Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omssubadd Structured version   Visualization version   GIF version

Theorem omssubadd 34298
Description: A constructed outer measure is countably sub-additive. Lemma 1.5.4 of [Bogachev] p. 17. (Contributed by Thierry Arnoux, 21-Sep-2019.) (Revised by AV, 4-Oct-2020.)
Hypotheses
Ref Expression
oms.m 𝑀 = (toOMeas‘𝑅)
oms.o (𝜑𝑄𝑉)
oms.r (𝜑𝑅:𝑄⟶(0[,]+∞))
omssubadd.a ((𝜑𝑦𝑋) → 𝐴 𝑄)
omssubadd.b (𝜑𝑋 ≼ ω)
Assertion
Ref Expression
omssubadd (𝜑 → (𝑀 𝑦𝑋 𝐴) ≤ Σ*𝑦𝑋(𝑀𝐴))
Distinct variable groups:   𝑦,𝑄   𝑦,𝑅   𝑦,𝑉   𝜑,𝑦   𝑦,𝑋
Allowed substitution hints:   𝐴(𝑦)   𝑀(𝑦)

Proof of Theorem omssubadd
Dummy variables 𝑥 𝑧 𝑒 𝑡 𝑢 𝑤 𝑓 𝑔 𝑣 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omssubadd.b . . . . . 6 (𝜑𝑋 ≼ ω)
2 nnenom 13952 . . . . . . 7 ℕ ≈ ω
32ensymi 8978 . . . . . 6 ω ≈ ℕ
4 domentr 8987 . . . . . 6 ((𝑋 ≼ ω ∧ ω ≈ ℕ) → 𝑋 ≼ ℕ)
51, 3, 4sylancl 586 . . . . 5 (𝜑𝑋 ≼ ℕ)
6 brdomi 8934 . . . . 5 (𝑋 ≼ ℕ → ∃𝑓 𝑓:𝑋1-1→ℕ)
75, 6syl 17 . . . 4 (𝜑 → ∃𝑓 𝑓:𝑋1-1→ℕ)
87adantr 480 . . 3 ((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) → ∃𝑓 𝑓:𝑋1-1→ℕ)
9 simplll 774 . . . . . . . . . 10 ((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → 𝜑)
10 ctex 8938 . . . . . . . . . . 11 (𝑋 ≼ ω → 𝑋 ∈ V)
111, 10syl 17 . . . . . . . . . 10 (𝜑𝑋 ∈ V)
129, 11syl 17 . . . . . . . . 9 ((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → 𝑋 ∈ V)
13 nfv 1914 . . . . . . . . . . . . 13 𝑦𝜑
14 nfcv 2892 . . . . . . . . . . . . . . 15 𝑦𝑋
1514nfesum1 34037 . . . . . . . . . . . . . 14 𝑦Σ*𝑦𝑋(𝑀𝐴)
16 nfcv 2892 . . . . . . . . . . . . . 14 𝑦
1715, 16nfel 2907 . . . . . . . . . . . . 13 𝑦Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ
1813, 17nfan 1899 . . . . . . . . . . . 12 𝑦(𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ)
19 nfv 1914 . . . . . . . . . . . 12 𝑦 𝑓:𝑋1-1→ℕ
2018, 19nfan 1899 . . . . . . . . . . 11 𝑦((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ)
21 nfv 1914 . . . . . . . . . . 11 𝑦 𝑒 ∈ ℝ+
2220, 21nfan 1899 . . . . . . . . . 10 𝑦(((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+)
239adantr 480 . . . . . . . . . . . . . 14 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → 𝜑)
24 simpr 484 . . . . . . . . . . . . . 14 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → 𝑦𝑋)
2511adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) → 𝑋 ∈ V)
26 oms.o . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑄𝑉)
27 oms.r . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑅:𝑄⟶(0[,]+∞))
28 omsf 34294 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞)) → (toOMeas‘𝑅):𝒫 dom 𝑅⟶(0[,]+∞))
29 oms.m . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑀 = (toOMeas‘𝑅)
3029feq1i 6682 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑀:𝒫 dom 𝑅⟶(0[,]+∞) ↔ (toOMeas‘𝑅):𝒫 dom 𝑅⟶(0[,]+∞))
3128, 30sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞)) → 𝑀:𝒫 dom 𝑅⟶(0[,]+∞))
3226, 27, 31syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑀:𝒫 dom 𝑅⟶(0[,]+∞))
3332adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦𝑋) → 𝑀:𝒫 dom 𝑅⟶(0[,]+∞))
34 omssubadd.a . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑦𝑋) → 𝐴 𝑄)
3527fdmd 6701 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → dom 𝑅 = 𝑄)
3635unieqd 4887 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 dom 𝑅 = 𝑄)
3736adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑦𝑋) → dom 𝑅 = 𝑄)
3834, 37sseqtrrd 3987 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑦𝑋) → 𝐴 dom 𝑅)
3926uniexd 7721 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 𝑄 ∈ V)
4039adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑦𝑋) → 𝑄 ∈ V)
41 ssexg 5281 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 𝑄 𝑄 ∈ V) → 𝐴 ∈ V)
4234, 40, 41syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑦𝑋) → 𝐴 ∈ V)
43 elpwg 4569 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴 ∈ V → (𝐴 ∈ 𝒫 dom 𝑅𝐴 dom 𝑅))
4442, 43syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑦𝑋) → (𝐴 ∈ 𝒫 dom 𝑅𝐴 dom 𝑅))
4538, 44mpbird 257 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦𝑋) → 𝐴 ∈ 𝒫 dom 𝑅)
4633, 45ffvelcdmd 7060 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦𝑋) → (𝑀𝐴) ∈ (0[,]+∞))
4746adantlr 715 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑦𝑋) → (𝑀𝐴) ∈ (0[,]+∞))
48 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) → Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ)
4918, 25, 47, 48esumcvgre 34088 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑦𝑋) → (𝑀𝐴) ∈ ℝ)
5049adantlr 715 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑦𝑋) → (𝑀𝐴) ∈ ℝ)
5150adantlr 715 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (𝑀𝐴) ∈ ℝ)
52 rpssre 12966 . . . . . . . . . . . . . . . . . . 19 + ⊆ ℝ
53 simplr 768 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → 𝑒 ∈ ℝ+)
54 2rp 12963 . . . . . . . . . . . . . . . . . . . . . . 23 2 ∈ ℝ+
5554a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑦𝑋) → 2 ∈ ℝ+)
56 df-f1 6519 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓:𝑋1-1→ℕ ↔ (𝑓:𝑋⟶ℕ ∧ Fun 𝑓))
5756simplbi 497 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓:𝑋1-1→ℕ → 𝑓:𝑋⟶ℕ)
5857adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑓:𝑋1-1→ℕ) → 𝑓:𝑋⟶ℕ)
5958ffvelcdmda 7059 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑦𝑋) → (𝑓𝑦) ∈ ℕ)
6059nnzd 12563 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑦𝑋) → (𝑓𝑦) ∈ ℤ)
6155, 60rpexpcld 14219 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑦𝑋) → (2↑(𝑓𝑦)) ∈ ℝ+)
6261adantlr 715 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (2↑(𝑓𝑦)) ∈ ℝ+)
6353, 62rpdivcld 13019 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (𝑒 / (2↑(𝑓𝑦))) ∈ ℝ+)
6452, 63sselid 3947 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (𝑒 / (2↑(𝑓𝑦))) ∈ ℝ)
6564adantl3r 750 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (𝑒 / (2↑(𝑓𝑦))) ∈ ℝ)
66 rexadd 13199 . . . . . . . . . . . . . . . . 17 (((𝑀𝐴) ∈ ℝ ∧ (𝑒 / (2↑(𝑓𝑦))) ∈ ℝ) → ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))) = ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))
6751, 65, 66syl2anc 584 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))) = ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))
689, 46sylan 580 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (𝑀𝐴) ∈ (0[,]+∞))
69 dfrp2 13362 . . . . . . . . . . . . . . . . . . . 20 + = (0(,)+∞)
70 ioossicc 13401 . . . . . . . . . . . . . . . . . . . 20 (0(,)+∞) ⊆ (0[,]+∞)
7169, 70eqsstri 3996 . . . . . . . . . . . . . . . . . . 19 + ⊆ (0[,]+∞)
7271, 63sselid 3947 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (𝑒 / (2↑(𝑓𝑦))) ∈ (0[,]+∞))
7372adantl3r 750 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (𝑒 / (2↑(𝑓𝑦))) ∈ (0[,]+∞))
7468, 73xrge0addcld 32692 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))) ∈ (0[,]+∞))
7567, 74eqeltrrd 2830 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))) ∈ (0[,]+∞))
7652, 53sselid 3947 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → 𝑒 ∈ ℝ)
7776adantl3r 750 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → 𝑒 ∈ ℝ)
7852, 61sselid 3947 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑦𝑋) → (2↑(𝑓𝑦)) ∈ ℝ)
7978adantlr 715 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (2↑(𝑓𝑦)) ∈ ℝ)
8079adantl3r 750 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (2↑(𝑓𝑦)) ∈ ℝ)
81 simplr 768 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → 𝑒 ∈ ℝ+)
8281rpgt0d 13005 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → 0 < 𝑒)
83 2re 12267 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℝ
8483a1i 11 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → 2 ∈ ℝ)
8560adantllr 719 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑦𝑋) → (𝑓𝑦) ∈ ℤ)
8685adantlr 715 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (𝑓𝑦) ∈ ℤ)
87 2pos 12296 . . . . . . . . . . . . . . . . . . . 20 0 < 2
8887a1i 11 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → 0 < 2)
89 expgt0 14067 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℝ ∧ (𝑓𝑦) ∈ ℤ ∧ 0 < 2) → 0 < (2↑(𝑓𝑦)))
9084, 86, 88, 89syl3anc 1373 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → 0 < (2↑(𝑓𝑦)))
9177, 80, 82, 90divgt0d 12125 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → 0 < (𝑒 / (2↑(𝑓𝑦))))
9265, 51ltaddposd 11769 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (0 < (𝑒 / (2↑(𝑓𝑦))) ↔ (𝑀𝐴) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))
9391, 92mpbid 232 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (𝑀𝐴) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))
9429fveq1i 6862 . . . . . . . . . . . . . . . . . . . 20 (𝑀𝐴) = ((toOMeas‘𝑅)‘𝐴)
9526adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦𝑋) → 𝑄𝑉)
9627adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦𝑋) → 𝑅:𝑄⟶(0[,]+∞))
97 omsfval 34292 . . . . . . . . . . . . . . . . . . . . 21 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) → ((toOMeas‘𝑅)‘𝐴) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < ))
9895, 96, 34, 97syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦𝑋) → ((toOMeas‘𝑅)‘𝐴) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < ))
9994, 98eqtrid 2777 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦𝑋) → (𝑀𝐴) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < ))
1009, 99sylan 580 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (𝑀𝐴) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < ))
101100eqcomd 2736 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < ) = (𝑀𝐴))
102101breq1d 5120 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < ) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))) ↔ (𝑀𝐴) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))
10393, 102mpbird 257 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < ) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))
10475, 103jca 511 . . . . . . . . . . . . . 14 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))) ∈ (0[,]+∞) ∧ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < ) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))
105 iccssxr 13398 . . . . . . . . . . . . . . . . . . 19 (0[,]+∞) ⊆ ℝ*
106 xrltso 13108 . . . . . . . . . . . . . . . . . . 19 < Or ℝ*
107 soss 5569 . . . . . . . . . . . . . . . . . . 19 ((0[,]+∞) ⊆ ℝ* → ( < Or ℝ* → < Or (0[,]+∞)))
108105, 106, 107mp2 9 . . . . . . . . . . . . . . . . . 18 < Or (0[,]+∞)
109 biid 261 . . . . . . . . . . . . . . . . . 18 ( < Or (0[,]+∞) ↔ < Or (0[,]+∞))
110108, 109mpbi 230 . . . . . . . . . . . . . . . . 17 < Or (0[,]+∞)
111110a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝑋) → < Or (0[,]+∞))
112 omscl 34293 . . . . . . . . . . . . . . . . . 18 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 ∈ 𝒫 dom 𝑅) → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ⊆ (0[,]+∞))
11395, 96, 45, 112syl3anc 1373 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦𝑋) → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ⊆ (0[,]+∞))
114 xrge0infss 32690 . . . . . . . . . . . . . . . . 17 (ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ⊆ (0[,]+∞) → ∃𝑣 ∈ (0[,]+∞)(∀ ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ¬ < 𝑣 ∧ ∀ ∈ (0[,]+∞)(𝑣 < → ∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))𝑢 < )))
115113, 114syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝑋) → ∃𝑣 ∈ (0[,]+∞)(∀ ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ¬ < 𝑣 ∧ ∀ ∈ (0[,]+∞)(𝑣 < → ∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))𝑢 < )))
116111, 115infglb 9449 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝑋) → ((((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))) ∈ (0[,]+∞) ∧ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < ) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) → ∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))
117116imp 406 . . . . . . . . . . . . . 14 (((𝜑𝑦𝑋) ∧ (((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))) ∈ (0[,]+∞) ∧ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < ) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → ∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))
11823, 24, 104, 117syl21anc 837 . . . . . . . . . . . . 13 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → ∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))
119 eqid 2730 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) = (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))
120 esumex 34026 . . . . . . . . . . . . . . . . . . 19 Σ*𝑤𝑥(𝑅𝑤) ∈ V
121119, 120elrnmpti 5929 . . . . . . . . . . . . . . . . . 18 (𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ↔ ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}𝑢 = Σ*𝑤𝑥(𝑅𝑤))
122121anbi1i 624 . . . . . . . . . . . . . . . . 17 ((𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ∧ 𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) ↔ (∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))
123 r19.41v 3168 . . . . . . . . . . . . . . . . 17 (∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} (𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) ↔ (∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))
124122, 123bitr4i 278 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ∧ 𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) ↔ ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} (𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))
125124exbii 1848 . . . . . . . . . . . . . . 15 (∃𝑢(𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ∧ 𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) ↔ ∃𝑢𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} (𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))
126 df-rex 3055 . . . . . . . . . . . . . . 15 (∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))) ↔ ∃𝑢(𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ∧ 𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))
127 rexcom4 3265 . . . . . . . . . . . . . . 15 (∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}∃𝑢(𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) ↔ ∃𝑢𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} (𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))
128125, 126, 1273bitr4i 303 . . . . . . . . . . . . . 14 (∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))) ↔ ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}∃𝑢(𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))
129 breq1 5113 . . . . . . . . . . . . . . . . . 18 (𝑢 = Σ*𝑤𝑥(𝑅𝑤) → (𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))) ↔ Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))
130 idd 24 . . . . . . . . . . . . . . . . . 18 (𝑢 = Σ*𝑤𝑥(𝑅𝑤) → (Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))) → Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))
131129, 130sylbid 240 . . . . . . . . . . . . . . . . 17 (𝑢 = Σ*𝑤𝑥(𝑅𝑤) → (𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))) → Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))
132131imp 406 . . . . . . . . . . . . . . . 16 ((𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) → Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))
133132exlimiv 1930 . . . . . . . . . . . . . . 15 (∃𝑢(𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) → Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))
134133reximi 3068 . . . . . . . . . . . . . 14 (∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}∃𝑢(𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))
135128, 134sylbi 217 . . . . . . . . . . . . 13 (∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))) → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))
136118, 135syl 17 . . . . . . . . . . . 12 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))
137 simpr 484 . . . . . . . . . . . . . . . 16 ((𝐴 𝑧𝑧 ≼ ω) → 𝑧 ≼ ω)
138137a1i 11 . . . . . . . . . . . . . . 15 (𝑧 ∈ 𝒫 dom 𝑅 → ((𝐴 𝑧𝑧 ≼ ω) → 𝑧 ≼ ω))
139138ss2rabi 4043 . . . . . . . . . . . . . 14 {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ⊆ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}
140 rexss 4025 . . . . . . . . . . . . . 14 ({𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ⊆ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} → (∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))) ↔ ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ∧ Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))))
141139, 140ax-mp 5 . . . . . . . . . . . . 13 (∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))) ↔ ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ∧ Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))
142 unieq 4885 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = 𝑥 𝑧 = 𝑥)
143142sseq2d 3982 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑥 → (𝐴 𝑧𝐴 𝑥))
144 breq1 5113 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑥 → (𝑧 ≼ ω ↔ 𝑥 ≼ ω))
145143, 144anbi12d 632 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑥 → ((𝐴 𝑧𝑧 ≼ ω) ↔ (𝐴 𝑥𝑥 ≼ ω)))
146145elrab 3662 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↔ (𝑥 ∈ 𝒫 dom 𝑅 ∧ (𝐴 𝑥𝑥 ≼ ω)))
147146simprbi 496 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} → (𝐴 𝑥𝑥 ≼ ω))
148147simpld 494 . . . . . . . . . . . . . . . 16 (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} → 𝐴 𝑥)
149148a1i 11 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} → 𝐴 𝑥))
150149anim1d 611 . . . . . . . . . . . . . 14 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → ((𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ∧ Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) → (𝐴 𝑥 ∧ Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))))
151150reximdv 3149 . . . . . . . . . . . . 13 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ∧ Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} (𝐴 𝑥 ∧ Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))))
152141, 151biimtrid 242 . . . . . . . . . . . 12 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))) → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} (𝐴 𝑥 ∧ Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))))
153136, 152mpd 15 . . . . . . . . . . 11 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} (𝐴 𝑥 ∧ Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))
154153ex 412 . . . . . . . . . 10 ((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → (𝑦𝑋 → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} (𝐴 𝑥 ∧ Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))))
15522, 154ralrimi 3236 . . . . . . . . 9 ((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → ∀𝑦𝑋𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} (𝐴 𝑥 ∧ Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))
156 unieq 4885 . . . . . . . . . . . . 13 (𝑥 = (𝑔𝑦) → 𝑥 = (𝑔𝑦))
157156sseq2d 3982 . . . . . . . . . . . 12 (𝑥 = (𝑔𝑦) → (𝐴 𝑥𝐴 (𝑔𝑦)))
158 esumeq1 34031 . . . . . . . . . . . . 13 (𝑥 = (𝑔𝑦) → Σ*𝑤𝑥(𝑅𝑤) = Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤))
159158breq1d 5120 . . . . . . . . . . . 12 (𝑥 = (𝑔𝑦) → (Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))) ↔ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))
160157, 159anbi12d 632 . . . . . . . . . . 11 (𝑥 = (𝑔𝑦) → ((𝐴 𝑥 ∧ Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) ↔ (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))))
161160ac6sg 10448 . . . . . . . . . 10 (𝑋 ∈ V → (∀𝑦𝑋𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} (𝐴 𝑥 ∧ Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) → ∃𝑔(𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))))
162161imp 406 . . . . . . . . 9 ((𝑋 ∈ V ∧ ∀𝑦𝑋𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} (𝐴 𝑥 ∧ Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → ∃𝑔(𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))))
16312, 155, 162syl2anc 584 . . . . . . . 8 ((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → ∃𝑔(𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))))
1649ad2antrr 726 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → 𝜑)
16538ralrimiva 3126 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑦𝑋 𝐴 dom 𝑅)
166 iunss 5012 . . . . . . . . . . . . . . . . . 18 ( 𝑦𝑋 𝐴 dom 𝑅 ↔ ∀𝑦𝑋 𝐴 dom 𝑅)
167165, 166sylibr 234 . . . . . . . . . . . . . . . . 17 (𝜑 𝑦𝑋 𝐴 dom 𝑅)
16842ralrimiva 3126 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑦𝑋 𝐴 ∈ V)
169 iunexg 7945 . . . . . . . . . . . . . . . . . . 19 ((𝑋 ∈ V ∧ ∀𝑦𝑋 𝐴 ∈ V) → 𝑦𝑋 𝐴 ∈ V)
17011, 168, 169syl2anc 584 . . . . . . . . . . . . . . . . . 18 (𝜑 𝑦𝑋 𝐴 ∈ V)
171 elpwg 4569 . . . . . . . . . . . . . . . . . 18 ( 𝑦𝑋 𝐴 ∈ V → ( 𝑦𝑋 𝐴 ∈ 𝒫 dom 𝑅 𝑦𝑋 𝐴 dom 𝑅))
172170, 171syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → ( 𝑦𝑋 𝐴 ∈ 𝒫 dom 𝑅 𝑦𝑋 𝐴 dom 𝑅))
173167, 172mpbird 257 . . . . . . . . . . . . . . . 16 (𝜑 𝑦𝑋 𝐴 ∈ 𝒫 dom 𝑅)
17432, 173ffvelcdmd 7060 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀 𝑦𝑋 𝐴) ∈ (0[,]+∞))
175105, 174sselid 3947 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 𝑦𝑋 𝐴) ∈ ℝ*)
176164, 175syl 17 . . . . . . . . . . . . 13 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → (𝑀 𝑦𝑋 𝐴) ∈ ℝ*)
177 simplr 768 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω})
17825ad4antr 732 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → 𝑋 ∈ V)
179177, 178fexd 7204 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → 𝑔 ∈ V)
180 rnexg 7881 . . . . . . . . . . . . . . . 16 (𝑔 ∈ V → ran 𝑔 ∈ V)
181 uniexg 7719 . . . . . . . . . . . . . . . 16 (ran 𝑔 ∈ V → ran 𝑔 ∈ V)
182179, 180, 1813syl 18 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → ran 𝑔 ∈ V)
183 simp-5l 784 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → 𝜑)
18427ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑐 ran 𝑔) → 𝑅:𝑄⟶(0[,]+∞))
185 frn 6698 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} → ran 𝑔 ⊆ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω})
186 ssrab2 4046 . . . . . . . . . . . . . . . . . . . . . . . 24 {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} ⊆ 𝒫 dom 𝑅
187185, 186sstrdi 3962 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} → ran 𝑔 ⊆ 𝒫 dom 𝑅)
188187unissd 4884 . . . . . . . . . . . . . . . . . . . . . 22 (𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} → ran 𝑔 𝒫 dom 𝑅)
189 unipw 5413 . . . . . . . . . . . . . . . . . . . . . 22 𝒫 dom 𝑅 = dom 𝑅
190188, 189sseqtrdi 3990 . . . . . . . . . . . . . . . . . . . . 21 (𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} → ran 𝑔 ⊆ dom 𝑅)
191190adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) → ran 𝑔 ⊆ dom 𝑅)
19235adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) → dom 𝑅 = 𝑄)
193191, 192sseqtrd 3986 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) → ran 𝑔𝑄)
194193sselda 3949 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑐 ran 𝑔) → 𝑐𝑄)
195184, 194ffvelcdmd 7060 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑐 ran 𝑔) → (𝑅𝑐) ∈ (0[,]+∞))
196195ralrimiva 3126 . . . . . . . . . . . . . . . 16 ((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) → ∀𝑐 ran 𝑔(𝑅𝑐) ∈ (0[,]+∞))
197183, 177, 196syl2anc 584 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → ∀𝑐 ran 𝑔(𝑅𝑐) ∈ (0[,]+∞))
198 nfcv 2892 . . . . . . . . . . . . . . . 16 𝑐 ran 𝑔
199198esumcl 34027 . . . . . . . . . . . . . . 15 (( ran 𝑔 ∈ V ∧ ∀𝑐 ran 𝑔(𝑅𝑐) ∈ (0[,]+∞)) → Σ*𝑐 ran 𝑔(𝑅𝑐) ∈ (0[,]+∞))
200182, 197, 199syl2anc 584 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → Σ*𝑐 ran 𝑔(𝑅𝑐) ∈ (0[,]+∞))
201105, 200sselid 3947 . . . . . . . . . . . . 13 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → Σ*𝑐 ran 𝑔(𝑅𝑐) ∈ ℝ*)
202 simp-5r 785 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ)
203202rexrd 11231 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ*)
204 simpllr 775 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → 𝑒 ∈ ℝ+)
205204rpxrd 13003 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → 𝑒 ∈ ℝ*)
206203, 205xaddcld 13268 . . . . . . . . . . . . 13 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → (Σ*𝑦𝑋(𝑀𝐴) +𝑒 𝑒) ∈ ℝ*)
207185ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → ran 𝑔 ⊆ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω})
208 sstr 3958 . . . . . . . . . . . . . . . . . . . . . . . 24 ((ran 𝑔 ⊆ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} ∧ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} ⊆ 𝒫 dom 𝑅) → ran 𝑔 ⊆ 𝒫 dom 𝑅)
209186, 208mpan2 691 . . . . . . . . . . . . . . . . . . . . . . 23 (ran 𝑔 ⊆ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} → ran 𝑔 ⊆ 𝒫 dom 𝑅)
210 sspwuni 5067 . . . . . . . . . . . . . . . . . . . . . . 23 (ran 𝑔 ⊆ 𝒫 dom 𝑅 ran 𝑔 ⊆ dom 𝑅)
211209, 210sylib 218 . . . . . . . . . . . . . . . . . . . . . 22 (ran 𝑔 ⊆ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} → ran 𝑔 ⊆ dom 𝑅)
212207, 211syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → ran 𝑔 ⊆ dom 𝑅)
213 ffn 6691 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} → 𝑔 Fn 𝑋)
214213ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → 𝑔 Fn 𝑋)
215164, 1syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → 𝑋 ≼ ω)
216 fnct 10497 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑔 Fn 𝑋𝑋 ≼ ω) → 𝑔 ≼ ω)
217 rnct 10485 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑔 ≼ ω → ran 𝑔 ≼ ω)
218216, 217syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑔 Fn 𝑋𝑋 ≼ ω) → ran 𝑔 ≼ ω)
219 dfss3 3938 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (ran 𝑔 ⊆ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} ↔ ∀𝑤 ∈ ran 𝑔 𝑤 ∈ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω})
220219biimpi 216 . . . . . . . . . . . . . . . . . . . . . . . . 25 (ran 𝑔 ⊆ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} → ∀𝑤 ∈ ran 𝑔 𝑤 ∈ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω})
221 breq1 5113 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 = 𝑤 → (𝑧 ≼ ω ↔ 𝑤 ≼ ω))
222221elrab 3662 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑤 ∈ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} ↔ (𝑤 ∈ 𝒫 dom 𝑅𝑤 ≼ ω))
223222simprbi 496 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑤 ∈ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} → 𝑤 ≼ ω)
224223ralimi 3067 . . . . . . . . . . . . . . . . . . . . . . . . 25 (∀𝑤 ∈ ran 𝑔 𝑤 ∈ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} → ∀𝑤 ∈ ran 𝑔 𝑤 ≼ ω)
225220, 224syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (ran 𝑔 ⊆ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} → ∀𝑤 ∈ ran 𝑔 𝑤 ≼ ω)
226 unictb 10535 . . . . . . . . . . . . . . . . . . . . . . . 24 ((ran 𝑔 ≼ ω ∧ ∀𝑤 ∈ ran 𝑔 𝑤 ≼ ω) → ran 𝑔 ≼ ω)
227218, 225, 226syl2an 596 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑔 Fn 𝑋𝑋 ≼ ω) ∧ ran 𝑔 ⊆ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) → ran 𝑔 ≼ ω)
228214, 215, 207, 227syl21anc 837 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → ran 𝑔 ≼ ω)
229 ctex 8938 . . . . . . . . . . . . . . . . . . . . . 22 ( ran 𝑔 ≼ ω → ran 𝑔 ∈ V)
230 elpwg 4569 . . . . . . . . . . . . . . . . . . . . . 22 ( ran 𝑔 ∈ V → ( ran 𝑔 ∈ 𝒫 dom 𝑅 ran 𝑔 ⊆ dom 𝑅))
231228, 229, 2303syl 18 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → ( ran 𝑔 ∈ 𝒫 dom 𝑅 ran 𝑔 ⊆ dom 𝑅))
232212, 231mpbird 257 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → ran 𝑔 ∈ 𝒫 dom 𝑅)
233 simpl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) → 𝐴 (𝑔𝑦))
234233ralimi 3067 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) → ∀𝑦𝑋 𝐴 (𝑔𝑦))
235 fvssunirn 6894 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑔𝑦) ⊆ ran 𝑔
236235unissi 4883 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑔𝑦) ⊆ ran 𝑔
237 sstr 3958 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 (𝑔𝑦) ∧ (𝑔𝑦) ⊆ ran 𝑔) → 𝐴 ran 𝑔)
238236, 237mpan2 691 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴 (𝑔𝑦) → 𝐴 ran 𝑔)
239238ralimi 3067 . . . . . . . . . . . . . . . . . . . . . . 23 (∀𝑦𝑋 𝐴 (𝑔𝑦) → ∀𝑦𝑋 𝐴 ran 𝑔)
240 iunss 5012 . . . . . . . . . . . . . . . . . . . . . . 23 ( 𝑦𝑋 𝐴 ran 𝑔 ↔ ∀𝑦𝑋 𝐴 ran 𝑔)
241239, 240sylibr 234 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑦𝑋 𝐴 (𝑔𝑦) → 𝑦𝑋 𝐴 ran 𝑔)
242234, 241syl 17 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) → 𝑦𝑋 𝐴 ran 𝑔)
243242adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → 𝑦𝑋 𝐴 ran 𝑔)
244232, 243, 228jca32 515 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → ( ran 𝑔 ∈ 𝒫 dom 𝑅 ∧ ( 𝑦𝑋 𝐴 ran 𝑔 ran 𝑔 ≼ ω)))
245 unieq 4885 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = ran 𝑔 𝑧 = ran 𝑔)
246245sseq2d 3982 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = ran 𝑔 → ( 𝑦𝑋 𝐴 𝑧 𝑦𝑋 𝐴 ran 𝑔))
247 breq1 5113 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = ran 𝑔 → (𝑧 ≼ ω ↔ ran 𝑔 ≼ ω))
248246, 247anbi12d 632 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = ran 𝑔 → (( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω) ↔ ( 𝑦𝑋 𝐴 ran 𝑔 ran 𝑔 ≼ ω)))
249248elrab 3662 . . . . . . . . . . . . . . . . . . 19 ( ran 𝑔 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ↔ ( ran 𝑔 ∈ 𝒫 dom 𝑅 ∧ ( 𝑦𝑋 𝐴 ran 𝑔 ran 𝑔 ≼ ω)))
250244, 249sylibr 234 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → ran 𝑔 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)})
251 fveq2 6861 . . . . . . . . . . . . . . . . . . 19 (𝑐 = 𝑤 → (𝑅𝑐) = (𝑅𝑤))
252251cbvesumv 34040 . . . . . . . . . . . . . . . . . 18 Σ*𝑐 ran 𝑔(𝑅𝑐) = Σ*𝑤 ran 𝑔(𝑅𝑤)
253 esumeq1 34031 . . . . . . . . . . . . . . . . . . 19 (𝑥 = ran 𝑔 → Σ*𝑤𝑥(𝑅𝑤) = Σ*𝑤 ran 𝑔(𝑅𝑤))
254253rspceeqv 3614 . . . . . . . . . . . . . . . . . 18 (( ran 𝑔 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ∧ Σ*𝑐 ran 𝑔(𝑅𝑐) = Σ*𝑤 ran 𝑔(𝑅𝑤)) → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)}Σ*𝑐 ran 𝑔(𝑅𝑐) = Σ*𝑤𝑥(𝑅𝑤))
255250, 252, 254sylancl 586 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)}Σ*𝑐 ran 𝑔(𝑅𝑐) = Σ*𝑤𝑥(𝑅𝑤))
256 esumex 34026 . . . . . . . . . . . . . . . . . 18 Σ*𝑐 ran 𝑔(𝑅𝑐) ∈ V
257 eqid 2730 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) = (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))
258257elrnmpt 5925 . . . . . . . . . . . . . . . . . 18 *𝑐 ran 𝑔(𝑅𝑐) ∈ V → (Σ*𝑐 ran 𝑔(𝑅𝑐) ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ↔ ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)}Σ*𝑐 ran 𝑔(𝑅𝑐) = Σ*𝑤𝑥(𝑅𝑤)))
259256, 258ax-mp 5 . . . . . . . . . . . . . . . . 17 *𝑐 ran 𝑔(𝑅𝑐) ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ↔ ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)}Σ*𝑐 ran 𝑔(𝑅𝑐) = Σ*𝑤𝑥(𝑅𝑤))
260255, 259sylibr 234 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → Σ*𝑐 ran 𝑔(𝑅𝑐) ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)))
261110a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → < Or (0[,]+∞))
262 omscl 34293 . . . . . . . . . . . . . . . . . . . 20 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝑦𝑋 𝐴 ∈ 𝒫 dom 𝑅) → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ⊆ (0[,]+∞))
26326, 27, 173, 262syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ⊆ (0[,]+∞))
264 xrge0infss 32690 . . . . . . . . . . . . . . . . . . 19 (ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ⊆ (0[,]+∞) → ∃𝑒 ∈ (0[,]+∞)(∀𝑡 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ¬ 𝑡 < 𝑒 ∧ ∀𝑡 ∈ (0[,]+∞)(𝑒 < 𝑡 → ∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))𝑢 < 𝑡)))
265263, 264syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∃𝑒 ∈ (0[,]+∞)(∀𝑡 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ¬ 𝑡 < 𝑒 ∧ ∀𝑡 ∈ (0[,]+∞)(𝑒 < 𝑡 → ∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))𝑢 < 𝑡)))
266261, 265inflb 9448 . . . . . . . . . . . . . . . . 17 (𝜑 → (Σ*𝑐 ran 𝑔(𝑅𝑐) ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) → ¬ Σ*𝑐 ran 𝑔(𝑅𝑐) < inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < )))
26729fveq1i 6862 . . . . . . . . . . . . . . . . . . . 20 (𝑀 𝑦𝑋 𝐴) = ((toOMeas‘𝑅)‘ 𝑦𝑋 𝐴)
268167, 36sseqtrd 3986 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 𝑦𝑋 𝐴 𝑄)
269 omsfval 34292 . . . . . . . . . . . . . . . . . . . . 21 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝑦𝑋 𝐴 𝑄) → ((toOMeas‘𝑅)‘ 𝑦𝑋 𝐴) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < ))
27026, 27, 268, 269syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((toOMeas‘𝑅)‘ 𝑦𝑋 𝐴) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < ))
271267, 270eqtrid 2777 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑀 𝑦𝑋 𝐴) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < ))
272271breq2d 5122 . . . . . . . . . . . . . . . . . 18 (𝜑 → (Σ*𝑐 ran 𝑔(𝑅𝑐) < (𝑀 𝑦𝑋 𝐴) ↔ Σ*𝑐 ran 𝑔(𝑅𝑐) < inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < )))
273272notbid 318 . . . . . . . . . . . . . . . . 17 (𝜑 → (¬ Σ*𝑐 ran 𝑔(𝑅𝑐) < (𝑀 𝑦𝑋 𝐴) ↔ ¬ Σ*𝑐 ran 𝑔(𝑅𝑐) < inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < )))
274266, 273sylibrd 259 . . . . . . . . . . . . . . . 16 (𝜑 → (Σ*𝑐 ran 𝑔(𝑅𝑐) ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) → ¬ Σ*𝑐 ran 𝑔(𝑅𝑐) < (𝑀 𝑦𝑋 𝐴)))
275164, 260, 274sylc 65 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → ¬ Σ*𝑐 ran 𝑔(𝑅𝑐) < (𝑀 𝑦𝑋 𝐴))
276 biid 261 . . . . . . . . . . . . . . 15 (¬ Σ*𝑐 ran 𝑔(𝑅𝑐) < (𝑀 𝑦𝑋 𝐴) ↔ ¬ Σ*𝑐 ran 𝑔(𝑅𝑐) < (𝑀 𝑦𝑋 𝐴))
277275, 276sylib 218 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → ¬ Σ*𝑐 ran 𝑔(𝑅𝑐) < (𝑀 𝑦𝑋 𝐴))
278 xrlenlt 11246 . . . . . . . . . . . . . . 15 (((𝑀 𝑦𝑋 𝐴) ∈ ℝ* ∧ Σ*𝑐 ran 𝑔(𝑅𝑐) ∈ ℝ*) → ((𝑀 𝑦𝑋 𝐴) ≤ Σ*𝑐 ran 𝑔(𝑅𝑐) ↔ ¬ Σ*𝑐 ran 𝑔(𝑅𝑐) < (𝑀 𝑦𝑋 𝐴)))
279176, 201, 278syl2anc 584 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → ((𝑀 𝑦𝑋 𝐴) ≤ Σ*𝑐 ran 𝑔(𝑅𝑐) ↔ ¬ Σ*𝑐 ran 𝑔(𝑅𝑐) < (𝑀 𝑦𝑋 𝐴)))
280277, 279mpbird 257 . . . . . . . . . . . . 13 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → (𝑀 𝑦𝑋 𝐴) ≤ Σ*𝑐 ran 𝑔(𝑅𝑐))
281 nfv 1914 . . . . . . . . . . . . . . . . . . 19 𝑦 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}
28222, 281nfan 1899 . . . . . . . . . . . . . . . . . 18 𝑦((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω})
283 nfra1 3262 . . . . . . . . . . . . . . . . . 18 𝑦𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))
284282, 283nfan 1899 . . . . . . . . . . . . . . . . 17 𝑦(((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))
285 simp-6l 786 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) ∧ 𝑦𝑋) → 𝜑)
286 simpllr 775 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) ∧ 𝑦𝑋) → 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω})
287 simpr 484 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) ∧ 𝑦𝑋) → 𝑦𝑋)
28827ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) ∧ 𝑤 ∈ (𝑔𝑦)) → 𝑅:𝑄⟶(0[,]+∞))
289 simpllr 775 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) ∧ 𝑤 ∈ (𝑔𝑦)) → 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω})
290 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) ∧ 𝑤 ∈ (𝑔𝑦)) → 𝑦𝑋)
291289, 290ffvelcdmd 7060 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) ∧ 𝑤 ∈ (𝑔𝑦)) → (𝑔𝑦) ∈ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω})
292186, 291sselid 3947 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) ∧ 𝑤 ∈ (𝑔𝑦)) → (𝑔𝑦) ∈ 𝒫 dom 𝑅)
293292elpwid 4575 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) ∧ 𝑤 ∈ (𝑔𝑦)) → (𝑔𝑦) ⊆ dom 𝑅)
294288, 293fssdmd 6709 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) ∧ 𝑤 ∈ (𝑔𝑦)) → (𝑔𝑦) ⊆ 𝑄)
295 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) ∧ 𝑤 ∈ (𝑔𝑦)) → 𝑤 ∈ (𝑔𝑦))
296294, 295sseldd 3950 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) ∧ 𝑤 ∈ (𝑔𝑦)) → 𝑤𝑄)
297288, 296ffvelcdmd 7060 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) ∧ 𝑤 ∈ (𝑔𝑦)) → (𝑅𝑤) ∈ (0[,]+∞))
298297ralrimiva 3126 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) → ∀𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ∈ (0[,]+∞))
299 fvex 6874 . . . . . . . . . . . . . . . . . . . . 21 (𝑔𝑦) ∈ V
300 nfcv 2892 . . . . . . . . . . . . . . . . . . . . . 22 𝑤(𝑔𝑦)
301300esumcl 34027 . . . . . . . . . . . . . . . . . . . . 21 (((𝑔𝑦) ∈ V ∧ ∀𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ∈ (0[,]+∞)) → Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ∈ (0[,]+∞))
302299, 301mpan 690 . . . . . . . . . . . . . . . . . . . 20 (∀𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ∈ (0[,]+∞) → Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ∈ (0[,]+∞))
303298, 302syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) → Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ∈ (0[,]+∞))
304285, 286, 287, 303syl21anc 837 . . . . . . . . . . . . . . . . . 18 (((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) ∧ 𝑦𝑋) → Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ∈ (0[,]+∞))
305304ex 412 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → (𝑦𝑋 → Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ∈ (0[,]+∞)))
306284, 305ralrimi 3236 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → ∀𝑦𝑋 Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ∈ (0[,]+∞))
30714esumcl 34027 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ V ∧ ∀𝑦𝑋 Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ∈ (0[,]+∞)) → Σ*𝑦𝑋Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ∈ (0[,]+∞))
308178, 306, 307syl2anc 584 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → Σ*𝑦𝑋Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ∈ (0[,]+∞))
309105, 308sselid 3947 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → Σ*𝑦𝑋Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ∈ ℝ*)
310 nfv 1914 . . . . . . . . . . . . . . . . . . 19 𝑤(𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω})
311 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) → 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω})
312 fniunfv 7224 . . . . . . . . . . . . . . . . . . . 20 (𝑔 Fn 𝑋 𝑦𝑋 (𝑔𝑦) = ran 𝑔)
313311, 213, 3123syl 18 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) → 𝑦𝑋 (𝑔𝑦) = ran 𝑔)
314310, 313esumeq1d 34032 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) → Σ*𝑤 𝑦𝑋 (𝑔𝑦)(𝑅𝑤) = Σ*𝑤 ran 𝑔(𝑅𝑤))
31511adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) → 𝑋 ∈ V)
316299a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) → (𝑔𝑦) ∈ V)
317315, 316, 297esumiun 34091 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) → Σ*𝑤 𝑦𝑋 (𝑔𝑦)(𝑅𝑤) ≤ Σ*𝑦𝑋Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤))
318314, 317eqbrtrrd 5134 . . . . . . . . . . . . . . . . 17 ((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) → Σ*𝑤 ran 𝑔(𝑅𝑤) ≤ Σ*𝑦𝑋Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤))
3199, 318sylan 580 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) → Σ*𝑤 ran 𝑔(𝑅𝑤) ≤ Σ*𝑦𝑋Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤))
320319adantr 480 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → Σ*𝑤 ran 𝑔(𝑅𝑤) ≤ Σ*𝑦𝑋Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤))
321252, 320eqbrtrid 5145 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → Σ*𝑐 ran 𝑔(𝑅𝑐) ≤ Σ*𝑦𝑋Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤))
322285, 287, 46syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) ∧ 𝑦𝑋) → (𝑀𝐴) ∈ (0[,]+∞))
323 simplll 774 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) ∧ 𝑦𝑋) → (((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+))
324323, 287, 73syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) ∧ 𝑦𝑋) → (𝑒 / (2↑(𝑓𝑦))) ∈ (0[,]+∞))
325322, 324xrge0addcld 32692 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) ∧ 𝑦𝑋) → ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))) ∈ (0[,]+∞))
326325ex 412 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → (𝑦𝑋 → ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))) ∈ (0[,]+∞)))
327284, 326ralrimi 3236 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → ∀𝑦𝑋 ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))) ∈ (0[,]+∞))
32814esumcl 34027 . . . . . . . . . . . . . . . . 17 ((𝑋 ∈ V ∧ ∀𝑦𝑋 ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))) ∈ (0[,]+∞)) → Σ*𝑦𝑋((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))) ∈ (0[,]+∞))
329178, 327, 328syl2anc 584 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → Σ*𝑦𝑋((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))) ∈ (0[,]+∞))
330105, 329sselid 3947 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → Σ*𝑦𝑋((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))) ∈ ℝ*)
331215, 10syl 17 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → 𝑋 ∈ V)
332 simp-4l 782 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) → (𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ))
333 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) → 𝑦𝑋)
334332, 333, 49syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) → (𝑀𝐴) ∈ ℝ)
335334adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) → (𝑀𝐴) ∈ ℝ)
33665adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) → (𝑒 / (2↑(𝑓𝑦))) ∈ ℝ)
337336adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) → (𝑒 / (2↑(𝑓𝑦))) ∈ ℝ)
338 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . 26 *𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))) → Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))
339338adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) → Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))
34066breq2d 5122 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑀𝐴) ∈ ℝ ∧ (𝑒 / (2↑(𝑓𝑦))) ∈ ℝ) → (Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))) ↔ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))
341340biimpar 477 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑀𝐴) ∈ ℝ ∧ (𝑒 / (2↑(𝑓𝑦))) ∈ ℝ) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) → Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))))
342335, 337, 339, 341syl21anc 837 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) → Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))))
343342ex 412 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) → (Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))) → Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦))))))
344332simpld 494 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) → 𝜑)
345 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) → 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω})
346344, 345, 333, 303syl21anc 837 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) → Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ∈ (0[,]+∞))
347105, 346sselid 3947 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) → Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ∈ ℝ*)
348334rexrd 11231 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) → (𝑀𝐴) ∈ ℝ*)
349336rexrd 11231 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) → (𝑒 / (2↑(𝑓𝑦))) ∈ ℝ*)
350348, 349xaddcld 13268 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) → ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))) ∈ ℝ*)
351 xrltle 13116 . . . . . . . . . . . . . . . . . . . . . . . 24 ((Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ∈ ℝ* ∧ ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))) ∈ ℝ*) → (Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))) → Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ≤ ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦))))))
352347, 350, 351syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) → (Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))) → Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ≤ ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦))))))
353343, 352syld 47 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) → (Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))) → Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ≤ ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦))))))
354353adantld 490 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) → ((𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) → Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ≤ ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦))))))
355354ex 412 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) → (𝑦𝑋 → ((𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) → Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ≤ ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))))))
356282, 355ralrimi 3236 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) → ∀𝑦𝑋 ((𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) → Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ≤ ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦))))))
357 ralim 3070 . . . . . . . . . . . . . . . . . . 19 (∀𝑦𝑋 ((𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) → Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ≤ ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦))))) → (∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) → ∀𝑦𝑋 Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ≤ ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦))))))
358356, 357syl 17 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) → (∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) → ∀𝑦𝑋 Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ≤ ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦))))))
359358imp 406 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → ∀𝑦𝑋 Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ≤ ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))))
360359r19.21bi 3230 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) ∧ 𝑦𝑋) → Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ≤ ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))))
361284, 14, 331, 304, 325, 360esumlef 34059 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → Σ*𝑦𝑋Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ≤ Σ*𝑦𝑋((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))))
362164, 46sylan 580 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) ∧ 𝑦𝑋) → (𝑀𝐴) ∈ (0[,]+∞))
363284, 14, 331, 362, 324esumaddf 34058 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → Σ*𝑦𝑋((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))) = (Σ*𝑦𝑋(𝑀𝐴) +𝑒 Σ*𝑦𝑋(𝑒 / (2↑(𝑓𝑦)))))
364324ex 412 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → (𝑦𝑋 → (𝑒 / (2↑(𝑓𝑦))) ∈ (0[,]+∞)))
365284, 364ralrimi 3236 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → ∀𝑦𝑋 (𝑒 / (2↑(𝑓𝑦))) ∈ (0[,]+∞))
36614esumcl 34027 . . . . . . . . . . . . . . . . . . 19 ((𝑋 ∈ V ∧ ∀𝑦𝑋 (𝑒 / (2↑(𝑓𝑦))) ∈ (0[,]+∞)) → Σ*𝑦𝑋(𝑒 / (2↑(𝑓𝑦))) ∈ (0[,]+∞))
367178, 365, 366syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → Σ*𝑦𝑋(𝑒 / (2↑(𝑓𝑦))) ∈ (0[,]+∞))
368105, 367sselid 3947 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → Σ*𝑦𝑋(𝑒 / (2↑(𝑓𝑦))) ∈ ℝ*)
369 simp-4r 783 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → 𝑓:𝑋1-1→ℕ)
370 vex 3454 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑓 ∈ V
371370rnex 7889 . . . . . . . . . . . . . . . . . . . . . . 23 ran 𝑓 ∈ V
372371a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → ran 𝑓 ∈ V)
37358frnd 6699 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑓:𝑋1-1→ℕ) → ran 𝑓 ⊆ ℕ)
374373adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → ran 𝑓 ⊆ ℕ)
375374sselda 3949 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ran 𝑓) → 𝑧 ∈ ℕ)
37654a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑧 ∈ ℕ) → 2 ∈ ℝ+)
377 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑧 ∈ ℕ) → 𝑧 ∈ ℕ)
378377nnzd 12563 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑧 ∈ ℕ) → 𝑧 ∈ ℤ)
379376, 378rpexpcld 14219 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑧 ∈ ℕ) → (2↑𝑧) ∈ ℝ+)
380379rpreccld 13012 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑧 ∈ ℕ) → (1 / (2↑𝑧)) ∈ ℝ+)
38171, 380sselid 3947 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑧 ∈ ℕ) → (1 / (2↑𝑧)) ∈ (0[,]+∞))
382381adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℕ) → (1 / (2↑𝑧)) ∈ (0[,]+∞))
383375, 382syldan 591 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ran 𝑓) → (1 / (2↑𝑧)) ∈ (0[,]+∞))
384383ralrimiva 3126 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → ∀𝑧 ∈ ran 𝑓(1 / (2↑𝑧)) ∈ (0[,]+∞))
385 nfcv 2892 . . . . . . . . . . . . . . . . . . . . . . 23 𝑧ran 𝑓
386385esumcl 34027 . . . . . . . . . . . . . . . . . . . . . 22 ((ran 𝑓 ∈ V ∧ ∀𝑧 ∈ ran 𝑓(1 / (2↑𝑧)) ∈ (0[,]+∞)) → Σ*𝑧 ∈ ran 𝑓(1 / (2↑𝑧)) ∈ (0[,]+∞))
387372, 384, 386syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → Σ*𝑧 ∈ ran 𝑓(1 / (2↑𝑧)) ∈ (0[,]+∞))
388105, 387sselid 3947 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → Σ*𝑧 ∈ ran 𝑓(1 / (2↑𝑧)) ∈ ℝ*)
389 1xr 11240 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℝ*
390389a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → 1 ∈ ℝ*)
39171sseli 3945 . . . . . . . . . . . . . . . . . . . . . 22 (𝑒 ∈ ℝ+𝑒 ∈ (0[,]+∞))
392391adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → 𝑒 ∈ (0[,]+∞))
393 elxrge0 13425 . . . . . . . . . . . . . . . . . . . . 21 (𝑒 ∈ (0[,]+∞) ↔ (𝑒 ∈ ℝ* ∧ 0 ≤ 𝑒))
394392, 393sylib 218 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → (𝑒 ∈ ℝ* ∧ 0 ≤ 𝑒))
395 nfv 1914 . . . . . . . . . . . . . . . . . . . . . . 23 𝑧(𝜑𝑓:𝑋1-1→ℕ)
396 nnex 12199 . . . . . . . . . . . . . . . . . . . . . . . 24 ℕ ∈ V
397396a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑓:𝑋1-1→ℕ) → ℕ ∈ V)
398395, 397, 381, 373esummono 34051 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑓:𝑋1-1→ℕ) → Σ*𝑧 ∈ ran 𝑓(1 / (2↑𝑧)) ≤ Σ*𝑧 ∈ ℕ(1 / (2↑𝑧)))
399 oveq2 7398 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 = 𝑤 → (2↑𝑧) = (2↑𝑤))
400399oveq2d 7406 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 = 𝑤 → (1 / (2↑𝑧)) = (1 / (2↑𝑤)))
401 ioossico 13406 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (0(,)+∞) ⊆ (0[,)+∞)
40269, 401eqsstri 3996 . . . . . . . . . . . . . . . . . . . . . . . . 25 + ⊆ (0[,)+∞)
403402, 380sselid 3947 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑧 ∈ ℕ) → (1 / (2↑𝑧)) ∈ (0[,)+∞))
404 eqidd 2731 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 ∈ ℕ → (𝑤 ∈ ℕ ↦ (1 / (2↑𝑤))) = (𝑤 ∈ ℕ ↦ (1 / (2↑𝑤))))
405 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑧 ∈ ℕ ∧ 𝑤 = 𝑧) → 𝑤 = 𝑧)
406405oveq2d 7406 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑧 ∈ ℕ ∧ 𝑤 = 𝑧) → (2↑𝑤) = (2↑𝑧))
407406oveq2d 7406 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑧 ∈ ℕ ∧ 𝑤 = 𝑧) → (1 / (2↑𝑤)) = (1 / (2↑𝑧)))
408 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 ∈ ℕ → 𝑧 ∈ ℕ)
409 ovexd 7425 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 ∈ ℕ → (1 / (2↑𝑧)) ∈ V)
410404, 407, 408, 409fvmptd 6978 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 ∈ ℕ → ((𝑤 ∈ ℕ ↦ (1 / (2↑𝑤)))‘𝑧) = (1 / (2↑𝑧)))
411410adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑧 ∈ ℕ) → ((𝑤 ∈ ℕ ↦ (1 / (2↑𝑤)))‘𝑧) = (1 / (2↑𝑧)))
412 ax-1cn 11133 . . . . . . . . . . . . . . . . . . . . . . . . . 26 1 ∈ ℂ
413 eqid 2730 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑤 ∈ ℕ ↦ (1 / (2↑𝑤))) = (𝑤 ∈ ℕ ↦ (1 / (2↑𝑤)))
414413geo2lim 15848 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (1 ∈ ℂ → seq1( + , (𝑤 ∈ ℕ ↦ (1 / (2↑𝑤)))) ⇝ 1)
415412, 414ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . 25 seq1( + , (𝑤 ∈ ℕ ↦ (1 / (2↑𝑤)))) ⇝ 1
416415a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑓:𝑋1-1→ℕ) → seq1( + , (𝑤 ∈ ℕ ↦ (1 / (2↑𝑤)))) ⇝ 1)
417 1re 11181 . . . . . . . . . . . . . . . . . . . . . . . . 25 1 ∈ ℝ
418417a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑓:𝑋1-1→ℕ) → 1 ∈ ℝ)
419400, 403, 411, 416, 418esumcvgsum 34085 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑓:𝑋1-1→ℕ) → Σ*𝑧 ∈ ℕ(1 / (2↑𝑧)) = Σ𝑧 ∈ ℕ (1 / (2↑𝑧)))
420 geoihalfsum 15855 . . . . . . . . . . . . . . . . . . . . . . 23 Σ𝑧 ∈ ℕ (1 / (2↑𝑧)) = 1
421419, 420eqtrdi 2781 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑓:𝑋1-1→ℕ) → Σ*𝑧 ∈ ℕ(1 / (2↑𝑧)) = 1)
422398, 421breqtrd 5136 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑓:𝑋1-1→ℕ) → Σ*𝑧 ∈ ran 𝑓(1 / (2↑𝑧)) ≤ 1)
423422adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → Σ*𝑧 ∈ ran 𝑓(1 / (2↑𝑧)) ≤ 1)
424 xlemul2a 13256 . . . . . . . . . . . . . . . . . . . 20 (((Σ*𝑧 ∈ ran 𝑓(1 / (2↑𝑧)) ∈ ℝ* ∧ 1 ∈ ℝ* ∧ (𝑒 ∈ ℝ* ∧ 0 ≤ 𝑒)) ∧ Σ*𝑧 ∈ ran 𝑓(1 / (2↑𝑧)) ≤ 1) → (𝑒 ·e Σ*𝑧 ∈ ran 𝑓(1 / (2↑𝑧))) ≤ (𝑒 ·e 1))
425388, 390, 394, 423, 424syl31anc 1375 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → (𝑒 ·e Σ*𝑧 ∈ ran 𝑓(1 / (2↑𝑧))) ≤ (𝑒 ·e 1))
42613, 19nfan 1899 . . . . . . . . . . . . . . . . . . . . . 22 𝑦(𝜑𝑓:𝑋1-1→ℕ)
427426, 21nfan 1899 . . . . . . . . . . . . . . . . . . . . 21 𝑦((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+)
42876recnd 11209 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → 𝑒 ∈ ℂ)
42978recnd 11209 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑦𝑋) → (2↑(𝑓𝑦)) ∈ ℂ)
430429adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (2↑(𝑓𝑦)) ∈ ℂ)
431 2cn 12268 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2 ∈ ℂ
432431a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑦𝑋) → 2 ∈ ℂ)
433 2ne0 12297 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2 ≠ 0
434433a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑦𝑋) → 2 ≠ 0)
435432, 434, 60expne0d 14124 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑦𝑋) → (2↑(𝑓𝑦)) ≠ 0)
436435adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (2↑(𝑓𝑦)) ≠ 0)
437428, 430, 436divrecd 11968 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (𝑒 / (2↑(𝑓𝑦))) = (𝑒 · (1 / (2↑(𝑓𝑦)))))
438 1rp 12962 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1 ∈ ℝ+
439438a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑦𝑋) → 1 ∈ ℝ+)
440439, 61rpdivcld 13019 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑦𝑋) → (1 / (2↑(𝑓𝑦))) ∈ ℝ+)
44152, 440sselid 3947 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑦𝑋) → (1 / (2↑(𝑓𝑦))) ∈ ℝ)
442441adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (1 / (2↑(𝑓𝑦))) ∈ ℝ)
443 rexmul 13238 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑒 ∈ ℝ ∧ (1 / (2↑(𝑓𝑦))) ∈ ℝ) → (𝑒 ·e (1 / (2↑(𝑓𝑦)))) = (𝑒 · (1 / (2↑(𝑓𝑦)))))
44476, 442, 443syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (𝑒 ·e (1 / (2↑(𝑓𝑦)))) = (𝑒 · (1 / (2↑(𝑓𝑦)))))
445437, 444eqtr4d 2768 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (𝑒 / (2↑(𝑓𝑦))) = (𝑒 ·e (1 / (2↑(𝑓𝑦)))))
446445ralrimiva 3126 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → ∀𝑦𝑋 (𝑒 / (2↑(𝑓𝑦))) = (𝑒 ·e (1 / (2↑(𝑓𝑦)))))
447427, 446esumeq2d 34034 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → Σ*𝑦𝑋(𝑒 / (2↑(𝑓𝑦))) = Σ*𝑦𝑋(𝑒 ·e (1 / (2↑(𝑓𝑦)))))
44811ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → 𝑋 ∈ V)
44971, 440sselid 3947 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑦𝑋) → (1 / (2↑(𝑓𝑦))) ∈ (0[,]+∞))
450449adantlr 715 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (1 / (2↑(𝑓𝑦))) ∈ (0[,]+∞))
451402a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑓:𝑋1-1→ℕ) → ℝ+ ⊆ (0[,)+∞))
452451sselda 3949 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → 𝑒 ∈ (0[,)+∞))
453448, 450, 452esummulc2 34079 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → (𝑒 ·e Σ*𝑦𝑋(1 / (2↑(𝑓𝑦)))) = Σ*𝑦𝑋(𝑒 ·e (1 / (2↑(𝑓𝑦)))))
454 nfcv 2892 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑦(1 / (2↑𝑧))
455 oveq2 7398 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 = (𝑓𝑦) → (2↑𝑧) = (2↑(𝑓𝑦)))
456455oveq2d 7406 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 = (𝑓𝑦) → (1 / (2↑𝑧)) = (1 / (2↑(𝑓𝑦))))
45711adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑓:𝑋1-1→ℕ) → 𝑋 ∈ V)
45856simprbi 496 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓:𝑋1-1→ℕ → Fun 𝑓)
45957feqmptd 6932 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑓:𝑋1-1→ℕ → 𝑓 = (𝑦𝑋 ↦ (𝑓𝑦)))
460459cnveqd 5842 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓:𝑋1-1→ℕ → 𝑓 = (𝑦𝑋 ↦ (𝑓𝑦)))
461460funeqd 6541 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓:𝑋1-1→ℕ → (Fun 𝑓 ↔ Fun (𝑦𝑋 ↦ (𝑓𝑦))))
462458, 461mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓:𝑋1-1→ℕ → Fun (𝑦𝑋 ↦ (𝑓𝑦)))
463462adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑓:𝑋1-1→ℕ) → Fun (𝑦𝑋 ↦ (𝑓𝑦)))
464454, 426, 14, 456, 457, 463, 449, 59esumc 34048 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑓:𝑋1-1→ℕ) → Σ*𝑦𝑋(1 / (2↑(𝑓𝑦))) = Σ*𝑧 ∈ {𝑥 ∣ ∃𝑦𝑋 𝑥 = (𝑓𝑦)} (1 / (2↑𝑧)))
465 ffn 6691 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓:𝑋⟶ℕ → 𝑓 Fn 𝑋)
466 fnrnfv 6923 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 Fn 𝑋 → ran 𝑓 = {𝑥 ∣ ∃𝑦𝑋 𝑥 = (𝑓𝑦)})
46758, 465, 4663syl 18 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑓:𝑋1-1→ℕ) → ran 𝑓 = {𝑥 ∣ ∃𝑦𝑋 𝑥 = (𝑓𝑦)})
468395, 467esumeq1d 34032 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑓:𝑋1-1→ℕ) → Σ*𝑧 ∈ ran 𝑓(1 / (2↑𝑧)) = Σ*𝑧 ∈ {𝑥 ∣ ∃𝑦𝑋 𝑥 = (𝑓𝑦)} (1 / (2↑𝑧)))
469464, 468eqtr4d 2768 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑓:𝑋1-1→ℕ) → Σ*𝑦𝑋(1 / (2↑(𝑓𝑦))) = Σ*𝑧 ∈ ran 𝑓(1 / (2↑𝑧)))
470469adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → Σ*𝑦𝑋(1 / (2↑(𝑓𝑦))) = Σ*𝑧 ∈ ran 𝑓(1 / (2↑𝑧)))
471470oveq2d 7406 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → (𝑒 ·e Σ*𝑦𝑋(1 / (2↑(𝑓𝑦)))) = (𝑒 ·e Σ*𝑧 ∈ ran 𝑓(1 / (2↑𝑧))))
472447, 453, 4713eqtr2rd 2772 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → (𝑒 ·e Σ*𝑧 ∈ ran 𝑓(1 / (2↑𝑧))) = Σ*𝑦𝑋(𝑒 / (2↑(𝑓𝑦))))
473394simpld 494 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ*)
474 xmulrid 13246 . . . . . . . . . . . . . . . . . . . 20 (𝑒 ∈ ℝ* → (𝑒 ·e 1) = 𝑒)
475473, 474syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → (𝑒 ·e 1) = 𝑒)
476425, 472, 4753brtr3d 5141 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → Σ*𝑦𝑋(𝑒 / (2↑(𝑓𝑦))) ≤ 𝑒)
477164, 369, 204, 476syl21anc 837 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → Σ*𝑦𝑋(𝑒 / (2↑(𝑓𝑦))) ≤ 𝑒)
478 xleadd2a 13221 . . . . . . . . . . . . . . . . 17 (((Σ*𝑦𝑋(𝑒 / (2↑(𝑓𝑦))) ∈ ℝ*𝑒 ∈ ℝ* ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ*) ∧ Σ*𝑦𝑋(𝑒 / (2↑(𝑓𝑦))) ≤ 𝑒) → (Σ*𝑦𝑋(𝑀𝐴) +𝑒 Σ*𝑦𝑋(𝑒 / (2↑(𝑓𝑦)))) ≤ (Σ*𝑦𝑋(𝑀𝐴) +𝑒 𝑒))
479368, 205, 203, 477, 478syl31anc 1375 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → (Σ*𝑦𝑋(𝑀𝐴) +𝑒 Σ*𝑦𝑋(𝑒 / (2↑(𝑓𝑦)))) ≤ (Σ*𝑦𝑋(𝑀𝐴) +𝑒 𝑒))
480363, 479eqbrtrd 5132 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → Σ*𝑦𝑋((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))) ≤ (Σ*𝑦𝑋(𝑀𝐴) +𝑒 𝑒))
481309, 330, 206, 361, 480xrletrd 13129 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → Σ*𝑦𝑋Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ≤ (Σ*𝑦𝑋(𝑀𝐴) +𝑒 𝑒))
482201, 309, 206, 321, 481xrletrd 13129 . . . . . . . . . . . . 13 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → Σ*𝑐 ran 𝑔(𝑅𝑐) ≤ (Σ*𝑦𝑋(𝑀𝐴) +𝑒 𝑒))
483176, 201, 206, 280, 482xrletrd 13129 . . . . . . . . . . . 12 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → (𝑀 𝑦𝑋 𝐴) ≤ (Σ*𝑦𝑋(𝑀𝐴) +𝑒 𝑒))
484204rpred 13002 . . . . . . . . . . . . 13 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → 𝑒 ∈ ℝ)
485 rexadd 13199 . . . . . . . . . . . . 13 ((Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ ∧ 𝑒 ∈ ℝ) → (Σ*𝑦𝑋(𝑀𝐴) +𝑒 𝑒) = (Σ*𝑦𝑋(𝑀𝐴) + 𝑒))
486202, 484, 485syl2anc 584 . . . . . . . . . . . 12 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → (Σ*𝑦𝑋(𝑀𝐴) +𝑒 𝑒) = (Σ*𝑦𝑋(𝑀𝐴) + 𝑒))
487483, 486breqtrd 5136 . . . . . . . . . . 11 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → (𝑀 𝑦𝑋 𝐴) ≤ (Σ*𝑦𝑋(𝑀𝐴) + 𝑒))
488487anasss 466 . . . . . . . . . 10 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))) → (𝑀 𝑦𝑋 𝐴) ≤ (Σ*𝑦𝑋(𝑀𝐴) + 𝑒))
489488ex 412 . . . . . . . . 9 ((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → ((𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → (𝑀 𝑦𝑋 𝐴) ≤ (Σ*𝑦𝑋(𝑀𝐴) + 𝑒)))
490489exlimdv 1933 . . . . . . . 8 ((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → (∃𝑔(𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → (𝑀 𝑦𝑋 𝐴) ≤ (Σ*𝑦𝑋(𝑀𝐴) + 𝑒)))
491163, 490mpd 15 . . . . . . 7 ((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → (𝑀 𝑦𝑋 𝐴) ≤ (Σ*𝑦𝑋(𝑀𝐴) + 𝑒))
492491ralrimiva 3126 . . . . . 6 (((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) → ∀𝑒 ∈ ℝ+ (𝑀 𝑦𝑋 𝐴) ≤ (Σ*𝑦𝑋(𝑀𝐴) + 𝑒))
493 xralrple 13172 . . . . . . . 8 (((𝑀 𝑦𝑋 𝐴) ∈ ℝ* ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) → ((𝑀 𝑦𝑋 𝐴) ≤ Σ*𝑦𝑋(𝑀𝐴) ↔ ∀𝑒 ∈ ℝ+ (𝑀 𝑦𝑋 𝐴) ≤ (Σ*𝑦𝑋(𝑀𝐴) + 𝑒)))
494175, 493sylan 580 . . . . . . 7 ((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) → ((𝑀 𝑦𝑋 𝐴) ≤ Σ*𝑦𝑋(𝑀𝐴) ↔ ∀𝑒 ∈ ℝ+ (𝑀 𝑦𝑋 𝐴) ≤ (Σ*𝑦𝑋(𝑀𝐴) + 𝑒)))
495494adantr 480 . . . . . 6 (((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) → ((𝑀 𝑦𝑋 𝐴) ≤ Σ*𝑦𝑋(𝑀𝐴) ↔ ∀𝑒 ∈ ℝ+ (𝑀 𝑦𝑋 𝐴) ≤ (Σ*𝑦𝑋(𝑀𝐴) + 𝑒)))
496492, 495mpbird 257 . . . . 5 (((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) → (𝑀 𝑦𝑋 𝐴) ≤ Σ*𝑦𝑋(𝑀𝐴))
497496ex 412 . . . 4 ((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) → (𝑓:𝑋1-1→ℕ → (𝑀 𝑦𝑋 𝐴) ≤ Σ*𝑦𝑋(𝑀𝐴)))
498497exlimdv 1933 . . 3 ((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) → (∃𝑓 𝑓:𝑋1-1→ℕ → (𝑀 𝑦𝑋 𝐴) ≤ Σ*𝑦𝑋(𝑀𝐴)))
4998, 498mpd 15 . 2 ((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) → (𝑀 𝑦𝑋 𝐴) ≤ Σ*𝑦𝑋(𝑀𝐴))
500175adantr 480 . . . 4 ((𝜑 ∧ ¬ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) → (𝑀 𝑦𝑋 𝐴) ∈ ℝ*)
501 pnfge 13097 . . . 4 ((𝑀 𝑦𝑋 𝐴) ∈ ℝ* → (𝑀 𝑦𝑋 𝐴) ≤ +∞)
502500, 501syl 17 . . 3 ((𝜑 ∧ ¬ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) → (𝑀 𝑦𝑋 𝐴) ≤ +∞)
50346ralrimiva 3126 . . . . 5 (𝜑 → ∀𝑦𝑋 (𝑀𝐴) ∈ (0[,]+∞))
50414esumcl 34027 . . . . 5 ((𝑋 ∈ V ∧ ∀𝑦𝑋 (𝑀𝐴) ∈ (0[,]+∞)) → Σ*𝑦𝑋(𝑀𝐴) ∈ (0[,]+∞))
50511, 503, 504syl2anc 584 . . . 4 (𝜑 → Σ*𝑦𝑋(𝑀𝐴) ∈ (0[,]+∞))
506 xrge0nre 13421 . . . 4 ((Σ*𝑦𝑋(𝑀𝐴) ∈ (0[,]+∞) ∧ ¬ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) → Σ*𝑦𝑋(𝑀𝐴) = +∞)
507505, 506sylan 580 . . 3 ((𝜑 ∧ ¬ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) → Σ*𝑦𝑋(𝑀𝐴) = +∞)
508502, 507breqtrrd 5138 . 2 ((𝜑 ∧ ¬ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) → (𝑀 𝑦𝑋 𝐴) ≤ Σ*𝑦𝑋(𝑀𝐴))
509499, 508pm2.61dan 812 1 (𝜑 → (𝑀 𝑦𝑋 𝐴) ≤ Σ*𝑦𝑋(𝑀𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  {cab 2708  wne 2926  wral 3045  wrex 3054  {crab 3408  Vcvv 3450  wss 3917  𝒫 cpw 4566   cuni 4874   ciun 4958   class class class wbr 5110  cmpt 5191   Or wor 5548  ccnv 5640  dom cdm 5641  ran crn 5642  Fun wfun 6508   Fn wfn 6509  wf 6510  1-1wf1 6511  cfv 6514  (class class class)co 7390  ωcom 7845  cen 8918  cdom 8919  infcinf 9399  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  +∞cpnf 11212  *cxr 11214   < clt 11215  cle 11216   / cdiv 11842  cn 12193  2c2 12248  cz 12536  +crp 12958   +𝑒 cxad 13077   ·e cxmu 13078  (,)cioo 13313  [,)cico 13315  [,]cicc 13316  seqcseq 13973  cexp 14033  cli 15457  Σcsu 15659  Σ*cesum 34024  toOMeascoms 34289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-reg 9552  ax-inf2 9601  ax-cc 10395  ax-ac2 10423  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-r1 9724  df-rank 9725  df-card 9899  df-acn 9902  df-ac 10076  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-xnn0 12523  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-pi 16045  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-ordt 17471  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-ps 18532  df-tsr 18533  df-plusf 18573  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-subrng 20462  df-subrg 20486  df-abv 20725  df-lmod 20775  df-scaf 20776  df-sra 21087  df-rgmod 21088  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-tmd 23966  df-tgp 23967  df-tsms 24021  df-trg 24054  df-xms 24215  df-ms 24216  df-tms 24217  df-nm 24477  df-ngp 24478  df-nrg 24480  df-nlm 24481  df-ii 24777  df-cncf 24778  df-limc 25774  df-dv 25775  df-log 26472  df-esum 34025  df-oms 34290
This theorem is referenced by:  omsmeas  34321
  Copyright terms: Public domain W3C validator