| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp-6r | Structured version Visualization version GIF version | ||
| Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 24-May-2022.) |
| Ref | Expression |
|---|---|
| simp-6r | ⊢ (((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
| 2 | 1 | ad6antlr 737 | 1 ⊢ (((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: catass 17729 mhmmnd 19082 rhmqusnsg 21295 scmatscm 22519 cfilucfil 24572 2sqmo 27481 tgbtwnconn1 28583 legso 28607 footexALT 28726 opphl 28762 trgcopy 28812 dfcgra2 28838 cgrg3col4 28861 f1otrg 28879 2ndresdju 32659 chnub 33002 cyc3genpm 33172 cyc3conja 33177 rloccring 33274 rhmquskerlem 33453 rhmimaidl 33460 ssdifidllem 33484 ssdifidlprm 33486 mxidlirredi 33499 ssmxidllem 33501 1arithidom 33565 1arithufdlem3 33574 r1plmhm 33630 r1pquslmic 33631 fldextrspunlsplem 33723 fldext2chn 33769 constrconj 33786 constrfin 33787 constrelextdg2 33788 pstmxmet 33896 signstfvneq0 34587 afsval 34686 mblfinlem3 37666 mblfinlem4 37667 primrootscoprmpow 42100 aks6d1c2lem4 42128 dffltz 42644 iunconnlem2 44955 suplesup 45350 limclner 45666 fourierdlem51 46172 hoidmvle 46615 smfmullem3 46808 upfval 48933 |
| Copyright terms: Public domain | W3C validator |