| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp-6r | Structured version Visualization version GIF version | ||
| Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 24-May-2022.) |
| Ref | Expression |
|---|---|
| simp-6r | ⊢ (((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
| 2 | 1 | ad6antlr 737 | 1 ⊢ (((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: catass 17610 mhmmnd 18961 rhmqusnsg 21210 scmatscm 22416 cfilucfil 24463 2sqmo 27364 tgbtwnconn1 28538 legso 28562 footexALT 28681 opphl 28717 trgcopy 28767 dfcgra2 28793 cgrg3col4 28816 f1otrg 28834 2ndresdju 32606 chnub 32967 cyc3genpm 33107 cyc3conja 33112 rloccring 33223 rhmquskerlem 33375 rhmimaidl 33382 ssdifidllem 33406 ssdifidlprm 33408 mxidlirredi 33421 ssmxidllem 33423 1arithidom 33487 1arithufdlem3 33496 r1plmhm 33554 r1pquslmic 33555 fldextrspunlsplem 33647 fldext2chn 33697 constrconj 33714 constrfin 33715 constrelextdg2 33716 cos9thpiminplylem2 33752 pstmxmet 33866 signstfvneq0 34542 afsval 34641 mblfinlem3 37641 mblfinlem4 37642 primrootscoprmpow 42075 aks6d1c2lem4 42103 dffltz 42610 iunconnlem2 44911 suplesup 45322 limclner 45636 fourierdlem51 46142 hoidmvle 46585 smfmullem3 46778 upfval 49165 |
| Copyright terms: Public domain | W3C validator |