Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signstfvneq0 Structured version   Visualization version   GIF version

Theorem signstfvneq0 30982
Description: In case the first letter is not zero, the zero skipping sign is never zero. (Contributed by Thierry Arnoux, 10-Oct-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
Assertion
Ref Expression
signstfvneq0 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇𝐹)‘𝑁) ≠ 0)
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝐹   𝑓,𝑊,𝑖,𝑛   𝑖,𝑁,𝑛   𝑛,𝑎,𝑇,𝑏
Allowed substitution hints:   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑓,𝑖,𝑗)   𝐹(𝑗,𝑎,𝑏)   𝑁(𝑓,𝑗,𝑎,𝑏)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signstfvneq0
Dummy variables 𝑒 𝑘 𝑚 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 750 . . 3 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → 𝐹 ∈ (Word ℝ ∖ {∅}))
21eldifad 3735 . 2 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → 𝐹 ∈ Word ℝ)
3 eldifsni 4457 . . . 4 (𝐹 ∈ (Word ℝ ∖ {∅}) → 𝐹 ≠ ∅)
43ad2antrr 705 . . 3 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → 𝐹 ≠ ∅)
5 simplr 752 . . 3 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → (𝐹‘0) ≠ 0)
64, 5jca 501 . 2 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → (𝐹 ≠ ∅ ∧ (𝐹‘0) ≠ 0))
7 simpr 471 . 2 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → 𝑁 ∈ (0..^(♯‘𝐹)))
8 simprr 756 . . 3 ((𝐹 ∈ Word ℝ ∧ ((𝐹 ≠ ∅ ∧ (𝐹‘0) ≠ 0) ∧ 𝑁 ∈ (0..^(♯‘𝐹)))) → 𝑁 ∈ (0..^(♯‘𝐹)))
9 neeq1 3005 . . . . . . . 8 (𝑔 = ∅ → (𝑔 ≠ ∅ ↔ ∅ ≠ ∅))
10 fveq1 6329 . . . . . . . . 9 (𝑔 = ∅ → (𝑔‘0) = (∅‘0))
1110neeq1d 3002 . . . . . . . 8 (𝑔 = ∅ → ((𝑔‘0) ≠ 0 ↔ (∅‘0) ≠ 0))
129, 11anbi12d 616 . . . . . . 7 (𝑔 = ∅ → ((𝑔 ≠ ∅ ∧ (𝑔‘0) ≠ 0) ↔ (∅ ≠ ∅ ∧ (∅‘0) ≠ 0)))
13 fveq2 6330 . . . . . . . . 9 (𝑔 = ∅ → (♯‘𝑔) = (♯‘∅))
1413oveq2d 6807 . . . . . . . 8 (𝑔 = ∅ → (0..^(♯‘𝑔)) = (0..^(♯‘∅)))
15 fveq2 6330 . . . . . . . . . 10 (𝑔 = ∅ → (𝑇𝑔) = (𝑇‘∅))
1615fveq1d 6332 . . . . . . . . 9 (𝑔 = ∅ → ((𝑇𝑔)‘𝑚) = ((𝑇‘∅)‘𝑚))
1716neeq1d 3002 . . . . . . . 8 (𝑔 = ∅ → (((𝑇𝑔)‘𝑚) ≠ 0 ↔ ((𝑇‘∅)‘𝑚) ≠ 0))
1814, 17raleqbidv 3301 . . . . . . 7 (𝑔 = ∅ → (∀𝑚 ∈ (0..^(♯‘𝑔))((𝑇𝑔)‘𝑚) ≠ 0 ↔ ∀𝑚 ∈ (0..^(♯‘∅))((𝑇‘∅)‘𝑚) ≠ 0))
1912, 18imbi12d 333 . . . . . 6 (𝑔 = ∅ → (((𝑔 ≠ ∅ ∧ (𝑔‘0) ≠ 0) → ∀𝑚 ∈ (0..^(♯‘𝑔))((𝑇𝑔)‘𝑚) ≠ 0) ↔ ((∅ ≠ ∅ ∧ (∅‘0) ≠ 0) → ∀𝑚 ∈ (0..^(♯‘∅))((𝑇‘∅)‘𝑚) ≠ 0)))
20 neeq1 3005 . . . . . . . 8 (𝑔 = 𝑒 → (𝑔 ≠ ∅ ↔ 𝑒 ≠ ∅))
21 fveq1 6329 . . . . . . . . 9 (𝑔 = 𝑒 → (𝑔‘0) = (𝑒‘0))
2221neeq1d 3002 . . . . . . . 8 (𝑔 = 𝑒 → ((𝑔‘0) ≠ 0 ↔ (𝑒‘0) ≠ 0))
2320, 22anbi12d 616 . . . . . . 7 (𝑔 = 𝑒 → ((𝑔 ≠ ∅ ∧ (𝑔‘0) ≠ 0) ↔ (𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0)))
24 fveq2 6330 . . . . . . . . 9 (𝑔 = 𝑒 → (♯‘𝑔) = (♯‘𝑒))
2524oveq2d 6807 . . . . . . . 8 (𝑔 = 𝑒 → (0..^(♯‘𝑔)) = (0..^(♯‘𝑒)))
26 fveq2 6330 . . . . . . . . . 10 (𝑔 = 𝑒 → (𝑇𝑔) = (𝑇𝑒))
2726fveq1d 6332 . . . . . . . . 9 (𝑔 = 𝑒 → ((𝑇𝑔)‘𝑚) = ((𝑇𝑒)‘𝑚))
2827neeq1d 3002 . . . . . . . 8 (𝑔 = 𝑒 → (((𝑇𝑔)‘𝑚) ≠ 0 ↔ ((𝑇𝑒)‘𝑚) ≠ 0))
2925, 28raleqbidv 3301 . . . . . . 7 (𝑔 = 𝑒 → (∀𝑚 ∈ (0..^(♯‘𝑔))((𝑇𝑔)‘𝑚) ≠ 0 ↔ ∀𝑚 ∈ (0..^(♯‘𝑒))((𝑇𝑒)‘𝑚) ≠ 0))
3023, 29imbi12d 333 . . . . . 6 (𝑔 = 𝑒 → (((𝑔 ≠ ∅ ∧ (𝑔‘0) ≠ 0) → ∀𝑚 ∈ (0..^(♯‘𝑔))((𝑇𝑔)‘𝑚) ≠ 0) ↔ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑚 ∈ (0..^(♯‘𝑒))((𝑇𝑒)‘𝑚) ≠ 0)))
31 neeq1 3005 . . . . . . . 8 (𝑔 = (𝑒 ++ ⟨“𝑘”⟩) → (𝑔 ≠ ∅ ↔ (𝑒 ++ ⟨“𝑘”⟩) ≠ ∅))
32 fveq1 6329 . . . . . . . . 9 (𝑔 = (𝑒 ++ ⟨“𝑘”⟩) → (𝑔‘0) = ((𝑒 ++ ⟨“𝑘”⟩)‘0))
3332neeq1d 3002 . . . . . . . 8 (𝑔 = (𝑒 ++ ⟨“𝑘”⟩) → ((𝑔‘0) ≠ 0 ↔ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0))
3431, 33anbi12d 616 . . . . . . 7 (𝑔 = (𝑒 ++ ⟨“𝑘”⟩) → ((𝑔 ≠ ∅ ∧ (𝑔‘0) ≠ 0) ↔ ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)))
35 fveq2 6330 . . . . . . . . 9 (𝑔 = (𝑒 ++ ⟨“𝑘”⟩) → (♯‘𝑔) = (♯‘(𝑒 ++ ⟨“𝑘”⟩)))
3635oveq2d 6807 . . . . . . . 8 (𝑔 = (𝑒 ++ ⟨“𝑘”⟩) → (0..^(♯‘𝑔)) = (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩))))
37 fveq2 6330 . . . . . . . . . 10 (𝑔 = (𝑒 ++ ⟨“𝑘”⟩) → (𝑇𝑔) = (𝑇‘(𝑒 ++ ⟨“𝑘”⟩)))
3837fveq1d 6332 . . . . . . . . 9 (𝑔 = (𝑒 ++ ⟨“𝑘”⟩) → ((𝑇𝑔)‘𝑚) = ((𝑇‘(𝑒 ++ ⟨“𝑘”⟩))‘𝑚))
3938neeq1d 3002 . . . . . . . 8 (𝑔 = (𝑒 ++ ⟨“𝑘”⟩) → (((𝑇𝑔)‘𝑚) ≠ 0 ↔ ((𝑇‘(𝑒 ++ ⟨“𝑘”⟩))‘𝑚) ≠ 0))
4036, 39raleqbidv 3301 . . . . . . 7 (𝑔 = (𝑒 ++ ⟨“𝑘”⟩) → (∀𝑚 ∈ (0..^(♯‘𝑔))((𝑇𝑔)‘𝑚) ≠ 0 ↔ ∀𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩)))((𝑇‘(𝑒 ++ ⟨“𝑘”⟩))‘𝑚) ≠ 0))
4134, 40imbi12d 333 . . . . . 6 (𝑔 = (𝑒 ++ ⟨“𝑘”⟩) → (((𝑔 ≠ ∅ ∧ (𝑔‘0) ≠ 0) → ∀𝑚 ∈ (0..^(♯‘𝑔))((𝑇𝑔)‘𝑚) ≠ 0) ↔ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) → ∀𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩)))((𝑇‘(𝑒 ++ ⟨“𝑘”⟩))‘𝑚) ≠ 0)))
42 neeq1 3005 . . . . . . . 8 (𝑔 = 𝐹 → (𝑔 ≠ ∅ ↔ 𝐹 ≠ ∅))
43 fveq1 6329 . . . . . . . . 9 (𝑔 = 𝐹 → (𝑔‘0) = (𝐹‘0))
4443neeq1d 3002 . . . . . . . 8 (𝑔 = 𝐹 → ((𝑔‘0) ≠ 0 ↔ (𝐹‘0) ≠ 0))
4542, 44anbi12d 616 . . . . . . 7 (𝑔 = 𝐹 → ((𝑔 ≠ ∅ ∧ (𝑔‘0) ≠ 0) ↔ (𝐹 ≠ ∅ ∧ (𝐹‘0) ≠ 0)))
46 fveq2 6330 . . . . . . . . 9 (𝑔 = 𝐹 → (♯‘𝑔) = (♯‘𝐹))
4746oveq2d 6807 . . . . . . . 8 (𝑔 = 𝐹 → (0..^(♯‘𝑔)) = (0..^(♯‘𝐹)))
48 fveq2 6330 . . . . . . . . . 10 (𝑔 = 𝐹 → (𝑇𝑔) = (𝑇𝐹))
4948fveq1d 6332 . . . . . . . . 9 (𝑔 = 𝐹 → ((𝑇𝑔)‘𝑚) = ((𝑇𝐹)‘𝑚))
5049neeq1d 3002 . . . . . . . 8 (𝑔 = 𝐹 → (((𝑇𝑔)‘𝑚) ≠ 0 ↔ ((𝑇𝐹)‘𝑚) ≠ 0))
5147, 50raleqbidv 3301 . . . . . . 7 (𝑔 = 𝐹 → (∀𝑚 ∈ (0..^(♯‘𝑔))((𝑇𝑔)‘𝑚) ≠ 0 ↔ ∀𝑚 ∈ (0..^(♯‘𝐹))((𝑇𝐹)‘𝑚) ≠ 0))
5245, 51imbi12d 333 . . . . . 6 (𝑔 = 𝐹 → (((𝑔 ≠ ∅ ∧ (𝑔‘0) ≠ 0) → ∀𝑚 ∈ (0..^(♯‘𝑔))((𝑇𝑔)‘𝑚) ≠ 0) ↔ ((𝐹 ≠ ∅ ∧ (𝐹‘0) ≠ 0) → ∀𝑚 ∈ (0..^(♯‘𝐹))((𝑇𝐹)‘𝑚) ≠ 0)))
53 neirr 2952 . . . . . . . 8 ¬ ∅ ≠ ∅
5453intnanr 475 . . . . . . 7 ¬ (∅ ≠ ∅ ∧ (∅‘0) ≠ 0)
5554pm2.21i 117 . . . . . 6 ((∅ ≠ ∅ ∧ (∅‘0) ≠ 0) → ∀𝑚 ∈ (0..^(♯‘∅))((𝑇‘∅)‘𝑚) ≠ 0)
56 fveq2 6330 . . . . . . . . . . . 12 (𝑛 = 𝑚 → ((𝑇𝑒)‘𝑛) = ((𝑇𝑒)‘𝑚))
5756neeq1d 3002 . . . . . . . . . . 11 (𝑛 = 𝑚 → (((𝑇𝑒)‘𝑛) ≠ 0 ↔ ((𝑇𝑒)‘𝑚) ≠ 0))
5857cbvralv 3320 . . . . . . . . . 10 (∀𝑛 ∈ (0..^(♯‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0 ↔ ∀𝑚 ∈ (0..^(♯‘𝑒))((𝑇𝑒)‘𝑚) ≠ 0)
5958imbi2i 325 . . . . . . . . 9 (((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(♯‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0) ↔ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑚 ∈ (0..^(♯‘𝑒))((𝑇𝑒)‘𝑚) ≠ 0))
6059anbi2i 609 . . . . . . . 8 (((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(♯‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ↔ ((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑚 ∈ (0..^(♯‘𝑒))((𝑇𝑒)‘𝑚) ≠ 0)))
61 simplr 752 . . . . . . . . . . . 12 (((((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(♯‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)) ∧ 𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩)))) ∧ 𝑚 ∈ (0..^(♯‘𝑒))) ∧ 𝑒 = ∅) → 𝑚 ∈ (0..^(♯‘𝑒)))
62 noel 4067 . . . . . . . . . . . . . 14 ¬ 𝑚 ∈ ∅
63 fveq2 6330 . . . . . . . . . . . . . . . . . 18 (𝑒 = ∅ → (♯‘𝑒) = (♯‘∅))
64 hash0 13353 . . . . . . . . . . . . . . . . . 18 (♯‘∅) = 0
6563, 64syl6eq 2821 . . . . . . . . . . . . . . . . 17 (𝑒 = ∅ → (♯‘𝑒) = 0)
6665oveq2d 6807 . . . . . . . . . . . . . . . 16 (𝑒 = ∅ → (0..^(♯‘𝑒)) = (0..^0))
67 fzo0 12693 . . . . . . . . . . . . . . . 16 (0..^0) = ∅
6866, 67syl6eq 2821 . . . . . . . . . . . . . . 15 (𝑒 = ∅ → (0..^(♯‘𝑒)) = ∅)
6968eleq2d 2836 . . . . . . . . . . . . . 14 (𝑒 = ∅ → (𝑚 ∈ (0..^(♯‘𝑒)) ↔ 𝑚 ∈ ∅))
7062, 69mtbiri 316 . . . . . . . . . . . . 13 (𝑒 = ∅ → ¬ 𝑚 ∈ (0..^(♯‘𝑒)))
7170adantl 467 . . . . . . . . . . . 12 (((((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(♯‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)) ∧ 𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩)))) ∧ 𝑚 ∈ (0..^(♯‘𝑒))) ∧ 𝑒 = ∅) → ¬ 𝑚 ∈ (0..^(♯‘𝑒)))
7261, 71pm2.21dd 186 . . . . . . . . . . 11 (((((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(♯‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)) ∧ 𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩)))) ∧ 𝑚 ∈ (0..^(♯‘𝑒))) ∧ 𝑒 = ∅) → ((𝑇‘(𝑒 ++ ⟨“𝑘”⟩))‘𝑚) ≠ 0)
73 simp-6l 776 . . . . . . . . . . . . 13 (((((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(♯‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)) ∧ 𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩)))) ∧ 𝑚 ∈ (0..^(♯‘𝑒))) ∧ 𝑒 ≠ ∅) → 𝑒 ∈ Word ℝ)
74 simp-6r 778 . . . . . . . . . . . . 13 (((((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(♯‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)) ∧ 𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩)))) ∧ 𝑚 ∈ (0..^(♯‘𝑒))) ∧ 𝑒 ≠ ∅) → 𝑘 ∈ ℝ)
75 simplr 752 . . . . . . . . . . . . 13 (((((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(♯‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)) ∧ 𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩)))) ∧ 𝑚 ∈ (0..^(♯‘𝑒))) ∧ 𝑒 ≠ ∅) → 𝑚 ∈ (0..^(♯‘𝑒)))
76 signsv.p . . . . . . . . . . . . . 14 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
77 signsv.w . . . . . . . . . . . . . 14 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
78 signsv.t . . . . . . . . . . . . . 14 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
79 signsv.v . . . . . . . . . . . . . 14 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
8076, 77, 78, 79signstfvp 30981 . . . . . . . . . . . . 13 ((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ ∧ 𝑚 ∈ (0..^(♯‘𝑒))) → ((𝑇‘(𝑒 ++ ⟨“𝑘”⟩))‘𝑚) = ((𝑇𝑒)‘𝑚))
8173, 74, 75, 80syl3anc 1476 . . . . . . . . . . . 12 (((((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(♯‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)) ∧ 𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩)))) ∧ 𝑚 ∈ (0..^(♯‘𝑒))) ∧ 𝑒 ≠ ∅) → ((𝑇‘(𝑒 ++ ⟨“𝑘”⟩))‘𝑚) = ((𝑇𝑒)‘𝑚))
82 simpr 471 . . . . . . . . . . . . . 14 (((((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(♯‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)) ∧ 𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩)))) ∧ 𝑚 ∈ (0..^(♯‘𝑒))) ∧ 𝑒 ≠ ∅) → 𝑒 ≠ ∅)
83 simplll 758 . . . . . . . . . . . . . . . 16 (((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(♯‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)) ∧ 𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩)))) → (𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ))
8483ad2antrr 705 . . . . . . . . . . . . . . 15 (((((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(♯‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)) ∧ 𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩)))) ∧ 𝑚 ∈ (0..^(♯‘𝑒))) ∧ 𝑒 ≠ ∅) → (𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ))
85 simplrr 763 . . . . . . . . . . . . . . . 16 (((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(♯‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)) ∧ (𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩))) ∧ 𝑚 ∈ (0..^(♯‘𝑒)) ∧ 𝑒 ≠ ∅)) → ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)
86853anassrs 1453 . . . . . . . . . . . . . . 15 (((((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(♯‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)) ∧ 𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩)))) ∧ 𝑚 ∈ (0..^(♯‘𝑒))) ∧ 𝑒 ≠ ∅) → ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)
87 simpll 750 . . . . . . . . . . . . . . . . . 18 (((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ 𝑒 ≠ ∅) → 𝑒 ∈ Word ℝ)
88 simplr 752 . . . . . . . . . . . . . . . . . . 19 (((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ 𝑒 ≠ ∅) → 𝑘 ∈ ℝ)
8988s1cld 13576 . . . . . . . . . . . . . . . . . 18 (((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ 𝑒 ≠ ∅) → ⟨“𝑘”⟩ ∈ Word ℝ)
90 lennncl 13514 . . . . . . . . . . . . . . . . . . . 20 ((𝑒 ∈ Word ℝ ∧ 𝑒 ≠ ∅) → (♯‘𝑒) ∈ ℕ)
9190adantlr 694 . . . . . . . . . . . . . . . . . . 19 (((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ 𝑒 ≠ ∅) → (♯‘𝑒) ∈ ℕ)
92 fzo0end 12761 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑒) ∈ ℕ → ((♯‘𝑒) − 1) ∈ (0..^(♯‘𝑒)))
93 elfzolt3b 12683 . . . . . . . . . . . . . . . . . . 19 (((♯‘𝑒) − 1) ∈ (0..^(♯‘𝑒)) → 0 ∈ (0..^(♯‘𝑒)))
9491, 92, 933syl 18 . . . . . . . . . . . . . . . . . 18 (((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ 𝑒 ≠ ∅) → 0 ∈ (0..^(♯‘𝑒)))
95 ccatval1 13552 . . . . . . . . . . . . . . . . . 18 ((𝑒 ∈ Word ℝ ∧ ⟨“𝑘”⟩ ∈ Word ℝ ∧ 0 ∈ (0..^(♯‘𝑒))) → ((𝑒 ++ ⟨“𝑘”⟩)‘0) = (𝑒‘0))
9687, 89, 94, 95syl3anc 1476 . . . . . . . . . . . . . . . . 17 (((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ 𝑒 ≠ ∅) → ((𝑒 ++ ⟨“𝑘”⟩)‘0) = (𝑒‘0))
9796neeq1d 3002 . . . . . . . . . . . . . . . 16 (((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ 𝑒 ≠ ∅) → (((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0 ↔ (𝑒‘0) ≠ 0))
9897biimpa 462 . . . . . . . . . . . . . . 15 ((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ 𝑒 ≠ ∅) ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) → (𝑒‘0) ≠ 0)
9984, 82, 86, 98syl21anc 1475 . . . . . . . . . . . . . 14 (((((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(♯‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)) ∧ 𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩)))) ∧ 𝑚 ∈ (0..^(♯‘𝑒))) ∧ 𝑒 ≠ ∅) → (𝑒‘0) ≠ 0)
100 simp-5r 774 . . . . . . . . . . . . . 14 (((((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(♯‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)) ∧ 𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩)))) ∧ 𝑚 ∈ (0..^(♯‘𝑒))) ∧ 𝑒 ≠ ∅) → ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(♯‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0))
10182, 99, 100mp2and 679 . . . . . . . . . . . . 13 (((((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(♯‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)) ∧ 𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩)))) ∧ 𝑚 ∈ (0..^(♯‘𝑒))) ∧ 𝑒 ≠ ∅) → ∀𝑛 ∈ (0..^(♯‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)
10257rspcva 3458 . . . . . . . . . . . . 13 ((𝑚 ∈ (0..^(♯‘𝑒)) ∧ ∀𝑛 ∈ (0..^(♯‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0) → ((𝑇𝑒)‘𝑚) ≠ 0)
10375, 101, 102syl2anc 573 . . . . . . . . . . . 12 (((((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(♯‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)) ∧ 𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩)))) ∧ 𝑚 ∈ (0..^(♯‘𝑒))) ∧ 𝑒 ≠ ∅) → ((𝑇𝑒)‘𝑚) ≠ 0)
10481, 103eqnetrd 3010 . . . . . . . . . . 11 (((((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(♯‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)) ∧ 𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩)))) ∧ 𝑚 ∈ (0..^(♯‘𝑒))) ∧ 𝑒 ≠ ∅) → ((𝑇‘(𝑒 ++ ⟨“𝑘”⟩))‘𝑚) ≠ 0)
10572, 104pm2.61dane 3030 . . . . . . . . . 10 ((((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(♯‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)) ∧ 𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩)))) ∧ 𝑚 ∈ (0..^(♯‘𝑒))) → ((𝑇‘(𝑒 ++ ⟨“𝑘”⟩))‘𝑚) ≠ 0)
106 simpr 471 . . . . . . . . . . . 12 ((((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(♯‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)) ∧ 𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩)))) ∧ 𝑚 = (♯‘𝑒)) → 𝑚 = (♯‘𝑒))
107106fveq2d 6334 . . . . . . . . . . 11 ((((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(♯‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)) ∧ 𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩)))) ∧ 𝑚 = (♯‘𝑒)) → ((𝑇‘(𝑒 ++ ⟨“𝑘”⟩))‘𝑚) = ((𝑇‘(𝑒 ++ ⟨“𝑘”⟩))‘(♯‘𝑒)))
108 simpr 471 . . . . . . . . . . . . . . 15 (((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(♯‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) ∧ 𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩))))) ∧ 𝑒 = ∅) → 𝑒 = ∅)
109 simp-4r 770 . . . . . . . . . . . . . . 15 (((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(♯‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) ∧ 𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩))))) ∧ 𝑒 = ∅) → 𝑘 ∈ ℝ)
110 simplrl 762 . . . . . . . . . . . . . . . 16 (((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(♯‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) ∧ 𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩))))) ∧ 𝑒 = ∅) → ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0))
111110simprd 483 . . . . . . . . . . . . . . 15 (((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(♯‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) ∧ 𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩))))) ∧ 𝑒 = ∅) → ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)
112 oveq1 6798 . . . . . . . . . . . . . . . . . . . . . 22 (𝑒 = ∅ → (𝑒 ++ ⟨“𝑘”⟩) = (∅ ++ ⟨“𝑘”⟩))
113 s1cl 13575 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 ∈ ℝ → ⟨“𝑘”⟩ ∈ Word ℝ)
114 ccatlid 13561 . . . . . . . . . . . . . . . . . . . . . . 23 (⟨“𝑘”⟩ ∈ Word ℝ → (∅ ++ ⟨“𝑘”⟩) = ⟨“𝑘”⟩)
115113, 114syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ ℝ → (∅ ++ ⟨“𝑘”⟩) = ⟨“𝑘”⟩)
116112, 115sylan9eq 2825 . . . . . . . . . . . . . . . . . . . . 21 ((𝑒 = ∅ ∧ 𝑘 ∈ ℝ) → (𝑒 ++ ⟨“𝑘”⟩) = ⟨“𝑘”⟩)
117116fveq2d 6334 . . . . . . . . . . . . . . . . . . . 20 ((𝑒 = ∅ ∧ 𝑘 ∈ ℝ) → (𝑇‘(𝑒 ++ ⟨“𝑘”⟩)) = (𝑇‘⟨“𝑘”⟩))
118117adantr 466 . . . . . . . . . . . . . . . . . . 19 (((𝑒 = ∅ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) → (𝑇‘(𝑒 ++ ⟨“𝑘”⟩)) = (𝑇‘⟨“𝑘”⟩))
119 simplr 752 . . . . . . . . . . . . . . . . . . . 20 (((𝑒 = ∅ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) → 𝑘 ∈ ℝ)
12076, 77, 78, 79signstf0 30978 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℝ → (𝑇‘⟨“𝑘”⟩) = ⟨“(sgn‘𝑘)”⟩)
121119, 120syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑒 = ∅ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) → (𝑇‘⟨“𝑘”⟩) = ⟨“(sgn‘𝑘)”⟩)
122118, 121eqtrd 2805 . . . . . . . . . . . . . . . . . 18 (((𝑒 = ∅ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) → (𝑇‘(𝑒 ++ ⟨“𝑘”⟩)) = ⟨“(sgn‘𝑘)”⟩)
12365ad2antrr 705 . . . . . . . . . . . . . . . . . 18 (((𝑒 = ∅ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) → (♯‘𝑒) = 0)
124122, 123fveq12d 6336 . . . . . . . . . . . . . . . . 17 (((𝑒 = ∅ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) → ((𝑇‘(𝑒 ++ ⟨“𝑘”⟩))‘(♯‘𝑒)) = (⟨“(sgn‘𝑘)”⟩‘0))
125 sgnclre 30934 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℝ → (sgn‘𝑘) ∈ ℝ)
126 s1fv 13583 . . . . . . . . . . . . . . . . . 18 ((sgn‘𝑘) ∈ ℝ → (⟨“(sgn‘𝑘)”⟩‘0) = (sgn‘𝑘))
127119, 125, 1263syl 18 . . . . . . . . . . . . . . . . 17 (((𝑒 = ∅ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) → (⟨“(sgn‘𝑘)”⟩‘0) = (sgn‘𝑘))
128124, 127eqtrd 2805 . . . . . . . . . . . . . . . 16 (((𝑒 = ∅ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) → ((𝑇‘(𝑒 ++ ⟨“𝑘”⟩))‘(♯‘𝑒)) = (sgn‘𝑘))
129116fveq1d 6332 . . . . . . . . . . . . . . . . . . . 20 ((𝑒 = ∅ ∧ 𝑘 ∈ ℝ) → ((𝑒 ++ ⟨“𝑘”⟩)‘0) = (⟨“𝑘”⟩‘0))
130 s1fv 13583 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ ℝ → (⟨“𝑘”⟩‘0) = 𝑘)
131130adantl 467 . . . . . . . . . . . . . . . . . . . 20 ((𝑒 = ∅ ∧ 𝑘 ∈ ℝ) → (⟨“𝑘”⟩‘0) = 𝑘)
132129, 131eqtrd 2805 . . . . . . . . . . . . . . . . . . 19 ((𝑒 = ∅ ∧ 𝑘 ∈ ℝ) → ((𝑒 ++ ⟨“𝑘”⟩)‘0) = 𝑘)
133132neeq1d 3002 . . . . . . . . . . . . . . . . . 18 ((𝑒 = ∅ ∧ 𝑘 ∈ ℝ) → (((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0 ↔ 𝑘 ≠ 0))
134133biimpa 462 . . . . . . . . . . . . . . . . 17 (((𝑒 = ∅ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) → 𝑘 ≠ 0)
135 rexr 10285 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℝ → 𝑘 ∈ ℝ*)
136 sgn0bi 30942 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℝ* → ((sgn‘𝑘) = 0 ↔ 𝑘 = 0))
137135, 136syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℝ → ((sgn‘𝑘) = 0 ↔ 𝑘 = 0))
138137necon3bid 2987 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℝ → ((sgn‘𝑘) ≠ 0 ↔ 𝑘 ≠ 0))
139138biimpar 463 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℝ ∧ 𝑘 ≠ 0) → (sgn‘𝑘) ≠ 0)
140119, 134, 139syl2anc 573 . . . . . . . . . . . . . . . 16 (((𝑒 = ∅ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) → (sgn‘𝑘) ≠ 0)
141128, 140eqnetrd 3010 . . . . . . . . . . . . . . 15 (((𝑒 = ∅ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) → ((𝑇‘(𝑒 ++ ⟨“𝑘”⟩))‘(♯‘𝑒)) ≠ 0)
142108, 109, 111, 141syl21anc 1475 . . . . . . . . . . . . . 14 (((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(♯‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) ∧ 𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩))))) ∧ 𝑒 = ∅) → ((𝑇‘(𝑒 ++ ⟨“𝑘”⟩))‘(♯‘𝑒)) ≠ 0)
143 simplll 758 . . . . . . . . . . . . . . . . . 18 ((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) ∧ 𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩))))) ∧ ¬ 𝑒 = ∅) → 𝑒 ∈ Word ℝ)
144 simpr 471 . . . . . . . . . . . . . . . . . . 19 ((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) ∧ 𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩))))) ∧ ¬ 𝑒 = ∅) → ¬ 𝑒 = ∅)
145 velsn 4332 . . . . . . . . . . . . . . . . . . 19 (𝑒 ∈ {∅} ↔ 𝑒 = ∅)
146144, 145sylnibr 318 . . . . . . . . . . . . . . . . . 18 ((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) ∧ 𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩))))) ∧ ¬ 𝑒 = ∅) → ¬ 𝑒 ∈ {∅})
147143, 146eldifd 3734 . . . . . . . . . . . . . . . . 17 ((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) ∧ 𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩))))) ∧ ¬ 𝑒 = ∅) → 𝑒 ∈ (Word ℝ ∖ {∅}))
148 simpllr 760 . . . . . . . . . . . . . . . . 17 ((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) ∧ 𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩))))) ∧ ¬ 𝑒 = ∅) → 𝑘 ∈ ℝ)
14976, 77, 78, 79signstfvn 30979 . . . . . . . . . . . . . . . . 17 ((𝑒 ∈ (Word ℝ ∖ {∅}) ∧ 𝑘 ∈ ℝ) → ((𝑇‘(𝑒 ++ ⟨“𝑘”⟩))‘(♯‘𝑒)) = (((𝑇𝑒)‘((♯‘𝑒) − 1)) (sgn‘𝑘)))
150147, 148, 149syl2anc 573 . . . . . . . . . . . . . . . 16 ((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) ∧ 𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩))))) ∧ ¬ 𝑒 = ∅) → ((𝑇‘(𝑒 ++ ⟨“𝑘”⟩))‘(♯‘𝑒)) = (((𝑇𝑒)‘((♯‘𝑒) − 1)) (sgn‘𝑘)))
151150adantllr 698 . . . . . . . . . . . . . . 15 (((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(♯‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) ∧ 𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩))))) ∧ ¬ 𝑒 = ∅) → ((𝑇‘(𝑒 ++ ⟨“𝑘”⟩))‘(♯‘𝑒)) = (((𝑇𝑒)‘((♯‘𝑒) − 1)) (sgn‘𝑘)))
152144neqned 2950 . . . . . . . . . . . . . . . . . . . 20 ((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) ∧ 𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩))))) ∧ ¬ 𝑒 = ∅) → 𝑒 ≠ ∅)
153143, 152, 90syl2anc 573 . . . . . . . . . . . . . . . . . . 19 ((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) ∧ 𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩))))) ∧ ¬ 𝑒 = ∅) → (♯‘𝑒) ∈ ℕ)
154153, 92syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) ∧ 𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩))))) ∧ ¬ 𝑒 = ∅) → ((♯‘𝑒) − 1) ∈ (0..^(♯‘𝑒)))
15576, 77, 78, 79signstcl 30975 . . . . . . . . . . . . . . . . . 18 ((𝑒 ∈ Word ℝ ∧ ((♯‘𝑒) − 1) ∈ (0..^(♯‘𝑒))) → ((𝑇𝑒)‘((♯‘𝑒) − 1)) ∈ {-1, 0, 1})
156143, 154, 155syl2anc 573 . . . . . . . . . . . . . . . . 17 ((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) ∧ 𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩))))) ∧ ¬ 𝑒 = ∅) → ((𝑇𝑒)‘((♯‘𝑒) − 1)) ∈ {-1, 0, 1})
157156adantllr 698 . . . . . . . . . . . . . . . 16 (((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(♯‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) ∧ 𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩))))) ∧ ¬ 𝑒 = ∅) → ((𝑇𝑒)‘((♯‘𝑒) − 1)) ∈ {-1, 0, 1})
158148rexrd 10289 . . . . . . . . . . . . . . . . . 18 ((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) ∧ 𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩))))) ∧ ¬ 𝑒 = ∅) → 𝑘 ∈ ℝ*)
159 sgncl 30933 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℝ* → (sgn‘𝑘) ∈ {-1, 0, 1})
160158, 159syl 17 . . . . . . . . . . . . . . . . 17 ((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) ∧ 𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩))))) ∧ ¬ 𝑒 = ∅) → (sgn‘𝑘) ∈ {-1, 0, 1})
161160adantllr 698 . . . . . . . . . . . . . . . 16 (((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(♯‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) ∧ 𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩))))) ∧ ¬ 𝑒 = ∅) → (sgn‘𝑘) ∈ {-1, 0, 1})
162154adantllr 698 . . . . . . . . . . . . . . . . 17 (((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(♯‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) ∧ 𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩))))) ∧ ¬ 𝑒 = ∅) → ((♯‘𝑒) − 1) ∈ (0..^(♯‘𝑒)))
163152adantllr 698 . . . . . . . . . . . . . . . . . 18 (((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(♯‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) ∧ 𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩))))) ∧ ¬ 𝑒 = ∅) → 𝑒 ≠ ∅)
164 simplll 758 . . . . . . . . . . . . . . . . . . 19 (((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(♯‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) ∧ 𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩))))) ∧ ¬ 𝑒 = ∅) → (𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ))
165 simplrl 762 . . . . . . . . . . . . . . . . . . . 20 (((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(♯‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) ∧ 𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩))))) ∧ ¬ 𝑒 = ∅) → ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0))
166165simprd 483 . . . . . . . . . . . . . . . . . . 19 (((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(♯‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) ∧ 𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩))))) ∧ ¬ 𝑒 = ∅) → ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)
167164, 163, 166, 98syl21anc 1475 . . . . . . . . . . . . . . . . . 18 (((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(♯‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) ∧ 𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩))))) ∧ ¬ 𝑒 = ∅) → (𝑒‘0) ≠ 0)
168 simpllr 760 . . . . . . . . . . . . . . . . . 18 (((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(♯‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) ∧ 𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩))))) ∧ ¬ 𝑒 = ∅) → ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(♯‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0))
169163, 167, 168mp2and 679 . . . . . . . . . . . . . . . . 17 (((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(♯‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) ∧ 𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩))))) ∧ ¬ 𝑒 = ∅) → ∀𝑛 ∈ (0..^(♯‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)
170 fveq2 6330 . . . . . . . . . . . . . . . . . . 19 (𝑛 = ((♯‘𝑒) − 1) → ((𝑇𝑒)‘𝑛) = ((𝑇𝑒)‘((♯‘𝑒) − 1)))
171170neeq1d 3002 . . . . . . . . . . . . . . . . . 18 (𝑛 = ((♯‘𝑒) − 1) → (((𝑇𝑒)‘𝑛) ≠ 0 ↔ ((𝑇𝑒)‘((♯‘𝑒) − 1)) ≠ 0))
172171rspcva 3458 . . . . . . . . . . . . . . . . 17 ((((♯‘𝑒) − 1) ∈ (0..^(♯‘𝑒)) ∧ ∀𝑛 ∈ (0..^(♯‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0) → ((𝑇𝑒)‘((♯‘𝑒) − 1)) ≠ 0)
173162, 169, 172syl2anc 573 . . . . . . . . . . . . . . . 16 (((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(♯‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) ∧ 𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩))))) ∧ ¬ 𝑒 = ∅) → ((𝑇𝑒)‘((♯‘𝑒) − 1)) ≠ 0)
17476, 77signswn0 30970 . . . . . . . . . . . . . . . 16 (((((𝑇𝑒)‘((♯‘𝑒) − 1)) ∈ {-1, 0, 1} ∧ (sgn‘𝑘) ∈ {-1, 0, 1}) ∧ ((𝑇𝑒)‘((♯‘𝑒) − 1)) ≠ 0) → (((𝑇𝑒)‘((♯‘𝑒) − 1)) (sgn‘𝑘)) ≠ 0)
175157, 161, 173, 174syl21anc 1475 . . . . . . . . . . . . . . 15 (((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(♯‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) ∧ 𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩))))) ∧ ¬ 𝑒 = ∅) → (((𝑇𝑒)‘((♯‘𝑒) − 1)) (sgn‘𝑘)) ≠ 0)
176151, 175eqnetrd 3010 . . . . . . . . . . . . . 14 (((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(♯‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) ∧ 𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩))))) ∧ ¬ 𝑒 = ∅) → ((𝑇‘(𝑒 ++ ⟨“𝑘”⟩))‘(♯‘𝑒)) ≠ 0)
177142, 176pm2.61dan 814 . . . . . . . . . . . . 13 ((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(♯‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) ∧ 𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩))))) → ((𝑇‘(𝑒 ++ ⟨“𝑘”⟩))‘(♯‘𝑒)) ≠ 0)
178177anassrs 453 . . . . . . . . . . . 12 (((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(♯‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)) ∧ 𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩)))) → ((𝑇‘(𝑒 ++ ⟨“𝑘”⟩))‘(♯‘𝑒)) ≠ 0)
179178adantr 466 . . . . . . . . . . 11 ((((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(♯‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)) ∧ 𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩)))) ∧ 𝑚 = (♯‘𝑒)) → ((𝑇‘(𝑒 ++ ⟨“𝑘”⟩))‘(♯‘𝑒)) ≠ 0)
180107, 179eqnetrd 3010 . . . . . . . . . 10 ((((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(♯‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)) ∧ 𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩)))) ∧ 𝑚 = (♯‘𝑒)) → ((𝑇‘(𝑒 ++ ⟨“𝑘”⟩))‘𝑚) ≠ 0)
181 lencl 13513 . . . . . . . . . . . . 13 (𝑒 ∈ Word ℝ → (♯‘𝑒) ∈ ℕ0)
182 nn0uz 11922 . . . . . . . . . . . . 13 0 = (ℤ‘0)
183181, 182syl6eleq 2860 . . . . . . . . . . . 12 (𝑒 ∈ Word ℝ → (♯‘𝑒) ∈ (ℤ‘0))
184183ad4antr 712 . . . . . . . . . . 11 (((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(♯‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)) ∧ 𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩)))) → (♯‘𝑒) ∈ (ℤ‘0))
185 simpr 471 . . . . . . . . . . . 12 (((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(♯‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)) ∧ 𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩)))) → 𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩))))
186 ccatws1len 13593 . . . . . . . . . . . . . . . 16 (𝑒 ∈ Word ℝ → (♯‘(𝑒 ++ ⟨“𝑘”⟩)) = ((♯‘𝑒) + 1))
187186adantr 466 . . . . . . . . . . . . . . 15 ((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) → (♯‘(𝑒 ++ ⟨“𝑘”⟩)) = ((♯‘𝑒) + 1))
188187oveq2d 6807 . . . . . . . . . . . . . 14 ((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) → (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩))) = (0..^((♯‘𝑒) + 1)))
189188eleq2d 2836 . . . . . . . . . . . . 13 ((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) → (𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩))) ↔ 𝑚 ∈ (0..^((♯‘𝑒) + 1))))
190189biimpa 462 . . . . . . . . . . . 12 (((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ 𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩)))) → 𝑚 ∈ (0..^((♯‘𝑒) + 1)))
19183, 185, 190syl2anc 573 . . . . . . . . . . 11 (((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(♯‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)) ∧ 𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩)))) → 𝑚 ∈ (0..^((♯‘𝑒) + 1)))
192 fzosplitsni 12780 . . . . . . . . . . . 12 ((♯‘𝑒) ∈ (ℤ‘0) → (𝑚 ∈ (0..^((♯‘𝑒) + 1)) ↔ (𝑚 ∈ (0..^(♯‘𝑒)) ∨ 𝑚 = (♯‘𝑒))))
193192biimpa 462 . . . . . . . . . . 11 (((♯‘𝑒) ∈ (ℤ‘0) ∧ 𝑚 ∈ (0..^((♯‘𝑒) + 1))) → (𝑚 ∈ (0..^(♯‘𝑒)) ∨ 𝑚 = (♯‘𝑒)))
194184, 191, 193syl2anc 573 . . . . . . . . . 10 (((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(♯‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)) ∧ 𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩)))) → (𝑚 ∈ (0..^(♯‘𝑒)) ∨ 𝑚 = (♯‘𝑒)))
195105, 180, 194mpjaodan 943 . . . . . . . . 9 (((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(♯‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)) ∧ 𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩)))) → ((𝑇‘(𝑒 ++ ⟨“𝑘”⟩))‘𝑚) ≠ 0)
196195ralrimiva 3115 . . . . . . . 8 ((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(♯‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)) → ∀𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩)))((𝑇‘(𝑒 ++ ⟨“𝑘”⟩))‘𝑚) ≠ 0)
19760, 196sylanbr 571 . . . . . . 7 ((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑚 ∈ (0..^(♯‘𝑒))((𝑇𝑒)‘𝑚) ≠ 0)) ∧ ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)) → ∀𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩)))((𝑇‘(𝑒 ++ ⟨“𝑘”⟩))‘𝑚) ≠ 0)
198197exp31 406 . . . . . 6 ((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) → (((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑚 ∈ (0..^(♯‘𝑒))((𝑇𝑒)‘𝑚) ≠ 0) → (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) → ∀𝑚 ∈ (0..^(♯‘(𝑒 ++ ⟨“𝑘”⟩)))((𝑇‘(𝑒 ++ ⟨“𝑘”⟩))‘𝑚) ≠ 0)))
19919, 30, 41, 52, 55, 198wrdind 13678 . . . . 5 (𝐹 ∈ Word ℝ → ((𝐹 ≠ ∅ ∧ (𝐹‘0) ≠ 0) → ∀𝑚 ∈ (0..^(♯‘𝐹))((𝑇𝐹)‘𝑚) ≠ 0))
200199imp 393 . . . 4 ((𝐹 ∈ Word ℝ ∧ (𝐹 ≠ ∅ ∧ (𝐹‘0) ≠ 0)) → ∀𝑚 ∈ (0..^(♯‘𝐹))((𝑇𝐹)‘𝑚) ≠ 0)
201200adantrr 696 . . 3 ((𝐹 ∈ Word ℝ ∧ ((𝐹 ≠ ∅ ∧ (𝐹‘0) ≠ 0) ∧ 𝑁 ∈ (0..^(♯‘𝐹)))) → ∀𝑚 ∈ (0..^(♯‘𝐹))((𝑇𝐹)‘𝑚) ≠ 0)
202 fveq2 6330 . . . . 5 (𝑚 = 𝑁 → ((𝑇𝐹)‘𝑚) = ((𝑇𝐹)‘𝑁))
203202neeq1d 3002 . . . 4 (𝑚 = 𝑁 → (((𝑇𝐹)‘𝑚) ≠ 0 ↔ ((𝑇𝐹)‘𝑁) ≠ 0))
204203rspcva 3458 . . 3 ((𝑁 ∈ (0..^(♯‘𝐹)) ∧ ∀𝑚 ∈ (0..^(♯‘𝐹))((𝑇𝐹)‘𝑚) ≠ 0) → ((𝑇𝐹)‘𝑁) ≠ 0)
2058, 201, 204syl2anc 573 . 2 ((𝐹 ∈ Word ℝ ∧ ((𝐹 ≠ ∅ ∧ (𝐹‘0) ≠ 0) ∧ 𝑁 ∈ (0..^(♯‘𝐹)))) → ((𝑇𝐹)‘𝑁) ≠ 0)
2062, 6, 7, 205syl12anc 1474 1 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇𝐹)‘𝑁) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  wo 836  w3a 1071   = wceq 1631  wcel 2145  wne 2943  wral 3061  cdif 3720  c0 4063  ifcif 4225  {csn 4316  {cpr 4318  {ctp 4320  cop 4322  cmpt 4863  cfv 6029  (class class class)co 6791  cmpt2 6793  cr 10135  0cc0 10136  1c1 10137   + caddc 10139  *cxr 10273  cmin 10466  -cneg 10467  cn 11220  0cn0 11492  cuz 11886  ...cfz 12526  ..^cfzo 12666  chash 13314  Word cword 13480   ++ cconcat 13482  ⟨“cs1 13483  sgncsgn 14027  Σcsu 14617  ndxcnx 16054  Basecbs 16057  +gcplusg 16142   Σg cgsu 16302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7094  ax-inf2 8700  ax-cnex 10192  ax-resscn 10193  ax-1cn 10194  ax-icn 10195  ax-addcl 10196  ax-addrcl 10197  ax-mulcl 10198  ax-mulrcl 10199  ax-mulcom 10200  ax-addass 10201  ax-mulass 10202  ax-distr 10203  ax-i2m1 10204  ax-1ne0 10205  ax-1rid 10206  ax-rnegex 10207  ax-rrecex 10208  ax-cnre 10209  ax-pre-lttri 10210  ax-pre-lttrn 10211  ax-pre-ltadd 10212  ax-pre-mulgt0 10213
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5821  df-ord 5867  df-on 5868  df-lim 5869  df-suc 5870  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-isom 6038  df-riota 6752  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-om 7211  df-1st 7313  df-2nd 7314  df-supp 7445  df-wrecs 7557  df-recs 7619  df-rdg 7657  df-1o 7711  df-oadd 7715  df-er 7894  df-en 8108  df-dom 8109  df-sdom 8110  df-fin 8111  df-oi 8569  df-card 8963  df-pnf 10276  df-mnf 10277  df-xr 10278  df-ltxr 10279  df-le 10280  df-sub 10468  df-neg 10469  df-nn 11221  df-2 11279  df-n0 11493  df-xnn0 11564  df-z 11578  df-uz 11887  df-fz 12527  df-fzo 12667  df-seq 13002  df-hash 13315  df-word 13488  df-lsw 13489  df-concat 13490  df-s1 13491  df-substr 13492  df-sgn 14028  df-struct 16059  df-ndx 16060  df-slot 16061  df-base 16063  df-plusg 16155  df-0g 16303  df-gsum 16304  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-mulg 17742  df-cntz 17950
This theorem is referenced by:  signstfvcl  30983
  Copyright terms: Public domain W3C validator