![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp-6r | Structured version Visualization version GIF version |
Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 24-May-2022.) |
Ref | Expression |
---|---|
simp-6r | ⊢ (((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
2 | 1 | ad6antlr 736 | 1 ⊢ (((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: catass 17744 mhmmnd 19104 rhmqusnsg 21318 scmatscm 22540 cfilucfil 24593 2sqmo 27499 tgbtwnconn1 28601 legso 28625 footexALT 28744 opphl 28780 trgcopy 28830 dfcgra2 28856 cgrg3col4 28879 f1otrg 28897 2ndresdju 32667 chnub 32984 cyc3genpm 33145 cyc3conja 33150 rloccring 33242 rhmquskerlem 33418 rhmimaidl 33425 ssdifidllem 33449 ssdifidlprm 33451 mxidlirredi 33464 ssmxidllem 33466 1arithidom 33530 1arithufdlem3 33539 r1plmhm 33595 r1pquslmic 33596 fldext2chn 33719 constrconj 33735 constrfin 33736 constrelextdg2 33737 pstmxmet 33843 signstfvneq0 34549 afsval 34648 mblfinlem3 37619 mblfinlem4 37620 primrootscoprmpow 42056 aks6d1c2lem4 42084 dffltz 42589 iunconnlem2 44906 suplesup 45254 limclner 45572 fourierdlem51 46078 hoidmvle 46521 smfmullem3 46714 |
Copyright terms: Public domain | W3C validator |