MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp-6r Structured version   Visualization version   GIF version

Theorem simp-6r 787
Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 24-May-2022.)
Assertion
Ref Expression
simp-6r (((((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓)

Proof of Theorem simp-6r
StepHypRef Expression
1 id 22 . 2 (𝜓𝜓)
21ad6antlr 737 1 (((((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  catass  17654  mhmmnd  19003  rhmqusnsg  21202  scmatscm  22407  cfilucfil  24454  2sqmo  27355  tgbtwnconn1  28509  legso  28533  footexALT  28652  opphl  28688  trgcopy  28738  dfcgra2  28764  cgrg3col4  28787  f1otrg  28805  2ndresdju  32580  chnub  32945  cyc3genpm  33116  cyc3conja  33121  rloccring  33228  rhmquskerlem  33403  rhmimaidl  33410  ssdifidllem  33434  ssdifidlprm  33436  mxidlirredi  33449  ssmxidllem  33451  1arithidom  33515  1arithufdlem3  33524  r1plmhm  33582  r1pquslmic  33583  fldextrspunlsplem  33675  fldext2chn  33725  constrconj  33742  constrfin  33743  constrelextdg2  33744  cos9thpiminplylem2  33780  pstmxmet  33894  signstfvneq0  34570  afsval  34669  mblfinlem3  37660  mblfinlem4  37661  primrootscoprmpow  42094  aks6d1c2lem4  42122  dffltz  42629  iunconnlem2  44931  suplesup  45342  limclner  45656  fourierdlem51  46162  hoidmvle  46605  smfmullem3  46798  upfval  49169
  Copyright terms: Public domain W3C validator