| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp-6r | Structured version Visualization version GIF version | ||
| Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 24-May-2022.) |
| Ref | Expression |
|---|---|
| simp-6r | ⊢ (((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
| 2 | 1 | ad6antlr 737 | 1 ⊢ (((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: catass 17592 chnub 18528 mhmmnd 18977 rhmqusnsg 21223 scmatscm 22429 cfilucfil 24475 2sqmo 27376 tgbtwnconn1 28554 legso 28578 footexALT 28697 opphl 28733 trgcopy 28783 dfcgra2 28809 cgrg3col4 28832 f1otrg 28850 2ndresdju 32629 cyc3genpm 33119 cyc3conja 33124 rloccring 33235 rhmquskerlem 33388 rhmimaidl 33395 ssdifidllem 33419 ssdifidlprm 33421 mxidlirredi 33434 ssmxidllem 33436 1arithidom 33500 1arithufdlem3 33509 r1plmhm 33568 r1pquslmic 33569 fldextrspunlsplem 33684 fldext2chn 33739 constrconj 33756 constrfin 33757 constrelextdg2 33758 cos9thpiminplylem2 33794 pstmxmet 33908 signstfvneq0 34583 afsval 34682 mblfinlem3 37705 mblfinlem4 37706 primrootscoprmpow 42138 aks6d1c2lem4 42166 dffltz 42673 iunconnlem2 44973 suplesup 45384 limclner 45695 fourierdlem51 46201 hoidmvle 46644 smfmullem3 46837 upfval 49214 |
| Copyright terms: Public domain | W3C validator |