MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp-6r Structured version   Visualization version   GIF version

Theorem simp-6r 786
Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 24-May-2022.)
Assertion
Ref Expression
simp-6r (((((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓)

Proof of Theorem simp-6r
StepHypRef Expression
1 id 22 . 2 (𝜓𝜓)
21ad6antlr 735 1 (((((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  catass  17634  mhmmnd  18983  scmatscm  22235  cfilucfil  24288  2sqmo  27164  tgbtwnconn1  28081  legso  28105  footexALT  28224  opphl  28260  trgcopy  28310  dfcgra2  28336  cgrg3col4  28359  f1otrg  28377  2ndresdju  32129  cyc3genpm  32569  cyc3conja  32574  rhmquskerlem  32805  rhmimaidl  32812  mxidlirredi  32849  ssmxidllem  32851  r1plmhm  32943  r1pquslmic  32944  pstmxmet  33163  signstfvneq0  33869  afsval  33969  mblfinlem3  36830  mblfinlem4  36831  dffltz  41678  iunconnlem2  43998  suplesup  44348  limclner  44666  fourierdlem51  45172  hoidmvle  45615  smfmullem3  45808
  Copyright terms: Public domain W3C validator