((πβ(π ++ β¨βπββ©))βπ) β 0) |
105 | | simpr 485 |
. . . . . . . . . . . 12
β’
((((((π β Word
β β§ π β
β) β§ ((π β
β
β§ (πβ0)
β 0) β βπ
β (0..^(β―βπ))((πβπ)βπ) β 0)) β§ ((π ++ β¨βπββ©) β β
β§ ((π ++ β¨βπββ©)β0) β 0))
β§ π β
(0..^(β―β(π ++
β¨βπββ©)))) β§ π = (β―βπ)) β π = (β―βπ)) |
106 | 105 | fveq2d 6892 |
. . . . . . . . . . 11
β’
((((((π β Word
β β§ π β
β) β§ ((π β
β
β§ (πβ0)
β 0) β βπ
β (0..^(β―βπ))((πβπ)βπ) β 0)) β§ ((π ++ β¨βπββ©) β β
β§ ((π ++ β¨βπββ©)β0) β 0))
β§ π β
(0..^(β―β(π ++
β¨βπββ©)))) β§ π = (β―βπ)) β ((πβ(π ++ β¨βπββ©))βπ) = ((πβ(π ++ β¨βπββ©))β(β―βπ))) |
107 | | simpr 485 |
. . . . . . . . . . . . . . 15
β’
(((((π β Word
β β§ π β
β) β§ ((π β
β
β§ (πβ0)
β 0) β βπ
β (0..^(β―βπ))((πβπ)βπ) β 0)) β§ (((π ++ β¨βπββ©) β β
β§ ((π ++ β¨βπββ©)β0) β 0)
β§ π β
(0..^(β―β(π ++
β¨βπββ©))))) β§ π = β
) β π = β
) |
108 | | simp-4r 782 |
. . . . . . . . . . . . . . 15
β’
(((((π β Word
β β§ π β
β) β§ ((π β
β
β§ (πβ0)
β 0) β βπ
β (0..^(β―βπ))((πβπ)βπ) β 0)) β§ (((π ++ β¨βπββ©) β β
β§ ((π ++ β¨βπββ©)β0) β 0)
β§ π β
(0..^(β―β(π ++
β¨βπββ©))))) β§ π = β
) β π β β) |
109 | | simplrl 775 |
. . . . . . . . . . . . . . . 16
β’
(((((π β Word
β β§ π β
β) β§ ((π β
β
β§ (πβ0)
β 0) β βπ
β (0..^(β―βπ))((πβπ)βπ) β 0)) β§ (((π ++ β¨βπββ©) β β
β§ ((π ++ β¨βπββ©)β0) β 0)
β§ π β
(0..^(β―β(π ++
β¨βπββ©))))) β§ π = β
) β ((π ++ β¨βπββ©) β β
β§ ((π ++ β¨βπββ©)β0) β
0)) |
110 | 109 | simprd 496 |
. . . . . . . . . . . . . . 15
β’
(((((π β Word
β β§ π β
β) β§ ((π β
β
β§ (πβ0)
β 0) β βπ
β (0..^(β―βπ))((πβπ)βπ) β 0)) β§ (((π ++ β¨βπββ©) β β
β§ ((π ++ β¨βπββ©)β0) β 0)
β§ π β
(0..^(β―β(π ++
β¨βπββ©))))) β§ π = β
) β ((π ++ β¨βπββ©)β0) β
0) |
111 | | oveq1 7412 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (π = β
β (π ++ β¨βπββ©) = (β
++
β¨βπββ©)) |
112 | | ccatlid 14532 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’
(β¨βπββ© β Word β β
(β
++ β¨βπββ©) = β¨βπββ©) |
113 | 88, 112 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (π β β β (β
++ β¨βπββ©) = β¨βπββ©) |
114 | 111, 113 | sylan9eq 2792 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π = β
β§ π β β) β (π ++ β¨βπββ©) =
β¨βπββ©) |
115 | 114 | fveq2d 6892 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π = β
β§ π β β) β (πβ(π ++ β¨βπββ©)) = (πββ¨βπββ©)) |
116 | 115 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π = β
β§ π β β) β§ ((π ++ β¨βπββ©)β0) β 0)
β (πβ(π ++ β¨βπββ©)) = (πββ¨βπββ©)) |
117 | 77, 78, 79, 80 | signstf0 33567 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π β β β (πββ¨βπββ©) =
β¨β(sgnβπ)ββ©) |
118 | 117 | ad2antlr 725 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π = β
β§ π β β) β§ ((π ++ β¨βπββ©)β0) β 0)
β (πββ¨βπββ©) =
β¨β(sgnβπ)ββ©) |
119 | 116, 118 | eqtrd 2772 |
. . . . . . . . . . . . . . . . . 18
β’ (((π = β
β§ π β β) β§ ((π ++ β¨βπββ©)β0) β 0)
β (πβ(π ++ β¨βπββ©)) =
β¨β(sgnβπ)ββ©) |
120 | 66 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . 18
β’ (((π = β
β§ π β β) β§ ((π ++ β¨βπββ©)β0) β 0)
β (β―βπ) =
0) |
121 | 119, 120 | fveq12d 6895 |
. . . . . . . . . . . . . . . . 17
β’ (((π = β
β§ π β β) β§ ((π ++ β¨βπββ©)β0) β 0)
β ((πβ(π ++ β¨βπββ©))β(β―βπ)) =
(β¨β(sgnβπ)ββ©β0)) |
122 | | sgnclre 33526 |
. . . . . . . . . . . . . . . . . . 19
β’ (π β β β
(sgnβπ) β
β) |
123 | | s1fv 14556 |
. . . . . . . . . . . . . . . . . . 19
β’
((sgnβπ)
β β β (β¨β(sgnβπ)ββ©β0) = (sgnβπ)) |
124 | 122, 123 | syl 17 |
. . . . . . . . . . . . . . . . . 18
β’ (π β β β
(β¨β(sgnβπ)ββ©β0) = (sgnβπ)) |
125 | 124 | ad2antlr 725 |
. . . . . . . . . . . . . . . . 17
β’ (((π = β
β§ π β β) β§ ((π ++ β¨βπββ©)β0) β 0)
β (β¨β(sgnβπ)ββ©β0) = (sgnβπ)) |
126 | 121, 125 | eqtrd 2772 |
. . . . . . . . . . . . . . . 16
β’ (((π = β
β§ π β β) β§ ((π ++ β¨βπββ©)β0) β 0)
β ((πβ(π ++ β¨βπββ©))β(β―βπ)) = (sgnβπ)) |
127 | | simplr 767 |
. . . . . . . . . . . . . . . . 17
β’ (((π = β
β§ π β β) β§ ((π ++ β¨βπββ©)β0) β 0)
β π β
β) |
128 | 114 | fveq1d 6890 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π = β
β§ π β β) β ((π ++ β¨βπββ©)β0) =
(β¨βπββ©β0)) |
129 | | s1fv 14556 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π β β β
(β¨βπββ©β0) = π) |
130 | 129 | adantl 482 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π = β
β§ π β β) β
(β¨βπββ©β0) = π) |
131 | 128, 130 | eqtrd 2772 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π = β
β§ π β β) β ((π ++ β¨βπββ©)β0) = π) |
132 | 131 | neeq1d 3000 |
. . . . . . . . . . . . . . . . . 18
β’ ((π = β
β§ π β β) β (((π ++ β¨βπββ©)β0) β 0
β π β
0)) |
133 | 132 | biimpa 477 |
. . . . . . . . . . . . . . . . 17
β’ (((π = β
β§ π β β) β§ ((π ++ β¨βπββ©)β0) β 0)
β π β
0) |
134 | | rexr 11256 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π β β β π β
β*) |
135 | | sgn0bi 33534 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π β β*
β ((sgnβπ) = 0
β π =
0)) |
136 | 134, 135 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
β’ (π β β β
((sgnβπ) = 0 β
π = 0)) |
137 | 136 | necon3bid 2985 |
. . . . . . . . . . . . . . . . . 18
β’ (π β β β
((sgnβπ) β 0
β π β
0)) |
138 | 137 | biimpar 478 |
. . . . . . . . . . . . . . . . 17
β’ ((π β β β§ π β 0) β (sgnβπ) β 0) |
139 | 127, 133,
138 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
β’ (((π = β
β§ π β β) β§ ((π ++ β¨βπββ©)β0) β 0)
β (sgnβπ) β
0) |
140 | 126, 139 | eqnetrd 3008 |
. . . . . . . . . . . . . . 15
β’ (((π = β
β§ π β β) β§ ((π ++ β¨βπββ©)β0) β 0)
β ((πβ(π ++ β¨βπββ©))β(β―βπ)) β 0) |
141 | 107, 108,
110, 140 | syl21anc 836 |
. . . . . . . . . . . . . 14
β’
(((((π β Word
β β§ π β
β) β§ ((π β
β
β§ (πβ0)
β 0) β βπ
β (0..^(β―βπ))((πβπ)βπ) β 0)) β§ (((π ++ β¨βπββ©) β β
β§ ((π ++ β¨βπββ©)β0) β 0)
β§ π β
(0..^(β―β(π ++
β¨βπββ©))))) β§ π = β
) β ((πβ(π ++ β¨βπββ©))β(β―βπ)) β 0) |
142 | | eldifsn 4789 |
. . . . . . . . . . . . . . . . . . 19
β’ (π β (Word β β
{β
}) β (π β
Word β β§ π β
β
)) |
143 | 142 | biimpri 227 |
. . . . . . . . . . . . . . . . . 18
β’ ((π β Word β β§ π β β
) β π β (Word β β
{β
})) |
144 | 143 | adantlr 713 |
. . . . . . . . . . . . . . . . 17
β’ (((π β Word β β§ π β β) β§ π β β
) β π β (Word β β
{β
})) |
145 | | simplr 767 |
. . . . . . . . . . . . . . . . 17
β’ (((π β Word β β§ π β β) β§ π β β
) β π β
β) |
146 | 77, 78, 79, 80 | signstfvn 33568 |
. . . . . . . . . . . . . . . . 17
β’ ((π β (Word β β
{β
}) β§ π β
β) β ((πβ(π ++ β¨βπββ©))β(β―βπ)) = (((πβπ)β((β―βπ) β 1)) ⨣ (sgnβπ))) |
147 | 144, 145,
146 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
β’ (((π β Word β β§ π β β) β§ π β β
) β ((πβ(π ++ β¨βπββ©))β(β―βπ)) = (((πβπ)β((β―βπ) β 1)) ⨣ (sgnβπ))) |
148 | 147 | ad4ant14 750 |
. . . . . . . . . . . . . . 15
β’
(((((π β Word
β β§ π β
β) β§ ((π β
β
β§ (πβ0)
β 0) β βπ
β (0..^(β―βπ))((πβπ)βπ) β 0)) β§ (((π ++ β¨βπββ©) β β
β§ ((π ++ β¨βπββ©)β0) β 0)
β§ π β
(0..^(β―β(π ++
β¨βπββ©))))) β§ π β β
) β ((πβ(π ++ β¨βπββ©))β(β―βπ)) = (((πβπ)β((β―βπ) β 1)) ⨣ (sgnβπ))) |
149 | 90, 92 | syl 17 |
. . . . . . . . . . . . . . . . . 18
β’ ((π β Word β β§ π β β
) β
((β―βπ) β
1) β (0..^(β―βπ))) |
150 | 77, 78, 79, 80 | signstcl 33564 |
. . . . . . . . . . . . . . . . . 18
β’ ((π β Word β β§
((β―βπ) β
1) β (0..^(β―βπ))) β ((πβπ)β((β―βπ) β 1)) β {-1, 0,
1}) |
151 | 149, 150 | syldan 591 |
. . . . . . . . . . . . . . . . 17
β’ ((π β Word β β§ π β β
) β ((πβπ)β((β―βπ) β 1)) β {-1, 0,
1}) |
152 | 151 | ad5ant15 757 |
. . . . . . . . . . . . . . . 16
β’
(((((π β Word
β β§ π β
β) β§ ((π β
β
β§ (πβ0)
β 0) β βπ
β (0..^(β―βπ))((πβπ)βπ) β 0)) β§ (((π ++ β¨βπββ©) β β
β§ ((π ++ β¨βπββ©)β0) β 0)
β§ π β
(0..^(β―β(π ++
β¨βπββ©))))) β§ π β β
) β ((πβπ)β((β―βπ) β 1)) β {-1, 0,
1}) |
153 | | sgncl 33525 |
. . . . . . . . . . . . . . . . . 18
β’ (π β β*
β (sgnβπ) β
{-1, 0, 1}) |
154 | 134, 153 | syl 17 |
. . . . . . . . . . . . . . . . 17
β’ (π β β β
(sgnβπ) β {-1,
0, 1}) |
155 | 154 | ad4antlr 731 |
. . . . . . . . . . . . . . . 16
β’
(((((π β Word
β β§ π β
β) β§ ((π β
β
β§ (πβ0)
β 0) β βπ
β (0..^(β―βπ))((πβπ)βπ) β 0)) β§ (((π ++ β¨βπββ©) β β
β§ ((π ++ β¨βπββ©)β0) β 0)
β§ π β
(0..^(β―β(π ++
β¨βπββ©))))) β§ π β β
) β (sgnβπ) β {-1, 0,
1}) |
156 | | fveq2 6888 |
. . . . . . . . . . . . . . . . . 18
β’ (π = ((β―βπ) β 1) β ((πβπ)βπ) = ((πβπ)β((β―βπ) β 1))) |
157 | 156 | neeq1d 3000 |
. . . . . . . . . . . . . . . . 17
β’ (π = ((β―βπ) β 1) β (((πβπ)βπ) β 0 β ((πβπ)β((β―βπ) β 1)) β 0)) |
158 | | simpr 485 |
. . . . . . . . . . . . . . . . . 18
β’
(((((π β Word
β β§ π β
β) β§ ((π β
β
β§ (πβ0)
β 0) β βπ
β (0..^(β―βπ))((πβπ)βπ) β 0)) β§ (((π ++ β¨βπββ©) β β
β§ ((π ++ β¨βπββ©)β0) β 0)
β§ π β
(0..^(β―β(π ++
β¨βπββ©))))) β§ π β β
) β π β β
) |
159 | | simplll 773 |
. . . . . . . . . . . . . . . . . . 19
β’
(((((π β Word
β β§ π β
β) β§ ((π β
β
β§ (πβ0)
β 0) β βπ
β (0..^(β―βπ))((πβπ)βπ) β 0)) β§ (((π ++ β¨βπββ©) β β
β§ ((π ++ β¨βπββ©)β0) β 0)
β§ π β
(0..^(β―β(π ++
β¨βπββ©))))) β§ π β β
) β (π β Word β β§ π β β)) |
160 | | simplrl 775 |
. . . . . . . . . . . . . . . . . . . 20
β’
(((((π β Word
β β§ π β
β) β§ ((π β
β
β§ (πβ0)
β 0) β βπ
β (0..^(β―βπ))((πβπ)βπ) β 0)) β§ (((π ++ β¨βπββ©) β β
β§ ((π ++ β¨βπββ©)β0) β 0)
β§ π β
(0..^(β―β(π ++
β¨βπββ©))))) β§ π β β
) β ((π ++ β¨βπββ©) β β
β§ ((π ++ β¨βπββ©)β0) β
0)) |
161 | 160 | simprd 496 |
. . . . . . . . . . . . . . . . . . 19
β’
(((((π β Word
β β§ π β
β) β§ ((π β
β
β§ (πβ0)
β 0) β βπ
β (0..^(β―βπ))((πβπ)βπ) β 0)) β§ (((π ++ β¨βπββ©) β β
β§ ((π ++ β¨βπββ©)β0) β 0)
β§ π β
(0..^(β―β(π ++
β¨βπββ©))))) β§ π β β
) β ((π ++ β¨βπββ©)β0) β
0) |
162 | 159, 158,
161, 98 | syl21anc 836 |
. . . . . . . . . . . . . . . . . 18
β’
(((((π β Word
β β§ π β
β) β§ ((π β
β
β§ (πβ0)
β 0) β βπ
β (0..^(β―βπ))((πβπ)βπ) β 0)) β§ (((π ++ β¨βπββ©) β β
β§ ((π ++ β¨βπββ©)β0) β 0)
β§ π β
(0..^(β―β(π ++
β¨βπββ©))))) β§ π β β
) β (πβ0) β 0) |
163 | | simpllr 774 |
. . . . . . . . . . . . . . . . . 18
β’
(((((π β Word
β β§ π β
β) β§ ((π β
β
β§ (πβ0)
β 0) β βπ
β (0..^(β―βπ))((πβπ)βπ) β 0)) β§ (((π ++ β¨βπββ©) β β
β§ ((π ++ β¨βπββ©)β0) β 0)
β§ π β
(0..^(β―β(π ++
β¨βπββ©))))) β§ π β β
) β ((π β β
β§ (πβ0) β 0) β βπ β
(0..^(β―βπ))((πβπ)βπ) β 0)) |
164 | 158, 162,
163 | mp2and 697 |
. . . . . . . . . . . . . . . . 17
β’
(((((π β Word
β β§ π β
β) β§ ((π β
β
β§ (πβ0)
β 0) β βπ
β (0..^(β―βπ))((πβπ)βπ) β 0)) β§ (((π ++ β¨βπββ©) β β
β§ ((π ++ β¨βπββ©)β0) β 0)
β§ π β
(0..^(β―β(π ++
β¨βπββ©))))) β§ π β β
) β βπ β
(0..^(β―βπ))((πβπ)βπ) β 0) |
165 | 90 | ad4ant14 750 |
. . . . . . . . . . . . . . . . . . 19
β’ ((((π β Word β β§ π β β) β§ (((π ++ β¨βπββ©) β β
β§ ((π ++
β¨βπββ©)β0) β 0) β§ π β
(0..^(β―β(π ++
β¨βπββ©))))) β§ π β β
) β (β―βπ) β
β) |
166 | 165, 92 | syl 17 |
. . . . . . . . . . . . . . . . . 18
β’ ((((π β Word β β§ π β β) β§ (((π ++ β¨βπββ©) β β
β§ ((π ++
β¨βπββ©)β0) β 0) β§ π β
(0..^(β―β(π ++
β¨βπββ©))))) β§ π β β
) β ((β―βπ) β 1) β
(0..^(β―βπ))) |
167 | 166 | adantllr 717 |
. . . . . . . . . . . . . . . . 17
β’
(((((π β Word
β β§ π β
β) β§ ((π β
β
β§ (πβ0)
β 0) β βπ
β (0..^(β―βπ))((πβπ)βπ) β 0)) β§ (((π ++ β¨βπββ©) β β
β§ ((π ++ β¨βπββ©)β0) β 0)
β§ π β
(0..^(β―β(π ++
β¨βπββ©))))) β§ π β β
) β ((β―βπ) β 1) β
(0..^(β―βπ))) |
168 | 157, 164,
167 | rspcdva 3613 |
. . . . . . . . . . . . . . . 16
β’
(((((π β Word
β β§ π β
β) β§ ((π β
β
β§ (πβ0)
β 0) β βπ
β (0..^(β―βπ))((πβπ)βπ) β 0)) β§ (((π ++ β¨βπββ©) β β
β§ ((π ++ β¨βπββ©)β0) β 0)
β§ π β
(0..^(β―β(π ++
β¨βπββ©))))) β§ π β β
) β ((πβπ)β((β―βπ) β 1)) β 0) |
169 | 77, 78 | signswn0 33559 |
. . . . . . . . . . . . . . . 16
β’
(((((πβπ)β((β―βπ) β 1)) β {-1, 0, 1}
β§ (sgnβπ) β
{-1, 0, 1}) β§ ((πβπ)β((β―βπ) β 1)) β 0) β (((πβπ)β((β―βπ) β 1)) ⨣ (sgnβπ)) β 0) |
170 | 152, 155,
168, 169 | syl21anc 836 |
. . . . . . . . . . . . . . 15
β’
(((((π β Word
β β§ π β
β) β§ ((π β
β
β§ (πβ0)
β 0) β βπ
β (0..^(β―βπ))((πβπ)βπ) β 0)) β§ (((π ++ β¨βπββ©) β β
β§ ((π ++ β¨βπββ©)β0) β 0)
β§ π β
(0..^(β―β(π ++
β¨βπββ©))))) β§ π β β
) β (((πβπ)β((β―βπ) β 1)) ⨣ (sgnβπ)) β 0) |
171 | 148, 170 | eqnetrd 3008 |
. . . . . . . . . . . . . 14
β’
(((((π β Word
β β§ π β
β) β§ ((π β
β
β§ (πβ0)
β 0) β βπ
β (0..^(β―βπ))((πβπ)βπ) β 0)) β§ (((π ++ β¨βπββ©) β β
β§ ((π ++ β¨βπββ©)β0) β 0)
β§ π β
(0..^(β―β(π ++
β¨βπββ©))))) β§ π β β
) β ((πβ(π ++ β¨βπββ©))β(β―βπ)) β 0) |
172 | 141, 171 | pm2.61dane 3029 |
. . . . . . . . . . . . 13
β’ ((((π β Word β β§ π β β) β§ ((π β β
β§ (πβ0) β 0) β
βπ β
(0..^(β―βπ))((πβπ)βπ) β 0)) β§ (((π ++ β¨βπββ©) β β
β§ ((π ++ β¨βπββ©)β0) β 0)
β§ π β
(0..^(β―β(π ++
β¨βπββ©))))) β ((πβ(π ++ β¨βπββ©))β(β―βπ)) β 0) |
173 | 172 | anassrs 468 |
. . . . . . . . . . . 12
β’
(((((π β Word
β β§ π β
β) β§ ((π β
β
β§ (πβ0)
β 0) β βπ
β (0..^(β―βπ))((πβπ)βπ) β 0)) β§ ((π ++ β¨βπββ©) β β
β§ ((π ++ β¨βπββ©)β0) β 0))
β§ π β
(0..^(β―β(π ++
β¨βπββ©)))) β ((πβ(π ++ β¨βπββ©))β(β―βπ)) β 0) |
174 | 173 | adantr 481 |
. . . . . . . . . . 11
β’
((((((π β Word
β β§ π β
β) β§ ((π β
β
β§ (πβ0)
β 0) β βπ
β (0..^(β―βπ))((πβπ)βπ) β 0)) β§ ((π ++ β¨βπββ©) β β
β§ ((π ++ β¨βπββ©)β0) β 0))
β§ π β
(0..^(β―β(π ++
β¨βπββ©)))) β§ π = (β―βπ)) β ((πβ(π ++ β¨βπββ©))β(β―βπ)) β 0) |
175 | 106, 174 | eqnetrd 3008 |
. . . . . . . . . 10
β’
((((((π β Word
β β§ π β
β) β§ ((π β
β
β§ (πβ0)
β 0) β βπ
β (0..^(β―βπ))((πβπ)βπ) β 0)) β§ ((π ++ β¨βπββ©) β β
β§ ((π ++ β¨βπββ©)β0) β 0))
β§ π β
(0..^(β―β(π ++
β¨βπββ©)))) β§ π = (β―βπ)) β ((πβ(π ++ β¨βπββ©))βπ) β 0) |
176 | | lencl 14479 |
. . . . . . . . . . . . 13
β’ (π β Word β β
(β―βπ) β
β0) |
177 | | nn0uz 12860 |
. . . . . . . . . . . . 13
β’
β0 = (β€β₯β0) |
178 | 176, 177 | eleqtrdi 2843 |
. . . . . . . . . . . 12
β’ (π β Word β β
(β―βπ) β
(β€β₯β0)) |
179 | 178 | ad4antr 730 |
. . . . . . . . . . 11
β’
(((((π β Word
β β§ π β
β) β§ ((π β
β
β§ (πβ0)
β 0) β βπ
β (0..^(β―βπ))((πβπ)βπ) β 0)) β§ ((π ++ β¨βπββ©) β β
β§ ((π ++ β¨βπββ©)β0) β 0))
β§ π β
(0..^(β―β(π ++
β¨βπββ©)))) β (β―βπ) β
(β€β₯β0)) |
180 | | ccatws1len 14566 |
. . . . . . . . . . . . . . . 16
β’ (π β Word β β
(β―β(π ++
β¨βπββ©)) = ((β―βπ) + 1)) |
181 | 180 | adantr 481 |
. . . . . . . . . . . . . . 15
β’ ((π β Word β β§ π β β) β
(β―β(π ++
β¨βπββ©)) = ((β―βπ) + 1)) |
182 | 181 | oveq2d 7421 |
. . . . . . . . . . . . . 14
β’ ((π β Word β β§ π β β) β
(0..^(β―β(π ++
β¨βπββ©))) = (0..^((β―βπ) + 1))) |
183 | 182 | eleq2d 2819 |
. . . . . . . . . . . . 13
β’ ((π β Word β β§ π β β) β (π β
(0..^(β―β(π ++
β¨βπββ©))) β π β (0..^((β―βπ) + 1)))) |
184 | 183 | biimpa 477 |
. . . . . . . . . . . 12
β’ (((π β Word β β§ π β β) β§ π β
(0..^(β―β(π ++
β¨βπββ©)))) β π β (0..^((β―βπ) + 1))) |
185 | 184 | ad4ant14 750 |
. . . . . . . . . . 11
β’
(((((π β Word
β β§ π β
β) β§ ((π β
β
β§ (πβ0)
β 0) β βπ
β (0..^(β―βπ))((πβπ)βπ) β 0)) β§ ((π ++ β¨βπββ©) β β
β§ ((π ++ β¨βπββ©)β0) β 0))
β§ π β
(0..^(β―β(π ++
β¨βπββ©)))) β π β (0..^((β―βπ) + 1))) |
186 | | fzosplitsni 13739 |
. . . . . . . . . . . 12
β’
((β―βπ)
β (β€β₯β0) β (π β (0..^((β―βπ) + 1)) β (π β
(0..^(β―βπ))
β¨ π =
(β―βπ)))) |
187 | 186 | biimpa 477 |
. . . . . . . . . . 11
β’
(((β―βπ)
β (β€β₯β0) β§ π β (0..^((β―βπ) + 1))) β (π β
(0..^(β―βπ))
β¨ π =
(β―βπ))) |
188 | 179, 185,
187 | syl2anc 584 |
. . . . . . . . . 10
β’
(((((π β Word
β β§ π β
β) β§ ((π β
β
β§ (πβ0)
β 0) β βπ
β (0..^(β―βπ))((πβπ)βπ) β 0)) β§ ((π ++ β¨βπββ©) β β
β§ ((π ++ β¨βπββ©)β0) β 0))
β§ π β
(0..^(β―β(π ++
β¨βπββ©)))) β (π β (0..^(β―βπ)) β¨ π = (β―βπ))) |
189 | 104, 175,
188 | mpjaodan 957 |
. . . . . . . . 9
β’
(((((π β Word
β β§ π β
β) β§ ((π β
β
β§ (πβ0)
β 0) β βπ
β (0..^(β―βπ))((πβπ)βπ) β 0)) β§ ((π ++ β¨βπββ©) β β
β§ ((π ++ β¨βπββ©)β0) β 0))
β§ π β
(0..^(β―β(π ++
β¨βπββ©)))) β ((πβ(π ++ β¨βπββ©))βπ) β 0) |
190 | 189 | ralrimiva 3146 |
. . . . . . . 8
β’ ((((π β Word β β§ π β β) β§ ((π β β
β§ (πβ0) β 0) β
βπ β
(0..^(β―βπ))((πβπ)βπ) β 0)) β§ ((π ++ β¨βπββ©) β β
β§ ((π ++ β¨βπββ©)β0) β 0))
β βπ β
(0..^(β―β(π ++
β¨βπββ©)))((πβ(π ++ β¨βπββ©))βπ) β 0) |
191 | 61, 190 | sylanbr 582 |
. . . . . . 7
β’ ((((π β Word β β§ π β β) β§ ((π β β
β§ (πβ0) β 0) β
βπ β
(0..^(β―βπ))((πβπ)βπ) β 0)) β§ ((π ++ β¨βπββ©) β β
β§ ((π ++ β¨βπββ©)β0) β 0))
β βπ β
(0..^(β―β(π ++
β¨βπββ©)))((πβ(π ++ β¨βπββ©))βπ) β 0) |
192 | 191 | exp31 420 |
. . . . . 6
β’ ((π β Word β β§ π β β) β (((π β β
β§ (πβ0) β 0) β
βπ β
(0..^(β―βπ))((πβπ)βπ) β 0) β (((π ++ β¨βπββ©) β β
β§ ((π ++ β¨βπββ©)β0) β 0)
β βπ β
(0..^(β―β(π ++
β¨βπββ©)))((πβ(π ++ β¨βπββ©))βπ) β 0))) |
193 | 20, 31, 42, 53, 56, 192 | wrdind 14668 |
. . . . 5
β’ (πΉ β Word β β
((πΉ β β
β§
(πΉβ0) β 0) β
βπ β
(0..^(β―βπΉ))((πβπΉ)βπ) β 0)) |
194 | 193 | imp 407 |
. . . 4
β’ ((πΉ β Word β β§
(πΉ β β
β§
(πΉβ0) β 0)) β
βπ β
(0..^(β―βπΉ))((πβπΉ)βπ) β 0) |
195 | 194 | adantr 481 |
. . 3
β’ (((πΉ β Word β β§
(πΉ β β
β§
(πΉβ0) β 0)) β§
π β
(0..^(β―βπΉ)))
β βπ β
(0..^(β―βπΉ))((πβπΉ)βπ) β 0) |
196 | | simpr 485 |
. . 3
β’ (((πΉ β Word β β§
(πΉ β β
β§
(πΉβ0) β 0)) β§
π β
(0..^(β―βπΉ)))
β π β
(0..^(β―βπΉ))) |
197 | 9, 195, 196 | rspcdva 3613 |
. 2
β’ (((πΉ β Word β β§
(πΉ β β
β§
(πΉβ0) β 0)) β§
π β
(0..^(β―βπΉ)))
β ((πβπΉ)βπ) β 0) |
198 | 2, 6, 7, 197 | syl21anc 836 |
1
β’ (((πΉ β (Word β β
{β
}) β§ (πΉβ0) β 0) β§ π β (0..^(β―βπΉ))) β ((πβπΉ)βπ) β 0) |