| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp-6r | Structured version Visualization version GIF version | ||
| Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 24-May-2022.) |
| Ref | Expression |
|---|---|
| simp-6r | ⊢ (((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
| 2 | 1 | ad6antlr 737 | 1 ⊢ (((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: catass 17596 chnub 18532 mhmmnd 18981 rhmqusnsg 21226 scmatscm 22431 cfilucfil 24477 2sqmo 27378 tgbtwnconn1 28556 legso 28580 footexALT 28699 opphl 28735 trgcopy 28785 dfcgra2 28811 cgrg3col4 28834 f1otrg 28852 2ndresdju 32635 cyc3genpm 33130 cyc3conja 33135 rloccring 33246 rhmquskerlem 33399 rhmimaidl 33406 ssdifidllem 33430 ssdifidlprm 33432 mxidlirredi 33445 ssmxidllem 33447 1arithidom 33511 1arithufdlem3 33520 r1plmhm 33579 r1pquslmic 33580 fldextrspunlsplem 33709 fldext2chn 33764 constrconj 33781 constrfin 33782 constrelextdg2 33783 cos9thpiminplylem2 33819 pstmxmet 33933 signstfvneq0 34608 afsval 34707 mblfinlem3 37722 mblfinlem4 37723 primrootscoprmpow 42215 aks6d1c2lem4 42243 dffltz 42755 iunconnlem2 45054 suplesup 45465 limclner 45776 fourierdlem51 46282 hoidmvle 46725 smfmullem3 46918 chnerlem1 47007 upfval 49304 |
| Copyright terms: Public domain | W3C validator |