Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp-6r | Structured version Visualization version GIF version |
Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 24-May-2022.) |
Ref | Expression |
---|---|
simp-6r | ⊢ (((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
2 | 1 | ad6antlr 733 | 1 ⊢ (((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: catass 17312 mhmmnd 18612 scmatscm 21570 cfilucfil 23621 2sqmo 26490 istrkgb 26720 istrkge 26722 tgbtwnconn1 26840 legso 26864 footexALT 26983 opphl 27019 trgcopy 27069 dfcgra2 27095 cgrg3col4 27118 f1otrg 27136 2ndresdju 30887 cyc3genpm 31321 cyc3conja 31326 rhmimaidl 31511 ssmxidllem 31543 pstmxmet 31749 signstfvneq0 32451 afsval 32551 mblfinlem3 35743 mblfinlem4 35744 dffltz 40387 iunconnlem2 42444 suplesup 42768 limclner 43082 fourierdlem51 43588 hoidmvle 44028 smfmullem3 44214 |
Copyright terms: Public domain | W3C validator |