| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp-6r | Structured version Visualization version GIF version | ||
| Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 24-May-2022.) |
| Ref | Expression |
|---|---|
| simp-6r | ⊢ (((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
| 2 | 1 | ad6antlr 737 | 1 ⊢ (((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: catass 17654 mhmmnd 19003 rhmqusnsg 21202 scmatscm 22407 cfilucfil 24454 2sqmo 27355 tgbtwnconn1 28509 legso 28533 footexALT 28652 opphl 28688 trgcopy 28738 dfcgra2 28764 cgrg3col4 28787 f1otrg 28805 2ndresdju 32580 chnub 32945 cyc3genpm 33116 cyc3conja 33121 rloccring 33228 rhmquskerlem 33403 rhmimaidl 33410 ssdifidllem 33434 ssdifidlprm 33436 mxidlirredi 33449 ssmxidllem 33451 1arithidom 33515 1arithufdlem3 33524 r1plmhm 33582 r1pquslmic 33583 fldextrspunlsplem 33675 fldext2chn 33725 constrconj 33742 constrfin 33743 constrelextdg2 33744 cos9thpiminplylem2 33780 pstmxmet 33894 signstfvneq0 34570 afsval 34669 mblfinlem3 37660 mblfinlem4 37661 primrootscoprmpow 42094 aks6d1c2lem4 42122 dffltz 42629 iunconnlem2 44931 suplesup 45342 limclner 45656 fourierdlem51 46162 hoidmvle 46605 smfmullem3 46798 upfval 49169 |
| Copyright terms: Public domain | W3C validator |