| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp-6r | Structured version Visualization version GIF version | ||
| Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 24-May-2022.) |
| Ref | Expression |
|---|---|
| simp-6r | ⊢ (((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
| 2 | 1 | ad6antlr 737 | 1 ⊢ (((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: catass 17647 mhmmnd 18996 rhmqusnsg 21195 scmatscm 22400 cfilucfil 24447 2sqmo 27348 tgbtwnconn1 28502 legso 28526 footexALT 28645 opphl 28681 trgcopy 28731 dfcgra2 28757 cgrg3col4 28780 f1otrg 28798 2ndresdju 32573 chnub 32938 cyc3genpm 33109 cyc3conja 33114 rloccring 33221 rhmquskerlem 33396 rhmimaidl 33403 ssdifidllem 33427 ssdifidlprm 33429 mxidlirredi 33442 ssmxidllem 33444 1arithidom 33508 1arithufdlem3 33517 r1plmhm 33575 r1pquslmic 33576 fldextrspunlsplem 33668 fldext2chn 33718 constrconj 33735 constrfin 33736 constrelextdg2 33737 cos9thpiminplylem2 33773 pstmxmet 33887 signstfvneq0 34563 afsval 34662 mblfinlem3 37653 mblfinlem4 37654 primrootscoprmpow 42087 aks6d1c2lem4 42115 dffltz 42622 iunconnlem2 44924 suplesup 45335 limclner 45649 fourierdlem51 46155 hoidmvle 46598 smfmullem3 46791 upfval 49165 |
| Copyright terms: Public domain | W3C validator |