![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp-6r | Structured version Visualization version GIF version |
Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 24-May-2022.) |
Ref | Expression |
---|---|
simp-6r | ⊢ (((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
2 | 1 | ad6antlr 734 | 1 ⊢ (((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: catass 17637 mhmmnd 18990 scmatscm 22335 cfilucfil 24388 2sqmo 27284 tgbtwnconn1 28260 legso 28284 footexALT 28403 opphl 28439 trgcopy 28489 dfcgra2 28515 cgrg3col4 28538 f1otrg 28556 2ndresdju 32308 cyc3genpm 32748 cyc3conja 32753 rhmquskerlem 32984 rhmimaidl 32991 mxidlirredi 33028 ssmxidllem 33030 r1plmhm 33122 r1pquslmic 33123 pstmxmet 33342 signstfvneq0 34048 afsval 34148 mblfinlem3 36993 mblfinlem4 36994 dffltz 41841 iunconnlem2 44161 suplesup 44510 limclner 44828 fourierdlem51 45334 hoidmvle 45777 smfmullem3 45970 |
Copyright terms: Public domain | W3C validator |