![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp-6r | Structured version Visualization version GIF version |
Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 24-May-2022.) |
Ref | Expression |
---|---|
simp-6r | ⊢ (((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
2 | 1 | ad6antlr 735 | 1 ⊢ (((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: catass 17634 mhmmnd 18983 scmatscm 22235 cfilucfil 24288 2sqmo 27164 tgbtwnconn1 28081 legso 28105 footexALT 28224 opphl 28260 trgcopy 28310 dfcgra2 28336 cgrg3col4 28359 f1otrg 28377 2ndresdju 32129 cyc3genpm 32569 cyc3conja 32574 rhmquskerlem 32805 rhmimaidl 32812 mxidlirredi 32849 ssmxidllem 32851 r1plmhm 32943 r1pquslmic 32944 pstmxmet 33163 signstfvneq0 33869 afsval 33969 mblfinlem3 36830 mblfinlem4 36831 dffltz 41678 iunconnlem2 43998 suplesup 44348 limclner 44666 fourierdlem51 45172 hoidmvle 45615 smfmullem3 45808 |
Copyright terms: Public domain | W3C validator |