Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omssubadd Structured version   Visualization version   GIF version

Theorem omssubadd 30896
Description: A constructed outer measure is countably sub-additive. Lemma 1.5.4 of [Bogachev] p. 17. (Contributed by Thierry Arnoux, 21-Sep-2019.) (Revised by AV, 4-Oct-2020.)
Hypotheses
Ref Expression
oms.m 𝑀 = (toOMeas‘𝑅)
oms.o (𝜑𝑄𝑉)
oms.r (𝜑𝑅:𝑄⟶(0[,]+∞))
omssubadd.a ((𝜑𝑦𝑋) → 𝐴 𝑄)
omssubadd.b (𝜑𝑋 ≼ ω)
Assertion
Ref Expression
omssubadd (𝜑 → (𝑀 𝑦𝑋 𝐴) ≤ Σ*𝑦𝑋(𝑀𝐴))
Distinct variable groups:   𝑦,𝑄   𝑦,𝑅   𝑦,𝑉   𝜑,𝑦   𝑦,𝑋
Allowed substitution hints:   𝐴(𝑦)   𝑀(𝑦)

Proof of Theorem omssubadd
Dummy variables 𝑥 𝑧 𝑒 𝑡 𝑢 𝑤 𝑓 𝑔 𝑣 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omssubadd.b . . . . . 6 (𝜑𝑋 ≼ ω)
2 nnenom 13074 . . . . . . 7 ℕ ≈ ω
32ensymi 8272 . . . . . 6 ω ≈ ℕ
4 domentr 8281 . . . . . 6 ((𝑋 ≼ ω ∧ ω ≈ ℕ) → 𝑋 ≼ ℕ)
51, 3, 4sylancl 580 . . . . 5 (𝜑𝑋 ≼ ℕ)
6 brdomi 8233 . . . . 5 (𝑋 ≼ ℕ → ∃𝑓 𝑓:𝑋1-1→ℕ)
75, 6syl 17 . . . 4 (𝜑 → ∃𝑓 𝑓:𝑋1-1→ℕ)
87adantr 474 . . 3 ((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) → ∃𝑓 𝑓:𝑋1-1→ℕ)
9 simplll 791 . . . . . . . . . 10 ((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → 𝜑)
10 ctex 8237 . . . . . . . . . . 11 (𝑋 ≼ ω → 𝑋 ∈ V)
111, 10syl 17 . . . . . . . . . 10 (𝜑𝑋 ∈ V)
129, 11syl 17 . . . . . . . . 9 ((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → 𝑋 ∈ V)
13 nfv 2013 . . . . . . . . . . . . 13 𝑦𝜑
14 nfcv 2969 . . . . . . . . . . . . . . 15 𝑦𝑋
1514nfesum1 30636 . . . . . . . . . . . . . 14 𝑦Σ*𝑦𝑋(𝑀𝐴)
16 nfcv 2969 . . . . . . . . . . . . . 14 𝑦
1715, 16nfel 2982 . . . . . . . . . . . . 13 𝑦Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ
1813, 17nfan 2002 . . . . . . . . . . . 12 𝑦(𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ)
19 nfv 2013 . . . . . . . . . . . 12 𝑦 𝑓:𝑋1-1→ℕ
2018, 19nfan 2002 . . . . . . . . . . 11 𝑦((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ)
21 nfv 2013 . . . . . . . . . . 11 𝑦 𝑒 ∈ ℝ+
2220, 21nfan 2002 . . . . . . . . . 10 𝑦(((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+)
239adantr 474 . . . . . . . . . . . . . 14 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → 𝜑)
24 simpr 479 . . . . . . . . . . . . . 14 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → 𝑦𝑋)
2511adantr 474 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) → 𝑋 ∈ V)
26 oms.o . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑄𝑉)
27 oms.r . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑅:𝑄⟶(0[,]+∞))
28 omsf 30892 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞)) → (toOMeas‘𝑅):𝒫 dom 𝑅⟶(0[,]+∞))
29 oms.m . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑀 = (toOMeas‘𝑅)
3029feq1i 6269 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑀:𝒫 dom 𝑅⟶(0[,]+∞) ↔ (toOMeas‘𝑅):𝒫 dom 𝑅⟶(0[,]+∞))
3128, 30sylibr 226 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞)) → 𝑀:𝒫 dom 𝑅⟶(0[,]+∞))
3226, 27, 31syl2anc 579 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑀:𝒫 dom 𝑅⟶(0[,]+∞))
3332adantr 474 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦𝑋) → 𝑀:𝒫 dom 𝑅⟶(0[,]+∞))
34 omssubadd.a . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑦𝑋) → 𝐴 𝑄)
3527fdmd 6287 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → dom 𝑅 = 𝑄)
3635unieqd 4668 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 dom 𝑅 = 𝑄)
3736adantr 474 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑦𝑋) → dom 𝑅 = 𝑄)
3834, 37sseqtr4d 3867 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑦𝑋) → 𝐴 dom 𝑅)
39 uniexg 7215 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑄𝑉 𝑄 ∈ V)
4026, 39syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 𝑄 ∈ V)
4140adantr 474 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑦𝑋) → 𝑄 ∈ V)
42 ssexg 5029 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 𝑄 𝑄 ∈ V) → 𝐴 ∈ V)
4334, 41, 42syl2anc 579 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑦𝑋) → 𝐴 ∈ V)
44 elpwg 4386 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴 ∈ V → (𝐴 ∈ 𝒫 dom 𝑅𝐴 dom 𝑅))
4543, 44syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑦𝑋) → (𝐴 ∈ 𝒫 dom 𝑅𝐴 dom 𝑅))
4638, 45mpbird 249 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦𝑋) → 𝐴 ∈ 𝒫 dom 𝑅)
4733, 46ffvelrnd 6609 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦𝑋) → (𝑀𝐴) ∈ (0[,]+∞))
4847adantlr 706 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑦𝑋) → (𝑀𝐴) ∈ (0[,]+∞))
49 simpr 479 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) → Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ)
5018, 25, 48, 49esumcvgre 30687 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑦𝑋) → (𝑀𝐴) ∈ ℝ)
5150adantlr 706 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑦𝑋) → (𝑀𝐴) ∈ ℝ)
5251adantlr 706 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (𝑀𝐴) ∈ ℝ)
53 rpssre 12119 . . . . . . . . . . . . . . . . . . 19 + ⊆ ℝ
54 simplr 785 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → 𝑒 ∈ ℝ+)
55 2rp 12117 . . . . . . . . . . . . . . . . . . . . . . 23 2 ∈ ℝ+
5655a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑦𝑋) → 2 ∈ ℝ+)
57 df-f1 6128 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓:𝑋1-1→ℕ ↔ (𝑓:𝑋⟶ℕ ∧ Fun 𝑓))
5857simplbi 493 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓:𝑋1-1→ℕ → 𝑓:𝑋⟶ℕ)
5958adantl 475 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑓:𝑋1-1→ℕ) → 𝑓:𝑋⟶ℕ)
6059ffvelrnda 6608 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑦𝑋) → (𝑓𝑦) ∈ ℕ)
6160nnzd 11809 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑦𝑋) → (𝑓𝑦) ∈ ℤ)
6256, 61rpexpcld 13328 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑦𝑋) → (2↑(𝑓𝑦)) ∈ ℝ+)
6362adantlr 706 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (2↑(𝑓𝑦)) ∈ ℝ+)
6454, 63rpdivcld 12173 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (𝑒 / (2↑(𝑓𝑦))) ∈ ℝ+)
6553, 64sseldi 3825 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (𝑒 / (2↑(𝑓𝑦))) ∈ ℝ)
6665adantl3r 756 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (𝑒 / (2↑(𝑓𝑦))) ∈ ℝ)
67 rexadd 12351 . . . . . . . . . . . . . . . . 17 (((𝑀𝐴) ∈ ℝ ∧ (𝑒 / (2↑(𝑓𝑦))) ∈ ℝ) → ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))) = ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))
6852, 66, 67syl2anc 579 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))) = ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))
699, 47sylan 575 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (𝑀𝐴) ∈ (0[,]+∞))
70 dfrp2 30068 . . . . . . . . . . . . . . . . . . . 20 + = (0(,)+∞)
71 ioossicc 12547 . . . . . . . . . . . . . . . . . . . 20 (0(,)+∞) ⊆ (0[,]+∞)
7270, 71eqsstri 3860 . . . . . . . . . . . . . . . . . . 19 + ⊆ (0[,]+∞)
7372, 64sseldi 3825 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (𝑒 / (2↑(𝑓𝑦))) ∈ (0[,]+∞))
7473adantl3r 756 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (𝑒 / (2↑(𝑓𝑦))) ∈ (0[,]+∞))
7569, 74xrge0addcld 30063 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))) ∈ (0[,]+∞))
7668, 75eqeltrrd 2907 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))) ∈ (0[,]+∞))
7753, 54sseldi 3825 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → 𝑒 ∈ ℝ)
7877adantl3r 756 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → 𝑒 ∈ ℝ)
7953, 62sseldi 3825 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑦𝑋) → (2↑(𝑓𝑦)) ∈ ℝ)
8079adantlr 706 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (2↑(𝑓𝑦)) ∈ ℝ)
8180adantl3r 756 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (2↑(𝑓𝑦)) ∈ ℝ)
82 simplr 785 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → 𝑒 ∈ ℝ+)
8382rpgt0d 12159 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → 0 < 𝑒)
84 2re 11425 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℝ
8584a1i 11 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → 2 ∈ ℝ)
8661adantllr 710 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑦𝑋) → (𝑓𝑦) ∈ ℤ)
8786adantlr 706 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (𝑓𝑦) ∈ ℤ)
88 2pos 11461 . . . . . . . . . . . . . . . . . . . 20 0 < 2
8988a1i 11 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → 0 < 2)
90 expgt0 13187 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℝ ∧ (𝑓𝑦) ∈ ℤ ∧ 0 < 2) → 0 < (2↑(𝑓𝑦)))
9185, 87, 89, 90syl3anc 1494 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → 0 < (2↑(𝑓𝑦)))
9278, 81, 83, 91divgt0d 11289 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → 0 < (𝑒 / (2↑(𝑓𝑦))))
9366, 52ltaddposd 10936 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (0 < (𝑒 / (2↑(𝑓𝑦))) ↔ (𝑀𝐴) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))
9492, 93mpbid 224 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (𝑀𝐴) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))
9529fveq1i 6434 . . . . . . . . . . . . . . . . . . . 20 (𝑀𝐴) = ((toOMeas‘𝑅)‘𝐴)
9626adantr 474 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦𝑋) → 𝑄𝑉)
9727adantr 474 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦𝑋) → 𝑅:𝑄⟶(0[,]+∞))
98 omsfval 30890 . . . . . . . . . . . . . . . . . . . . 21 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) → ((toOMeas‘𝑅)‘𝐴) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < ))
9996, 97, 34, 98syl3anc 1494 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦𝑋) → ((toOMeas‘𝑅)‘𝐴) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < ))
10095, 99syl5eq 2873 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦𝑋) → (𝑀𝐴) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < ))
1019, 100sylan 575 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (𝑀𝐴) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < ))
102101eqcomd 2831 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < ) = (𝑀𝐴))
103102breq1d 4883 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < ) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))) ↔ (𝑀𝐴) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))
10494, 103mpbird 249 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < ) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))
10576, 104jca 507 . . . . . . . . . . . . . 14 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))) ∈ (0[,]+∞) ∧ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < ) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))
106 iccssxr 12544 . . . . . . . . . . . . . . . . . . 19 (0[,]+∞) ⊆ ℝ*
107 xrltso 12260 . . . . . . . . . . . . . . . . . . 19 < Or ℝ*
108 soss 5281 . . . . . . . . . . . . . . . . . . 19 ((0[,]+∞) ⊆ ℝ* → ( < Or ℝ* → < Or (0[,]+∞)))
109106, 107, 108mp2 9 . . . . . . . . . . . . . . . . . 18 < Or (0[,]+∞)
110 biid 253 . . . . . . . . . . . . . . . . . 18 ( < Or (0[,]+∞) ↔ < Or (0[,]+∞))
111109, 110mpbi 222 . . . . . . . . . . . . . . . . 17 < Or (0[,]+∞)
112111a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝑋) → < Or (0[,]+∞))
113 omscl 30891 . . . . . . . . . . . . . . . . . 18 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 ∈ 𝒫 dom 𝑅) → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ⊆ (0[,]+∞))
11496, 97, 46, 113syl3anc 1494 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦𝑋) → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ⊆ (0[,]+∞))
115 xrge0infss 30061 . . . . . . . . . . . . . . . . 17 (ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ⊆ (0[,]+∞) → ∃𝑣 ∈ (0[,]+∞)(∀ ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ¬ < 𝑣 ∧ ∀ ∈ (0[,]+∞)(𝑣 < → ∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))𝑢 < )))
116114, 115syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝑋) → ∃𝑣 ∈ (0[,]+∞)(∀ ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ¬ < 𝑣 ∧ ∀ ∈ (0[,]+∞)(𝑣 < → ∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))𝑢 < )))
117112, 116infglb 8665 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝑋) → ((((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))) ∈ (0[,]+∞) ∧ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < ) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) → ∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))
118117imp 397 . . . . . . . . . . . . . 14 (((𝜑𝑦𝑋) ∧ (((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))) ∈ (0[,]+∞) ∧ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < ) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → ∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))
11923, 24, 105, 118syl21anc 871 . . . . . . . . . . . . 13 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → ∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))
120 eqid 2825 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) = (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))
121 esumex 30625 . . . . . . . . . . . . . . . . . . 19 Σ*𝑤𝑥(𝑅𝑤) ∈ V
122120, 121elrnmpti 5609 . . . . . . . . . . . . . . . . . 18 (𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ↔ ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}𝑢 = Σ*𝑤𝑥(𝑅𝑤))
123122anbi1i 617 . . . . . . . . . . . . . . . . 17 ((𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ∧ 𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) ↔ (∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))
124 r19.41v 3299 . . . . . . . . . . . . . . . . 17 (∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} (𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) ↔ (∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))
125123, 124bitr4i 270 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ∧ 𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) ↔ ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} (𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))
126125exbii 1947 . . . . . . . . . . . . . . 15 (∃𝑢(𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ∧ 𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) ↔ ∃𝑢𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} (𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))
127 df-rex 3123 . . . . . . . . . . . . . . 15 (∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))) ↔ ∃𝑢(𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ∧ 𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))
128 rexcom4 3442 . . . . . . . . . . . . . . 15 (∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}∃𝑢(𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) ↔ ∃𝑢𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} (𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))
129126, 127, 1283bitr4i 295 . . . . . . . . . . . . . 14 (∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))) ↔ ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}∃𝑢(𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))
130 breq1 4876 . . . . . . . . . . . . . . . . . 18 (𝑢 = Σ*𝑤𝑥(𝑅𝑤) → (𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))) ↔ Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))
131 idd 24 . . . . . . . . . . . . . . . . . 18 (𝑢 = Σ*𝑤𝑥(𝑅𝑤) → (Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))) → Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))
132130, 131sylbid 232 . . . . . . . . . . . . . . . . 17 (𝑢 = Σ*𝑤𝑥(𝑅𝑤) → (𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))) → Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))
133132imp 397 . . . . . . . . . . . . . . . 16 ((𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) → Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))
134133exlimiv 2029 . . . . . . . . . . . . . . 15 (∃𝑢(𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) → Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))
135134reximi 3219 . . . . . . . . . . . . . 14 (∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}∃𝑢(𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))
136129, 135sylbi 209 . . . . . . . . . . . . 13 (∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))) → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))
137119, 136syl 17 . . . . . . . . . . . 12 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))
138 simpr 479 . . . . . . . . . . . . . . . 16 ((𝐴 𝑧𝑧 ≼ ω) → 𝑧 ≼ ω)
139138a1i 11 . . . . . . . . . . . . . . 15 (𝑧 ∈ 𝒫 dom 𝑅 → ((𝐴 𝑧𝑧 ≼ ω) → 𝑧 ≼ ω))
140139ss2rabi 3909 . . . . . . . . . . . . . 14 {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ⊆ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}
141 rexss 3894 . . . . . . . . . . . . . 14 ({𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ⊆ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} → (∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))) ↔ ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ∧ Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))))
142140, 141ax-mp 5 . . . . . . . . . . . . 13 (∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))) ↔ ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ∧ Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))
143 unieq 4666 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = 𝑥 𝑧 = 𝑥)
144143sseq2d 3858 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑥 → (𝐴 𝑧𝐴 𝑥))
145 breq1 4876 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑥 → (𝑧 ≼ ω ↔ 𝑥 ≼ ω))
146144, 145anbi12d 624 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑥 → ((𝐴 𝑧𝑧 ≼ ω) ↔ (𝐴 𝑥𝑥 ≼ ω)))
147146elrab 3585 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↔ (𝑥 ∈ 𝒫 dom 𝑅 ∧ (𝐴 𝑥𝑥 ≼ ω)))
148147simprbi 492 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} → (𝐴 𝑥𝑥 ≼ ω))
149148simpld 490 . . . . . . . . . . . . . . . 16 (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} → 𝐴 𝑥)
150149a1i 11 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} → 𝐴 𝑥))
151150anim1d 604 . . . . . . . . . . . . . 14 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → ((𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ∧ Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) → (𝐴 𝑥 ∧ Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))))
152151reximdv 3224 . . . . . . . . . . . . 13 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ∧ Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} (𝐴 𝑥 ∧ Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))))
153142, 152syl5bi 234 . . . . . . . . . . . 12 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))) → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} (𝐴 𝑥 ∧ Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))))
154137, 153mpd 15 . . . . . . . . . . 11 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} (𝐴 𝑥 ∧ Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))
155154ex 403 . . . . . . . . . 10 ((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → (𝑦𝑋 → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} (𝐴 𝑥 ∧ Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))))
15622, 155ralrimi 3166 . . . . . . . . 9 ((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → ∀𝑦𝑋𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} (𝐴 𝑥 ∧ Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))
157 unieq 4666 . . . . . . . . . . . . 13 (𝑥 = (𝑔𝑦) → 𝑥 = (𝑔𝑦))
158157sseq2d 3858 . . . . . . . . . . . 12 (𝑥 = (𝑔𝑦) → (𝐴 𝑥𝐴 (𝑔𝑦)))
159 esumeq1 30630 . . . . . . . . . . . . 13 (𝑥 = (𝑔𝑦) → Σ*𝑤𝑥(𝑅𝑤) = Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤))
160159breq1d 4883 . . . . . . . . . . . 12 (𝑥 = (𝑔𝑦) → (Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))) ↔ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))
161158, 160anbi12d 624 . . . . . . . . . . 11 (𝑥 = (𝑔𝑦) → ((𝐴 𝑥 ∧ Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) ↔ (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))))
162161ac6sg 9625 . . . . . . . . . 10 (𝑋 ∈ V → (∀𝑦𝑋𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} (𝐴 𝑥 ∧ Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) → ∃𝑔(𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))))
163162imp 397 . . . . . . . . 9 ((𝑋 ∈ V ∧ ∀𝑦𝑋𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} (𝐴 𝑥 ∧ Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → ∃𝑔(𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))))
16412, 156, 163syl2anc 579 . . . . . . . 8 ((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → ∃𝑔(𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))))
1659ad2antrr 717 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → 𝜑)
16638ralrimiva 3175 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑦𝑋 𝐴 dom 𝑅)
167 iunss 4781 . . . . . . . . . . . . . . . . . 18 ( 𝑦𝑋 𝐴 dom 𝑅 ↔ ∀𝑦𝑋 𝐴 dom 𝑅)
168166, 167sylibr 226 . . . . . . . . . . . . . . . . 17 (𝜑 𝑦𝑋 𝐴 dom 𝑅)
16943ralrimiva 3175 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑦𝑋 𝐴 ∈ V)
170 iunexg 7404 . . . . . . . . . . . . . . . . . . 19 ((𝑋 ∈ V ∧ ∀𝑦𝑋 𝐴 ∈ V) → 𝑦𝑋 𝐴 ∈ V)
17111, 169, 170syl2anc 579 . . . . . . . . . . . . . . . . . 18 (𝜑 𝑦𝑋 𝐴 ∈ V)
172 elpwg 4386 . . . . . . . . . . . . . . . . . 18 ( 𝑦𝑋 𝐴 ∈ V → ( 𝑦𝑋 𝐴 ∈ 𝒫 dom 𝑅 𝑦𝑋 𝐴 dom 𝑅))
173171, 172syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → ( 𝑦𝑋 𝐴 ∈ 𝒫 dom 𝑅 𝑦𝑋 𝐴 dom 𝑅))
174168, 173mpbird 249 . . . . . . . . . . . . . . . 16 (𝜑 𝑦𝑋 𝐴 ∈ 𝒫 dom 𝑅)
17532, 174ffvelrnd 6609 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀 𝑦𝑋 𝐴) ∈ (0[,]+∞))
176106, 175sseldi 3825 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 𝑦𝑋 𝐴) ∈ ℝ*)
177165, 176syl 17 . . . . . . . . . . . . 13 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → (𝑀 𝑦𝑋 𝐴) ∈ ℝ*)
178 simplr 785 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω})
17925ad4antr 724 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → 𝑋 ∈ V)
180 fex 6745 . . . . . . . . . . . . . . . . 17 ((𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} ∧ 𝑋 ∈ V) → 𝑔 ∈ V)
181178, 179, 180syl2anc 579 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → 𝑔 ∈ V)
182 rnexg 7359 . . . . . . . . . . . . . . . 16 (𝑔 ∈ V → ran 𝑔 ∈ V)
183 uniexg 7215 . . . . . . . . . . . . . . . 16 (ran 𝑔 ∈ V → ran 𝑔 ∈ V)
184181, 182, 1833syl 18 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → ran 𝑔 ∈ V)
185 simp-5l 805 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → 𝜑)
18627ad2antrr 717 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑐 ran 𝑔) → 𝑅:𝑄⟶(0[,]+∞))
187 frn 6284 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} → ran 𝑔 ⊆ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω})
188 ssrab2 3912 . . . . . . . . . . . . . . . . . . . . . . . 24 {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} ⊆ 𝒫 dom 𝑅
189187, 188syl6ss 3839 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} → ran 𝑔 ⊆ 𝒫 dom 𝑅)
190189unissd 4684 . . . . . . . . . . . . . . . . . . . . . 22 (𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} → ran 𝑔 𝒫 dom 𝑅)
191 unipw 5139 . . . . . . . . . . . . . . . . . . . . . 22 𝒫 dom 𝑅 = dom 𝑅
192190, 191syl6sseq 3876 . . . . . . . . . . . . . . . . . . . . 21 (𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} → ran 𝑔 ⊆ dom 𝑅)
193192adantl 475 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) → ran 𝑔 ⊆ dom 𝑅)
19435adantr 474 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) → dom 𝑅 = 𝑄)
195193, 194sseqtrd 3866 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) → ran 𝑔𝑄)
196195sselda 3827 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑐 ran 𝑔) → 𝑐𝑄)
197186, 196ffvelrnd 6609 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑐 ran 𝑔) → (𝑅𝑐) ∈ (0[,]+∞))
198197ralrimiva 3175 . . . . . . . . . . . . . . . 16 ((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) → ∀𝑐 ran 𝑔(𝑅𝑐) ∈ (0[,]+∞))
199185, 178, 198syl2anc 579 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → ∀𝑐 ran 𝑔(𝑅𝑐) ∈ (0[,]+∞))
200 nfcv 2969 . . . . . . . . . . . . . . . 16 𝑐 ran 𝑔
201200esumcl 30626 . . . . . . . . . . . . . . 15 (( ran 𝑔 ∈ V ∧ ∀𝑐 ran 𝑔(𝑅𝑐) ∈ (0[,]+∞)) → Σ*𝑐 ran 𝑔(𝑅𝑐) ∈ (0[,]+∞))
202184, 199, 201syl2anc 579 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → Σ*𝑐 ran 𝑔(𝑅𝑐) ∈ (0[,]+∞))
203106, 202sseldi 3825 . . . . . . . . . . . . 13 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → Σ*𝑐 ran 𝑔(𝑅𝑐) ∈ ℝ*)
204 simp-5r 807 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ)
205204rexrd 10406 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ*)
206 simpllr 793 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → 𝑒 ∈ ℝ+)
207206rpxrd 12157 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → 𝑒 ∈ ℝ*)
208205, 207xaddcld 12419 . . . . . . . . . . . . 13 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → (Σ*𝑦𝑋(𝑀𝐴) +𝑒 𝑒) ∈ ℝ*)
209187ad2antlr 718 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → ran 𝑔 ⊆ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω})
210 sstr 3835 . . . . . . . . . . . . . . . . . . . . . . . 24 ((ran 𝑔 ⊆ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} ∧ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} ⊆ 𝒫 dom 𝑅) → ran 𝑔 ⊆ 𝒫 dom 𝑅)
211188, 210mpan2 682 . . . . . . . . . . . . . . . . . . . . . . 23 (ran 𝑔 ⊆ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} → ran 𝑔 ⊆ 𝒫 dom 𝑅)
212 sspwuni 4832 . . . . . . . . . . . . . . . . . . . . . . 23 (ran 𝑔 ⊆ 𝒫 dom 𝑅 ran 𝑔 ⊆ dom 𝑅)
213211, 212sylib 210 . . . . . . . . . . . . . . . . . . . . . 22 (ran 𝑔 ⊆ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} → ran 𝑔 ⊆ dom 𝑅)
214209, 213syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → ran 𝑔 ⊆ dom 𝑅)
215 ffn 6278 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} → 𝑔 Fn 𝑋)
216215ad2antlr 718 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → 𝑔 Fn 𝑋)
217165, 1syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → 𝑋 ≼ ω)
218 fnct 9674 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑔 Fn 𝑋𝑋 ≼ ω) → 𝑔 ≼ ω)
219 rnct 9662 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑔 ≼ ω → ran 𝑔 ≼ ω)
220218, 219syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑔 Fn 𝑋𝑋 ≼ ω) → ran 𝑔 ≼ ω)
221 dfss3 3816 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (ran 𝑔 ⊆ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} ↔ ∀𝑤 ∈ ran 𝑔 𝑤 ∈ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω})
222221biimpi 208 . . . . . . . . . . . . . . . . . . . . . . . . 25 (ran 𝑔 ⊆ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} → ∀𝑤 ∈ ran 𝑔 𝑤 ∈ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω})
223 breq1 4876 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 = 𝑤 → (𝑧 ≼ ω ↔ 𝑤 ≼ ω))
224223elrab 3585 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑤 ∈ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} ↔ (𝑤 ∈ 𝒫 dom 𝑅𝑤 ≼ ω))
225224simprbi 492 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑤 ∈ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} → 𝑤 ≼ ω)
226225ralimi 3161 . . . . . . . . . . . . . . . . . . . . . . . . 25 (∀𝑤 ∈ ran 𝑔 𝑤 ∈ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} → ∀𝑤 ∈ ran 𝑔 𝑤 ≼ ω)
227222, 226syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (ran 𝑔 ⊆ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} → ∀𝑤 ∈ ran 𝑔 𝑤 ≼ ω)
228 unictb 9712 . . . . . . . . . . . . . . . . . . . . . . . 24 ((ran 𝑔 ≼ ω ∧ ∀𝑤 ∈ ran 𝑔 𝑤 ≼ ω) → ran 𝑔 ≼ ω)
229220, 227, 228syl2an 589 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑔 Fn 𝑋𝑋 ≼ ω) ∧ ran 𝑔 ⊆ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) → ran 𝑔 ≼ ω)
230216, 217, 209, 229syl21anc 871 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → ran 𝑔 ≼ ω)
231 ctex 8237 . . . . . . . . . . . . . . . . . . . . . 22 ( ran 𝑔 ≼ ω → ran 𝑔 ∈ V)
232 elpwg 4386 . . . . . . . . . . . . . . . . . . . . . 22 ( ran 𝑔 ∈ V → ( ran 𝑔 ∈ 𝒫 dom 𝑅 ran 𝑔 ⊆ dom 𝑅))
233230, 231, 2323syl 18 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → ( ran 𝑔 ∈ 𝒫 dom 𝑅 ran 𝑔 ⊆ dom 𝑅))
234214, 233mpbird 249 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → ran 𝑔 ∈ 𝒫 dom 𝑅)
235 simpl 476 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) → 𝐴 (𝑔𝑦))
236235ralimi 3161 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) → ∀𝑦𝑋 𝐴 (𝑔𝑦))
237 fvssunirn 6462 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑔𝑦) ⊆ ran 𝑔
238237unissi 4683 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑔𝑦) ⊆ ran 𝑔
239 sstr 3835 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 (𝑔𝑦) ∧ (𝑔𝑦) ⊆ ran 𝑔) → 𝐴 ran 𝑔)
240238, 239mpan2 682 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴 (𝑔𝑦) → 𝐴 ran 𝑔)
241240ralimi 3161 . . . . . . . . . . . . . . . . . . . . . . 23 (∀𝑦𝑋 𝐴 (𝑔𝑦) → ∀𝑦𝑋 𝐴 ran 𝑔)
242 iunss 4781 . . . . . . . . . . . . . . . . . . . . . . 23 ( 𝑦𝑋 𝐴 ran 𝑔 ↔ ∀𝑦𝑋 𝐴 ran 𝑔)
243241, 242sylibr 226 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑦𝑋 𝐴 (𝑔𝑦) → 𝑦𝑋 𝐴 ran 𝑔)
244236, 243syl 17 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) → 𝑦𝑋 𝐴 ran 𝑔)
245244adantl 475 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → 𝑦𝑋 𝐴 ran 𝑔)
246234, 245, 230jca32 511 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → ( ran 𝑔 ∈ 𝒫 dom 𝑅 ∧ ( 𝑦𝑋 𝐴 ran 𝑔 ran 𝑔 ≼ ω)))
247 unieq 4666 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = ran 𝑔 𝑧 = ran 𝑔)
248247sseq2d 3858 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = ran 𝑔 → ( 𝑦𝑋 𝐴 𝑧 𝑦𝑋 𝐴 ran 𝑔))
249 breq1 4876 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = ran 𝑔 → (𝑧 ≼ ω ↔ ran 𝑔 ≼ ω))
250248, 249anbi12d 624 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = ran 𝑔 → (( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω) ↔ ( 𝑦𝑋 𝐴 ran 𝑔 ran 𝑔 ≼ ω)))
251250elrab 3585 . . . . . . . . . . . . . . . . . . 19 ( ran 𝑔 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ↔ ( ran 𝑔 ∈ 𝒫 dom 𝑅 ∧ ( 𝑦𝑋 𝐴 ran 𝑔 ran 𝑔 ≼ ω)))
252246, 251sylibr 226 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → ran 𝑔 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)})
253 fveq2 6433 . . . . . . . . . . . . . . . . . . 19 (𝑐 = 𝑤 → (𝑅𝑐) = (𝑅𝑤))
254253cbvesumv 30639 . . . . . . . . . . . . . . . . . 18 Σ*𝑐 ran 𝑔(𝑅𝑐) = Σ*𝑤 ran 𝑔(𝑅𝑤)
255 esumeq1 30630 . . . . . . . . . . . . . . . . . . 19 (𝑥 = ran 𝑔 → Σ*𝑤𝑥(𝑅𝑤) = Σ*𝑤 ran 𝑔(𝑅𝑤))
256255rspceeqv 3544 . . . . . . . . . . . . . . . . . 18 (( ran 𝑔 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ∧ Σ*𝑐 ran 𝑔(𝑅𝑐) = Σ*𝑤 ran 𝑔(𝑅𝑤)) → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)}Σ*𝑐 ran 𝑔(𝑅𝑐) = Σ*𝑤𝑥(𝑅𝑤))
257252, 254, 256sylancl 580 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)}Σ*𝑐 ran 𝑔(𝑅𝑐) = Σ*𝑤𝑥(𝑅𝑤))
258 esumex 30625 . . . . . . . . . . . . . . . . . 18 Σ*𝑐 ran 𝑔(𝑅𝑐) ∈ V
259 eqid 2825 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) = (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))
260259elrnmpt 5605 . . . . . . . . . . . . . . . . . 18 *𝑐 ran 𝑔(𝑅𝑐) ∈ V → (Σ*𝑐 ran 𝑔(𝑅𝑐) ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ↔ ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)}Σ*𝑐 ran 𝑔(𝑅𝑐) = Σ*𝑤𝑥(𝑅𝑤)))
261258, 260ax-mp 5 . . . . . . . . . . . . . . . . 17 *𝑐 ran 𝑔(𝑅𝑐) ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ↔ ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)}Σ*𝑐 ran 𝑔(𝑅𝑐) = Σ*𝑤𝑥(𝑅𝑤))
262257, 261sylibr 226 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → Σ*𝑐 ran 𝑔(𝑅𝑐) ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)))
263111a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → < Or (0[,]+∞))
264 omscl 30891 . . . . . . . . . . . . . . . . . . . 20 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝑦𝑋 𝐴 ∈ 𝒫 dom 𝑅) → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ⊆ (0[,]+∞))
26526, 27, 174, 264syl3anc 1494 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ⊆ (0[,]+∞))
266 xrge0infss 30061 . . . . . . . . . . . . . . . . . . 19 (ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ⊆ (0[,]+∞) → ∃𝑒 ∈ (0[,]+∞)(∀𝑡 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ¬ 𝑡 < 𝑒 ∧ ∀𝑡 ∈ (0[,]+∞)(𝑒 < 𝑡 → ∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))𝑢 < 𝑡)))
267265, 266syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∃𝑒 ∈ (0[,]+∞)(∀𝑡 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ¬ 𝑡 < 𝑒 ∧ ∀𝑡 ∈ (0[,]+∞)(𝑒 < 𝑡 → ∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))𝑢 < 𝑡)))
268263, 267inflb 8664 . . . . . . . . . . . . . . . . 17 (𝜑 → (Σ*𝑐 ran 𝑔(𝑅𝑐) ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) → ¬ Σ*𝑐 ran 𝑔(𝑅𝑐) < inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < )))
26929fveq1i 6434 . . . . . . . . . . . . . . . . . . . 20 (𝑀 𝑦𝑋 𝐴) = ((toOMeas‘𝑅)‘ 𝑦𝑋 𝐴)
270168, 36sseqtrd 3866 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 𝑦𝑋 𝐴 𝑄)
271 omsfval 30890 . . . . . . . . . . . . . . . . . . . . 21 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝑦𝑋 𝐴 𝑄) → ((toOMeas‘𝑅)‘ 𝑦𝑋 𝐴) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < ))
27226, 27, 270, 271syl3anc 1494 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((toOMeas‘𝑅)‘ 𝑦𝑋 𝐴) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < ))
273269, 272syl5eq 2873 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑀 𝑦𝑋 𝐴) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < ))
274273breq2d 4885 . . . . . . . . . . . . . . . . . 18 (𝜑 → (Σ*𝑐 ran 𝑔(𝑅𝑐) < (𝑀 𝑦𝑋 𝐴) ↔ Σ*𝑐 ran 𝑔(𝑅𝑐) < inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < )))
275274notbid 310 . . . . . . . . . . . . . . . . 17 (𝜑 → (¬ Σ*𝑐 ran 𝑔(𝑅𝑐) < (𝑀 𝑦𝑋 𝐴) ↔ ¬ Σ*𝑐 ran 𝑔(𝑅𝑐) < inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < )))
276268, 275sylibrd 251 . . . . . . . . . . . . . . . 16 (𝜑 → (Σ*𝑐 ran 𝑔(𝑅𝑐) ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) → ¬ Σ*𝑐 ran 𝑔(𝑅𝑐) < (𝑀 𝑦𝑋 𝐴)))
277165, 262, 276sylc 65 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → ¬ Σ*𝑐 ran 𝑔(𝑅𝑐) < (𝑀 𝑦𝑋 𝐴))
278 biid 253 . . . . . . . . . . . . . . 15 (¬ Σ*𝑐 ran 𝑔(𝑅𝑐) < (𝑀 𝑦𝑋 𝐴) ↔ ¬ Σ*𝑐 ran 𝑔(𝑅𝑐) < (𝑀 𝑦𝑋 𝐴))
279277, 278sylib 210 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → ¬ Σ*𝑐 ran 𝑔(𝑅𝑐) < (𝑀 𝑦𝑋 𝐴))
280 xrlenlt 10422 . . . . . . . . . . . . . . 15 (((𝑀 𝑦𝑋 𝐴) ∈ ℝ* ∧ Σ*𝑐 ran 𝑔(𝑅𝑐) ∈ ℝ*) → ((𝑀 𝑦𝑋 𝐴) ≤ Σ*𝑐 ran 𝑔(𝑅𝑐) ↔ ¬ Σ*𝑐 ran 𝑔(𝑅𝑐) < (𝑀 𝑦𝑋 𝐴)))
281177, 203, 280syl2anc 579 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → ((𝑀 𝑦𝑋 𝐴) ≤ Σ*𝑐 ran 𝑔(𝑅𝑐) ↔ ¬ Σ*𝑐 ran 𝑔(𝑅𝑐) < (𝑀 𝑦𝑋 𝐴)))
282279, 281mpbird 249 . . . . . . . . . . . . 13 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → (𝑀 𝑦𝑋 𝐴) ≤ Σ*𝑐 ran 𝑔(𝑅𝑐))
283 nfv 2013 . . . . . . . . . . . . . . . . . . 19 𝑦 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}
28422, 283nfan 2002 . . . . . . . . . . . . . . . . . 18 𝑦((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω})
285 nfra1 3150 . . . . . . . . . . . . . . . . . 18 𝑦𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))
286284, 285nfan 2002 . . . . . . . . . . . . . . . . 17 𝑦(((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))
287 simp-6l 809 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) ∧ 𝑦𝑋) → 𝜑)
288 simpllr 793 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) ∧ 𝑦𝑋) → 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω})
289 simpr 479 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) ∧ 𝑦𝑋) → 𝑦𝑋)
29027ad3antrrr 721 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) ∧ 𝑤 ∈ (𝑔𝑦)) → 𝑅:𝑄⟶(0[,]+∞))
291 simpllr 793 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) ∧ 𝑤 ∈ (𝑔𝑦)) → 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω})
292 simplr 785 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) ∧ 𝑤 ∈ (𝑔𝑦)) → 𝑦𝑋)
293291, 292ffvelrnd 6609 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) ∧ 𝑤 ∈ (𝑔𝑦)) → (𝑔𝑦) ∈ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω})
294188, 293sseldi 3825 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) ∧ 𝑤 ∈ (𝑔𝑦)) → (𝑔𝑦) ∈ 𝒫 dom 𝑅)
295294elpwid 4390 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) ∧ 𝑤 ∈ (𝑔𝑦)) → (𝑔𝑦) ⊆ dom 𝑅)
296290, 295fssdmd 6293 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) ∧ 𝑤 ∈ (𝑔𝑦)) → (𝑔𝑦) ⊆ 𝑄)
297 simpr 479 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) ∧ 𝑤 ∈ (𝑔𝑦)) → 𝑤 ∈ (𝑔𝑦))
298296, 297sseldd 3828 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) ∧ 𝑤 ∈ (𝑔𝑦)) → 𝑤𝑄)
299290, 298ffvelrnd 6609 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) ∧ 𝑤 ∈ (𝑔𝑦)) → (𝑅𝑤) ∈ (0[,]+∞))
300299ralrimiva 3175 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) → ∀𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ∈ (0[,]+∞))
301 fvex 6446 . . . . . . . . . . . . . . . . . . . . 21 (𝑔𝑦) ∈ V
302 nfcv 2969 . . . . . . . . . . . . . . . . . . . . . 22 𝑤(𝑔𝑦)
303302esumcl 30626 . . . . . . . . . . . . . . . . . . . . 21 (((𝑔𝑦) ∈ V ∧ ∀𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ∈ (0[,]+∞)) → Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ∈ (0[,]+∞))
304301, 303mpan 681 . . . . . . . . . . . . . . . . . . . 20 (∀𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ∈ (0[,]+∞) → Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ∈ (0[,]+∞))
305300, 304syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) → Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ∈ (0[,]+∞))
306287, 288, 289, 305syl21anc 871 . . . . . . . . . . . . . . . . . 18 (((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) ∧ 𝑦𝑋) → Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ∈ (0[,]+∞))
307306ex 403 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → (𝑦𝑋 → Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ∈ (0[,]+∞)))
308286, 307ralrimi 3166 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → ∀𝑦𝑋 Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ∈ (0[,]+∞))
30914esumcl 30626 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ V ∧ ∀𝑦𝑋 Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ∈ (0[,]+∞)) → Σ*𝑦𝑋Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ∈ (0[,]+∞))
310179, 308, 309syl2anc 579 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → Σ*𝑦𝑋Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ∈ (0[,]+∞))
311106, 310sseldi 3825 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → Σ*𝑦𝑋Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ∈ ℝ*)
312 nfv 2013 . . . . . . . . . . . . . . . . . . 19 𝑤(𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω})
313 simpr 479 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) → 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω})
314 fniunfv 6760 . . . . . . . . . . . . . . . . . . . 20 (𝑔 Fn 𝑋 𝑦𝑋 (𝑔𝑦) = ran 𝑔)
315313, 215, 3143syl 18 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) → 𝑦𝑋 (𝑔𝑦) = ran 𝑔)
316312, 315esumeq1d 30631 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) → Σ*𝑤 𝑦𝑋 (𝑔𝑦)(𝑅𝑤) = Σ*𝑤 ran 𝑔(𝑅𝑤))
31711adantr 474 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) → 𝑋 ∈ V)
318301a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) → (𝑔𝑦) ∈ V)
319317, 318, 299esumiun 30690 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) → Σ*𝑤 𝑦𝑋 (𝑔𝑦)(𝑅𝑤) ≤ Σ*𝑦𝑋Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤))
320316, 319eqbrtrrd 4897 . . . . . . . . . . . . . . . . 17 ((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) → Σ*𝑤 ran 𝑔(𝑅𝑤) ≤ Σ*𝑦𝑋Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤))
3219, 320sylan 575 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) → Σ*𝑤 ran 𝑔(𝑅𝑤) ≤ Σ*𝑦𝑋Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤))
322321adantr 474 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → Σ*𝑤 ran 𝑔(𝑅𝑤) ≤ Σ*𝑦𝑋Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤))
323254, 322syl5eqbr 4908 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → Σ*𝑐 ran 𝑔(𝑅𝑐) ≤ Σ*𝑦𝑋Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤))
324287, 289, 47syl2anc 579 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) ∧ 𝑦𝑋) → (𝑀𝐴) ∈ (0[,]+∞))
325 simplll 791 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) ∧ 𝑦𝑋) → (((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+))
326325, 289, 74syl2anc 579 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) ∧ 𝑦𝑋) → (𝑒 / (2↑(𝑓𝑦))) ∈ (0[,]+∞))
327324, 326xrge0addcld 30063 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) ∧ 𝑦𝑋) → ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))) ∈ (0[,]+∞))
328327ex 403 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → (𝑦𝑋 → ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))) ∈ (0[,]+∞)))
329286, 328ralrimi 3166 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → ∀𝑦𝑋 ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))) ∈ (0[,]+∞))
33014esumcl 30626 . . . . . . . . . . . . . . . . 17 ((𝑋 ∈ V ∧ ∀𝑦𝑋 ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))) ∈ (0[,]+∞)) → Σ*𝑦𝑋((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))) ∈ (0[,]+∞))
331179, 329, 330syl2anc 579 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → Σ*𝑦𝑋((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))) ∈ (0[,]+∞))
332106, 331sseldi 3825 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → Σ*𝑦𝑋((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))) ∈ ℝ*)
333217, 10syl 17 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → 𝑋 ∈ V)
334 simp-4l 801 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) → (𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ))
335 simpr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) → 𝑦𝑋)
336334, 335, 50syl2anc 579 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) → (𝑀𝐴) ∈ ℝ)
337336adantr 474 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) → (𝑀𝐴) ∈ ℝ)
33866adantlr 706 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) → (𝑒 / (2↑(𝑓𝑦))) ∈ ℝ)
339338adantr 474 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) → (𝑒 / (2↑(𝑓𝑦))) ∈ ℝ)
340 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . 26 *𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))) → Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))
341340adantl 475 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) → Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))
34267breq2d 4885 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑀𝐴) ∈ ℝ ∧ (𝑒 / (2↑(𝑓𝑦))) ∈ ℝ) → (Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))) ↔ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))
343342biimpar 471 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑀𝐴) ∈ ℝ ∧ (𝑒 / (2↑(𝑓𝑦))) ∈ ℝ) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) → Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))))
344337, 339, 341, 343syl21anc 871 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) → Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))))
345344ex 403 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) → (Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))) → Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦))))))
346334simpld 490 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) → 𝜑)
347 simplr 785 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) → 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω})
348346, 347, 335, 305syl21anc 871 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) → Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ∈ (0[,]+∞))
349106, 348sseldi 3825 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) → Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ∈ ℝ*)
350336rexrd 10406 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) → (𝑀𝐴) ∈ ℝ*)
351338rexrd 10406 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) → (𝑒 / (2↑(𝑓𝑦))) ∈ ℝ*)
352350, 351xaddcld 12419 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) → ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))) ∈ ℝ*)
353 xrltle 12268 . . . . . . . . . . . . . . . . . . . . . . . 24 ((Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ∈ ℝ* ∧ ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))) ∈ ℝ*) → (Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))) → Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ≤ ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦))))))
354349, 352, 353syl2anc 579 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) → (Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))) → Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ≤ ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦))))))
355345, 354syld 47 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) → (Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))) → Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ≤ ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦))))))
356355adantld 486 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) → ((𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) → Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ≤ ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦))))))
357356ex 403 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) → (𝑦𝑋 → ((𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) → Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ≤ ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))))))
358284, 357ralrimi 3166 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) → ∀𝑦𝑋 ((𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) → Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ≤ ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦))))))
359 ralim 3157 . . . . . . . . . . . . . . . . . . 19 (∀𝑦𝑋 ((𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) → Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ≤ ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦))))) → (∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) → ∀𝑦𝑋 Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ≤ ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦))))))
360358, 359syl 17 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) → (∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) → ∀𝑦𝑋 Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ≤ ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦))))))
361360imp 397 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → ∀𝑦𝑋 Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ≤ ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))))
362361r19.21bi 3141 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) ∧ 𝑦𝑋) → Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ≤ ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))))
363286, 14, 333, 306, 327, 362esumlef 30658 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → Σ*𝑦𝑋Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ≤ Σ*𝑦𝑋((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))))
364165, 47sylan 575 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) ∧ 𝑦𝑋) → (𝑀𝐴) ∈ (0[,]+∞))
365286, 14, 333, 364, 326esumaddf 30657 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → Σ*𝑦𝑋((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))) = (Σ*𝑦𝑋(𝑀𝐴) +𝑒 Σ*𝑦𝑋(𝑒 / (2↑(𝑓𝑦)))))
366326ex 403 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → (𝑦𝑋 → (𝑒 / (2↑(𝑓𝑦))) ∈ (0[,]+∞)))
367286, 366ralrimi 3166 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → ∀𝑦𝑋 (𝑒 / (2↑(𝑓𝑦))) ∈ (0[,]+∞))
36814esumcl 30626 . . . . . . . . . . . . . . . . . . 19 ((𝑋 ∈ V ∧ ∀𝑦𝑋 (𝑒 / (2↑(𝑓𝑦))) ∈ (0[,]+∞)) → Σ*𝑦𝑋(𝑒 / (2↑(𝑓𝑦))) ∈ (0[,]+∞))
369179, 367, 368syl2anc 579 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → Σ*𝑦𝑋(𝑒 / (2↑(𝑓𝑦))) ∈ (0[,]+∞))
370106, 369sseldi 3825 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → Σ*𝑦𝑋(𝑒 / (2↑(𝑓𝑦))) ∈ ℝ*)
371 simp-4r 803 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → 𝑓:𝑋1-1→ℕ)
372 vex 3417 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑓 ∈ V
373372rnex 7362 . . . . . . . . . . . . . . . . . . . . . . 23 ran 𝑓 ∈ V
374373a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → ran 𝑓 ∈ V)
37559frnd 6285 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑓:𝑋1-1→ℕ) → ran 𝑓 ⊆ ℕ)
376375adantr 474 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → ran 𝑓 ⊆ ℕ)
377376sselda 3827 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ran 𝑓) → 𝑧 ∈ ℕ)
37855a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑧 ∈ ℕ) → 2 ∈ ℝ+)
379 simpr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑧 ∈ ℕ) → 𝑧 ∈ ℕ)
380379nnzd 11809 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑧 ∈ ℕ) → 𝑧 ∈ ℤ)
381378, 380rpexpcld 13328 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑧 ∈ ℕ) → (2↑𝑧) ∈ ℝ+)
382381rpreccld 12166 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑧 ∈ ℕ) → (1 / (2↑𝑧)) ∈ ℝ+)
38372, 382sseldi 3825 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑧 ∈ ℕ) → (1 / (2↑𝑧)) ∈ (0[,]+∞))
384383adantlr 706 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℕ) → (1 / (2↑𝑧)) ∈ (0[,]+∞))
385377, 384syldan 585 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ran 𝑓) → (1 / (2↑𝑧)) ∈ (0[,]+∞))
386385ralrimiva 3175 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → ∀𝑧 ∈ ran 𝑓(1 / (2↑𝑧)) ∈ (0[,]+∞))
387 nfcv 2969 . . . . . . . . . . . . . . . . . . . . . . 23 𝑧ran 𝑓
388387esumcl 30626 . . . . . . . . . . . . . . . . . . . . . 22 ((ran 𝑓 ∈ V ∧ ∀𝑧 ∈ ran 𝑓(1 / (2↑𝑧)) ∈ (0[,]+∞)) → Σ*𝑧 ∈ ran 𝑓(1 / (2↑𝑧)) ∈ (0[,]+∞))
389374, 386, 388syl2anc 579 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → Σ*𝑧 ∈ ran 𝑓(1 / (2↑𝑧)) ∈ (0[,]+∞))
390106, 389sseldi 3825 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → Σ*𝑧 ∈ ran 𝑓(1 / (2↑𝑧)) ∈ ℝ*)
391 1xr 10416 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℝ*
392391a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → 1 ∈ ℝ*)
39372sseli 3823 . . . . . . . . . . . . . . . . . . . . . 22 (𝑒 ∈ ℝ+𝑒 ∈ (0[,]+∞))
394393adantl 475 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → 𝑒 ∈ (0[,]+∞))
395 elxrge0 12571 . . . . . . . . . . . . . . . . . . . . 21 (𝑒 ∈ (0[,]+∞) ↔ (𝑒 ∈ ℝ* ∧ 0 ≤ 𝑒))
396394, 395sylib 210 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → (𝑒 ∈ ℝ* ∧ 0 ≤ 𝑒))
397 nfv 2013 . . . . . . . . . . . . . . . . . . . . . . 23 𝑧(𝜑𝑓:𝑋1-1→ℕ)
398 nnex 11357 . . . . . . . . . . . . . . . . . . . . . . . 24 ℕ ∈ V
399398a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑓:𝑋1-1→ℕ) → ℕ ∈ V)
400397, 399, 383, 375esummono 30650 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑓:𝑋1-1→ℕ) → Σ*𝑧 ∈ ran 𝑓(1 / (2↑𝑧)) ≤ Σ*𝑧 ∈ ℕ(1 / (2↑𝑧)))
401 oveq2 6913 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 = 𝑤 → (2↑𝑧) = (2↑𝑤))
402401oveq2d 6921 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 = 𝑤 → (1 / (2↑𝑧)) = (1 / (2↑𝑤)))
403 ioossico 12551 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (0(,)+∞) ⊆ (0[,)+∞)
40470, 403eqsstri 3860 . . . . . . . . . . . . . . . . . . . . . . . . 25 + ⊆ (0[,)+∞)
405404, 382sseldi 3825 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑧 ∈ ℕ) → (1 / (2↑𝑧)) ∈ (0[,)+∞))
406 eqidd 2826 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 ∈ ℕ → (𝑤 ∈ ℕ ↦ (1 / (2↑𝑤))) = (𝑤 ∈ ℕ ↦ (1 / (2↑𝑤))))
407 simpr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑧 ∈ ℕ ∧ 𝑤 = 𝑧) → 𝑤 = 𝑧)
408407oveq2d 6921 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑧 ∈ ℕ ∧ 𝑤 = 𝑧) → (2↑𝑤) = (2↑𝑧))
409408oveq2d 6921 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑧 ∈ ℕ ∧ 𝑤 = 𝑧) → (1 / (2↑𝑤)) = (1 / (2↑𝑧)))
410 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 ∈ ℕ → 𝑧 ∈ ℕ)
411 ovexd 6939 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 ∈ ℕ → (1 / (2↑𝑧)) ∈ V)
412406, 409, 410, 411fvmptd 6535 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 ∈ ℕ → ((𝑤 ∈ ℕ ↦ (1 / (2↑𝑤)))‘𝑧) = (1 / (2↑𝑧)))
413412adantl 475 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑧 ∈ ℕ) → ((𝑤 ∈ ℕ ↦ (1 / (2↑𝑤)))‘𝑧) = (1 / (2↑𝑧)))
414 ax-1cn 10310 . . . . . . . . . . . . . . . . . . . . . . . . . 26 1 ∈ ℂ
415 eqid 2825 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑤 ∈ ℕ ↦ (1 / (2↑𝑤))) = (𝑤 ∈ ℕ ↦ (1 / (2↑𝑤)))
416415geo2lim 14980 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (1 ∈ ℂ → seq1( + , (𝑤 ∈ ℕ ↦ (1 / (2↑𝑤)))) ⇝ 1)
417414, 416ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . 25 seq1( + , (𝑤 ∈ ℕ ↦ (1 / (2↑𝑤)))) ⇝ 1
418417a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑓:𝑋1-1→ℕ) → seq1( + , (𝑤 ∈ ℕ ↦ (1 / (2↑𝑤)))) ⇝ 1)
419 1re 10356 . . . . . . . . . . . . . . . . . . . . . . . . 25 1 ∈ ℝ
420419a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑓:𝑋1-1→ℕ) → 1 ∈ ℝ)
421402, 405, 413, 418, 420esumcvgsum 30684 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑓:𝑋1-1→ℕ) → Σ*𝑧 ∈ ℕ(1 / (2↑𝑧)) = Σ𝑧 ∈ ℕ (1 / (2↑𝑧)))
422 geoihalfsum 14987 . . . . . . . . . . . . . . . . . . . . . . 23 Σ𝑧 ∈ ℕ (1 / (2↑𝑧)) = 1
423421, 422syl6eq 2877 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑓:𝑋1-1→ℕ) → Σ*𝑧 ∈ ℕ(1 / (2↑𝑧)) = 1)
424400, 423breqtrd 4899 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑓:𝑋1-1→ℕ) → Σ*𝑧 ∈ ran 𝑓(1 / (2↑𝑧)) ≤ 1)
425424adantr 474 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → Σ*𝑧 ∈ ran 𝑓(1 / (2↑𝑧)) ≤ 1)
426 xlemul2a 12407 . . . . . . . . . . . . . . . . . . . 20 (((Σ*𝑧 ∈ ran 𝑓(1 / (2↑𝑧)) ∈ ℝ* ∧ 1 ∈ ℝ* ∧ (𝑒 ∈ ℝ* ∧ 0 ≤ 𝑒)) ∧ Σ*𝑧 ∈ ran 𝑓(1 / (2↑𝑧)) ≤ 1) → (𝑒 ·e Σ*𝑧 ∈ ran 𝑓(1 / (2↑𝑧))) ≤ (𝑒 ·e 1))
427390, 392, 396, 425, 426syl31anc 1496 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → (𝑒 ·e Σ*𝑧 ∈ ran 𝑓(1 / (2↑𝑧))) ≤ (𝑒 ·e 1))
42813, 19nfan 2002 . . . . . . . . . . . . . . . . . . . . . 22 𝑦(𝜑𝑓:𝑋1-1→ℕ)
429428, 21nfan 2002 . . . . . . . . . . . . . . . . . . . . 21 𝑦((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+)
43077recnd 10385 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → 𝑒 ∈ ℂ)
43179recnd 10385 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑦𝑋) → (2↑(𝑓𝑦)) ∈ ℂ)
432431adantlr 706 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (2↑(𝑓𝑦)) ∈ ℂ)
433 2cn 11426 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2 ∈ ℂ
434433a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑦𝑋) → 2 ∈ ℂ)
435 2ne0 11462 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2 ≠ 0
436435a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑦𝑋) → 2 ≠ 0)
437434, 436, 61expne0d 13308 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑦𝑋) → (2↑(𝑓𝑦)) ≠ 0)
438437adantlr 706 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (2↑(𝑓𝑦)) ≠ 0)
439430, 432, 438divrecd 11130 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (𝑒 / (2↑(𝑓𝑦))) = (𝑒 · (1 / (2↑(𝑓𝑦)))))
440 1rp 12116 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1 ∈ ℝ+
441440a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑦𝑋) → 1 ∈ ℝ+)
442441, 62rpdivcld 12173 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑦𝑋) → (1 / (2↑(𝑓𝑦))) ∈ ℝ+)
44353, 442sseldi 3825 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑦𝑋) → (1 / (2↑(𝑓𝑦))) ∈ ℝ)
444443adantlr 706 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (1 / (2↑(𝑓𝑦))) ∈ ℝ)
445 rexmul 12389 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑒 ∈ ℝ ∧ (1 / (2↑(𝑓𝑦))) ∈ ℝ) → (𝑒 ·e (1 / (2↑(𝑓𝑦)))) = (𝑒 · (1 / (2↑(𝑓𝑦)))))
44677, 444, 445syl2anc 579 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (𝑒 ·e (1 / (2↑(𝑓𝑦)))) = (𝑒 · (1 / (2↑(𝑓𝑦)))))
447439, 446eqtr4d 2864 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (𝑒 / (2↑(𝑓𝑦))) = (𝑒 ·e (1 / (2↑(𝑓𝑦)))))
448447ralrimiva 3175 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → ∀𝑦𝑋 (𝑒 / (2↑(𝑓𝑦))) = (𝑒 ·e (1 / (2↑(𝑓𝑦)))))
449429, 448esumeq2d 30633 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → Σ*𝑦𝑋(𝑒 / (2↑(𝑓𝑦))) = Σ*𝑦𝑋(𝑒 ·e (1 / (2↑(𝑓𝑦)))))
45011ad2antrr 717 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → 𝑋 ∈ V)
45172, 442sseldi 3825 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑦𝑋) → (1 / (2↑(𝑓𝑦))) ∈ (0[,]+∞))
452451adantlr 706 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (1 / (2↑(𝑓𝑦))) ∈ (0[,]+∞))
453404a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑓:𝑋1-1→ℕ) → ℝ+ ⊆ (0[,)+∞))
454453sselda 3827 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → 𝑒 ∈ (0[,)+∞))
455450, 452, 454esummulc2 30678 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → (𝑒 ·e Σ*𝑦𝑋(1 / (2↑(𝑓𝑦)))) = Σ*𝑦𝑋(𝑒 ·e (1 / (2↑(𝑓𝑦)))))
456 nfcv 2969 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑦(1 / (2↑𝑧))
457 oveq2 6913 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 = (𝑓𝑦) → (2↑𝑧) = (2↑(𝑓𝑦)))
458457oveq2d 6921 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 = (𝑓𝑦) → (1 / (2↑𝑧)) = (1 / (2↑(𝑓𝑦))))
45911adantr 474 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑓:𝑋1-1→ℕ) → 𝑋 ∈ V)
46057simprbi 492 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓:𝑋1-1→ℕ → Fun 𝑓)
46158feqmptd 6496 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑓:𝑋1-1→ℕ → 𝑓 = (𝑦𝑋 ↦ (𝑓𝑦)))
462461cnveqd 5530 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓:𝑋1-1→ℕ → 𝑓 = (𝑦𝑋 ↦ (𝑓𝑦)))
463462funeqd 6145 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓:𝑋1-1→ℕ → (Fun 𝑓 ↔ Fun (𝑦𝑋 ↦ (𝑓𝑦))))
464460, 463mpbid 224 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓:𝑋1-1→ℕ → Fun (𝑦𝑋 ↦ (𝑓𝑦)))
465464adantl 475 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑓:𝑋1-1→ℕ) → Fun (𝑦𝑋 ↦ (𝑓𝑦)))
466456, 428, 14, 458, 459, 465, 451, 60esumc 30647 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑓:𝑋1-1→ℕ) → Σ*𝑦𝑋(1 / (2↑(𝑓𝑦))) = Σ*𝑧 ∈ {𝑥 ∣ ∃𝑦𝑋 𝑥 = (𝑓𝑦)} (1 / (2↑𝑧)))
467 ffn 6278 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓:𝑋⟶ℕ → 𝑓 Fn 𝑋)
468 fnrnfv 6489 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 Fn 𝑋 → ran 𝑓 = {𝑥 ∣ ∃𝑦𝑋 𝑥 = (𝑓𝑦)})
46959, 467, 4683syl 18 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑓:𝑋1-1→ℕ) → ran 𝑓 = {𝑥 ∣ ∃𝑦𝑋 𝑥 = (𝑓𝑦)})
470397, 469esumeq1d 30631 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑓:𝑋1-1→ℕ) → Σ*𝑧 ∈ ran 𝑓(1 / (2↑𝑧)) = Σ*𝑧 ∈ {𝑥 ∣ ∃𝑦𝑋 𝑥 = (𝑓𝑦)} (1 / (2↑𝑧)))
471466, 470eqtr4d 2864 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑓:𝑋1-1→ℕ) → Σ*𝑦𝑋(1 / (2↑(𝑓𝑦))) = Σ*𝑧 ∈ ran 𝑓(1 / (2↑𝑧)))
472471adantr 474 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → Σ*𝑦𝑋(1 / (2↑(𝑓𝑦))) = Σ*𝑧 ∈ ran 𝑓(1 / (2↑𝑧)))
473472oveq2d 6921 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → (𝑒 ·e Σ*𝑦𝑋(1 / (2↑(𝑓𝑦)))) = (𝑒 ·e Σ*𝑧 ∈ ran 𝑓(1 / (2↑𝑧))))
474449, 455, 4733eqtr2rd 2868 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → (𝑒 ·e Σ*𝑧 ∈ ran 𝑓(1 / (2↑𝑧))) = Σ*𝑦𝑋(𝑒 / (2↑(𝑓𝑦))))
475396simpld 490 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ*)
476 xmulid1 12397 . . . . . . . . . . . . . . . . . . . 20 (𝑒 ∈ ℝ* → (𝑒 ·e 1) = 𝑒)
477475, 476syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → (𝑒 ·e 1) = 𝑒)
478427, 474, 4773brtr3d 4904 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → Σ*𝑦𝑋(𝑒 / (2↑(𝑓𝑦))) ≤ 𝑒)
479165, 371, 206, 478syl21anc 871 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → Σ*𝑦𝑋(𝑒 / (2↑(𝑓𝑦))) ≤ 𝑒)
480 xleadd2a 12372 . . . . . . . . . . . . . . . . 17 (((Σ*𝑦𝑋(𝑒 / (2↑(𝑓𝑦))) ∈ ℝ*𝑒 ∈ ℝ* ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ*) ∧ Σ*𝑦𝑋(𝑒 / (2↑(𝑓𝑦))) ≤ 𝑒) → (Σ*𝑦𝑋(𝑀𝐴) +𝑒 Σ*𝑦𝑋(𝑒 / (2↑(𝑓𝑦)))) ≤ (Σ*𝑦𝑋(𝑀𝐴) +𝑒 𝑒))
481370, 207, 205, 479, 480syl31anc 1496 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → (Σ*𝑦𝑋(𝑀𝐴) +𝑒 Σ*𝑦𝑋(𝑒 / (2↑(𝑓𝑦)))) ≤ (Σ*𝑦𝑋(𝑀𝐴) +𝑒 𝑒))
482365, 481eqbrtrd 4895 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → Σ*𝑦𝑋((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))) ≤ (Σ*𝑦𝑋(𝑀𝐴) +𝑒 𝑒))
483311, 332, 208, 363, 482xrletrd 12281 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → Σ*𝑦𝑋Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ≤ (Σ*𝑦𝑋(𝑀𝐴) +𝑒 𝑒))
484203, 311, 208, 323, 483xrletrd 12281 . . . . . . . . . . . . 13 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → Σ*𝑐 ran 𝑔(𝑅𝑐) ≤ (Σ*𝑦𝑋(𝑀𝐴) +𝑒 𝑒))
485177, 203, 208, 282, 484xrletrd 12281 . . . . . . . . . . . 12 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → (𝑀 𝑦𝑋 𝐴) ≤ (Σ*𝑦𝑋(𝑀𝐴) +𝑒 𝑒))
486206rpred 12156 . . . . . . . . . . . . 13 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → 𝑒 ∈ ℝ)
487 rexadd 12351 . . . . . . . . . . . . 13 ((Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ ∧ 𝑒 ∈ ℝ) → (Σ*𝑦𝑋(𝑀𝐴) +𝑒 𝑒) = (Σ*𝑦𝑋(𝑀𝐴) + 𝑒))
488204, 486, 487syl2anc 579 . . . . . . . . . . . 12 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → (Σ*𝑦𝑋(𝑀𝐴) +𝑒 𝑒) = (Σ*𝑦𝑋(𝑀𝐴) + 𝑒))
489485, 488breqtrd 4899 . . . . . . . . . . 11 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → (𝑀 𝑦𝑋 𝐴) ≤ (Σ*𝑦𝑋(𝑀𝐴) + 𝑒))
490489anasss 460 . . . . . . . . . 10 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))) → (𝑀 𝑦𝑋 𝐴) ≤ (Σ*𝑦𝑋(𝑀𝐴) + 𝑒))
491490ex 403 . . . . . . . . 9 ((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → ((𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → (𝑀 𝑦𝑋 𝐴) ≤ (Σ*𝑦𝑋(𝑀𝐴) + 𝑒)))
492491exlimdv 2032 . . . . . . . 8 ((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → (∃𝑔(𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → (𝑀 𝑦𝑋 𝐴) ≤ (Σ*𝑦𝑋(𝑀𝐴) + 𝑒)))
493164, 492mpd 15 . . . . . . 7 ((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → (𝑀 𝑦𝑋 𝐴) ≤ (Σ*𝑦𝑋(𝑀𝐴) + 𝑒))
494493ralrimiva 3175 . . . . . 6 (((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) → ∀𝑒 ∈ ℝ+ (𝑀 𝑦𝑋 𝐴) ≤ (Σ*𝑦𝑋(𝑀𝐴) + 𝑒))
495 xralrple 12324 . . . . . . . 8 (((𝑀 𝑦𝑋 𝐴) ∈ ℝ* ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) → ((𝑀 𝑦𝑋 𝐴) ≤ Σ*𝑦𝑋(𝑀𝐴) ↔ ∀𝑒 ∈ ℝ+ (𝑀 𝑦𝑋 𝐴) ≤ (Σ*𝑦𝑋(𝑀𝐴) + 𝑒)))
496176, 495sylan 575 . . . . . . 7 ((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) → ((𝑀 𝑦𝑋 𝐴) ≤ Σ*𝑦𝑋(𝑀𝐴) ↔ ∀𝑒 ∈ ℝ+ (𝑀 𝑦𝑋 𝐴) ≤ (Σ*𝑦𝑋(𝑀𝐴) + 𝑒)))
497496adantr 474 . . . . . 6 (((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) → ((𝑀 𝑦𝑋 𝐴) ≤ Σ*𝑦𝑋(𝑀𝐴) ↔ ∀𝑒 ∈ ℝ+ (𝑀 𝑦𝑋 𝐴) ≤ (Σ*𝑦𝑋(𝑀𝐴) + 𝑒)))
498494, 497mpbird 249 . . . . 5 (((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) → (𝑀 𝑦𝑋 𝐴) ≤ Σ*𝑦𝑋(𝑀𝐴))
499498ex 403 . . . 4 ((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) → (𝑓:𝑋1-1→ℕ → (𝑀 𝑦𝑋 𝐴) ≤ Σ*𝑦𝑋(𝑀𝐴)))
500499exlimdv 2032 . . 3 ((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) → (∃𝑓 𝑓:𝑋1-1→ℕ → (𝑀 𝑦𝑋 𝐴) ≤ Σ*𝑦𝑋(𝑀𝐴)))
5018, 500mpd 15 . 2 ((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) → (𝑀 𝑦𝑋 𝐴) ≤ Σ*𝑦𝑋(𝑀𝐴))
502176adantr 474 . . . 4 ((𝜑 ∧ ¬ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) → (𝑀 𝑦𝑋 𝐴) ∈ ℝ*)
503 pnfge 12250 . . . 4 ((𝑀 𝑦𝑋 𝐴) ∈ ℝ* → (𝑀 𝑦𝑋 𝐴) ≤ +∞)
504502, 503syl 17 . . 3 ((𝜑 ∧ ¬ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) → (𝑀 𝑦𝑋 𝐴) ≤ +∞)
50547ralrimiva 3175 . . . . 5 (𝜑 → ∀𝑦𝑋 (𝑀𝐴) ∈ (0[,]+∞))
50614esumcl 30626 . . . . 5 ((𝑋 ∈ V ∧ ∀𝑦𝑋 (𝑀𝐴) ∈ (0[,]+∞)) → Σ*𝑦𝑋(𝑀𝐴) ∈ (0[,]+∞))
50711, 505, 506syl2anc 579 . . . 4 (𝜑 → Σ*𝑦𝑋(𝑀𝐴) ∈ (0[,]+∞))
508 xrge0nre 12567 . . . 4 ((Σ*𝑦𝑋(𝑀𝐴) ∈ (0[,]+∞) ∧ ¬ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) → Σ*𝑦𝑋(𝑀𝐴) = +∞)
509507, 508sylan 575 . . 3 ((𝜑 ∧ ¬ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) → Σ*𝑦𝑋(𝑀𝐴) = +∞)
510504, 509breqtrrd 4901 . 2 ((𝜑 ∧ ¬ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) → (𝑀 𝑦𝑋 𝐴) ≤ Σ*𝑦𝑋(𝑀𝐴))
511501, 510pm2.61dan 847 1 (𝜑 → (𝑀 𝑦𝑋 𝐴) ≤ Σ*𝑦𝑋(𝑀𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386   = wceq 1656  wex 1878  wcel 2164  {cab 2811  wne 2999  wral 3117  wrex 3118  {crab 3121  Vcvv 3414  wss 3798  𝒫 cpw 4378   cuni 4658   ciun 4740   class class class wbr 4873  cmpt 4952   Or wor 5262  ccnv 5341  dom cdm 5342  ran crn 5343  Fun wfun 6117   Fn wfn 6118  wf 6119  1-1wf1 6120  cfv 6123  (class class class)co 6905  ωcom 7326  cen 8219  cdom 8220  infcinf 8616  cc 10250  cr 10251  0cc0 10252  1c1 10253   + caddc 10255   · cmul 10257  +∞cpnf 10388  *cxr 10390   < clt 10391  cle 10392   / cdiv 11009  cn 11350  2c2 11406  cz 11704  +crp 12112   +𝑒 cxad 12230   ·e cxmu 12231  (,)cioo 12463  [,)cico 12465  [,]cicc 12466  seqcseq 13095  cexp 13154  cli 14592  Σcsu 14793  Σ*cesum 30623  toOMeascoms 30887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-reg 8766  ax-inf2 8815  ax-cc 9572  ax-ac2 9600  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329  ax-pre-sup 10330  ax-addf 10331  ax-mulf 10332
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-fal 1670  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-iin 4743  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-se 5302  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-isom 6132  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-of 7157  df-om 7327  df-1st 7428  df-2nd 7429  df-supp 7560  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-2o 7827  df-oadd 7830  df-er 8009  df-map 8124  df-pm 8125  df-ixp 8176  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-fsupp 8545  df-fi 8586  df-sup 8617  df-inf 8618  df-oi 8684  df-r1 8904  df-rank 8905  df-card 9078  df-acn 9081  df-ac 9252  df-cda 9305  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-nn 11351  df-2 11414  df-3 11415  df-4 11416  df-5 11417  df-6 11418  df-7 11419  df-8 11420  df-9 11421  df-n0 11619  df-xnn0 11691  df-z 11705  df-dec 11822  df-uz 11969  df-q 12072  df-rp 12113  df-xneg 12232  df-xadd 12233  df-xmul 12234  df-ioo 12467  df-ioc 12468  df-ico 12469  df-icc 12470  df-fz 12620  df-fzo 12761  df-fl 12888  df-mod 12964  df-seq 13096  df-exp 13155  df-fac 13354  df-bc 13383  df-hash 13411  df-shft 14184  df-cj 14216  df-re 14217  df-im 14218  df-sqrt 14352  df-abs 14353  df-limsup 14579  df-clim 14596  df-rlim 14597  df-sum 14794  df-ef 15170  df-sin 15172  df-cos 15173  df-pi 15175  df-struct 16224  df-ndx 16225  df-slot 16226  df-base 16228  df-sets 16229  df-ress 16230  df-plusg 16318  df-mulr 16319  df-starv 16320  df-sca 16321  df-vsca 16322  df-ip 16323  df-tset 16324  df-ple 16325  df-ds 16327  df-unif 16328  df-hom 16329  df-cco 16330  df-rest 16436  df-topn 16437  df-0g 16455  df-gsum 16456  df-topgen 16457  df-pt 16458  df-prds 16461  df-ordt 16514  df-xrs 16515  df-qtop 16520  df-imas 16521  df-xps 16523  df-mre 16599  df-mrc 16600  df-acs 16602  df-ps 17553  df-tsr 17554  df-plusf 17594  df-mgm 17595  df-sgrp 17637  df-mnd 17648  df-mhm 17688  df-submnd 17689  df-grp 17779  df-minusg 17780  df-sbg 17781  df-mulg 17895  df-subg 17942  df-cntz 18100  df-cmn 18548  df-abl 18549  df-mgp 18844  df-ur 18856  df-ring 18903  df-cring 18904  df-subrg 19134  df-abv 19173  df-lmod 19221  df-scaf 19222  df-sra 19533  df-rgmod 19534  df-psmet 20098  df-xmet 20099  df-met 20100  df-bl 20101  df-mopn 20102  df-fbas 20103  df-fg 20104  df-cnfld 20107  df-top 21069  df-topon 21086  df-topsp 21108  df-bases 21121  df-cld 21194  df-ntr 21195  df-cls 21196  df-nei 21273  df-lp 21311  df-perf 21312  df-cn 21402  df-cnp 21403  df-haus 21490  df-tx 21736  df-hmeo 21929  df-fil 22020  df-fm 22112  df-flim 22113  df-flf 22114  df-tmd 22246  df-tgp 22247  df-tsms 22300  df-trg 22333  df-xms 22495  df-ms 22496  df-tms 22497  df-nm 22757  df-ngp 22758  df-nrg 22760  df-nlm 22761  df-ii 23050  df-cncf 23051  df-limc 24029  df-dv 24030  df-log 24702  df-esum 30624  df-oms 30888
This theorem is referenced by:  omsmeas  30919
  Copyright terms: Public domain W3C validator