Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omssubadd Structured version   Visualization version   GIF version

Theorem omssubadd 34291
Description: A constructed outer measure is countably sub-additive. Lemma 1.5.4 of [Bogachev] p. 17. (Contributed by Thierry Arnoux, 21-Sep-2019.) (Revised by AV, 4-Oct-2020.)
Hypotheses
Ref Expression
oms.m 𝑀 = (toOMeas‘𝑅)
oms.o (𝜑𝑄𝑉)
oms.r (𝜑𝑅:𝑄⟶(0[,]+∞))
omssubadd.a ((𝜑𝑦𝑋) → 𝐴 𝑄)
omssubadd.b (𝜑𝑋 ≼ ω)
Assertion
Ref Expression
omssubadd (𝜑 → (𝑀 𝑦𝑋 𝐴) ≤ Σ*𝑦𝑋(𝑀𝐴))
Distinct variable groups:   𝑦,𝑄   𝑦,𝑅   𝑦,𝑉   𝜑,𝑦   𝑦,𝑋
Allowed substitution hints:   𝐴(𝑦)   𝑀(𝑦)

Proof of Theorem omssubadd
Dummy variables 𝑥 𝑧 𝑒 𝑡 𝑢 𝑤 𝑓 𝑔 𝑣 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omssubadd.b . . . . . 6 (𝜑𝑋 ≼ ω)
2 nnenom 13945 . . . . . . 7 ℕ ≈ ω
32ensymi 8975 . . . . . 6 ω ≈ ℕ
4 domentr 8984 . . . . . 6 ((𝑋 ≼ ω ∧ ω ≈ ℕ) → 𝑋 ≼ ℕ)
51, 3, 4sylancl 586 . . . . 5 (𝜑𝑋 ≼ ℕ)
6 brdomi 8931 . . . . 5 (𝑋 ≼ ℕ → ∃𝑓 𝑓:𝑋1-1→ℕ)
75, 6syl 17 . . . 4 (𝜑 → ∃𝑓 𝑓:𝑋1-1→ℕ)
87adantr 480 . . 3 ((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) → ∃𝑓 𝑓:𝑋1-1→ℕ)
9 simplll 774 . . . . . . . . . 10 ((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → 𝜑)
10 ctex 8935 . . . . . . . . . . 11 (𝑋 ≼ ω → 𝑋 ∈ V)
111, 10syl 17 . . . . . . . . . 10 (𝜑𝑋 ∈ V)
129, 11syl 17 . . . . . . . . 9 ((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → 𝑋 ∈ V)
13 nfv 1914 . . . . . . . . . . . . 13 𝑦𝜑
14 nfcv 2891 . . . . . . . . . . . . . . 15 𝑦𝑋
1514nfesum1 34030 . . . . . . . . . . . . . 14 𝑦Σ*𝑦𝑋(𝑀𝐴)
16 nfcv 2891 . . . . . . . . . . . . . 14 𝑦
1715, 16nfel 2906 . . . . . . . . . . . . 13 𝑦Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ
1813, 17nfan 1899 . . . . . . . . . . . 12 𝑦(𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ)
19 nfv 1914 . . . . . . . . . . . 12 𝑦 𝑓:𝑋1-1→ℕ
2018, 19nfan 1899 . . . . . . . . . . 11 𝑦((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ)
21 nfv 1914 . . . . . . . . . . 11 𝑦 𝑒 ∈ ℝ+
2220, 21nfan 1899 . . . . . . . . . 10 𝑦(((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+)
239adantr 480 . . . . . . . . . . . . . 14 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → 𝜑)
24 simpr 484 . . . . . . . . . . . . . 14 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → 𝑦𝑋)
2511adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) → 𝑋 ∈ V)
26 oms.o . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑄𝑉)
27 oms.r . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑅:𝑄⟶(0[,]+∞))
28 omsf 34287 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞)) → (toOMeas‘𝑅):𝒫 dom 𝑅⟶(0[,]+∞))
29 oms.m . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑀 = (toOMeas‘𝑅)
3029feq1i 6679 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑀:𝒫 dom 𝑅⟶(0[,]+∞) ↔ (toOMeas‘𝑅):𝒫 dom 𝑅⟶(0[,]+∞))
3128, 30sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞)) → 𝑀:𝒫 dom 𝑅⟶(0[,]+∞))
3226, 27, 31syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑀:𝒫 dom 𝑅⟶(0[,]+∞))
3332adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦𝑋) → 𝑀:𝒫 dom 𝑅⟶(0[,]+∞))
34 omssubadd.a . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑦𝑋) → 𝐴 𝑄)
3527fdmd 6698 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → dom 𝑅 = 𝑄)
3635unieqd 4884 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 dom 𝑅 = 𝑄)
3736adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑦𝑋) → dom 𝑅 = 𝑄)
3834, 37sseqtrrd 3984 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑦𝑋) → 𝐴 dom 𝑅)
3926uniexd 7718 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 𝑄 ∈ V)
4039adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑦𝑋) → 𝑄 ∈ V)
41 ssexg 5278 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 𝑄 𝑄 ∈ V) → 𝐴 ∈ V)
4234, 40, 41syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑦𝑋) → 𝐴 ∈ V)
43 elpwg 4566 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴 ∈ V → (𝐴 ∈ 𝒫 dom 𝑅𝐴 dom 𝑅))
4442, 43syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑦𝑋) → (𝐴 ∈ 𝒫 dom 𝑅𝐴 dom 𝑅))
4538, 44mpbird 257 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦𝑋) → 𝐴 ∈ 𝒫 dom 𝑅)
4633, 45ffvelcdmd 7057 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦𝑋) → (𝑀𝐴) ∈ (0[,]+∞))
4746adantlr 715 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑦𝑋) → (𝑀𝐴) ∈ (0[,]+∞))
48 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) → Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ)
4918, 25, 47, 48esumcvgre 34081 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑦𝑋) → (𝑀𝐴) ∈ ℝ)
5049adantlr 715 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑦𝑋) → (𝑀𝐴) ∈ ℝ)
5150adantlr 715 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (𝑀𝐴) ∈ ℝ)
52 rpssre 12959 . . . . . . . . . . . . . . . . . . 19 + ⊆ ℝ
53 simplr 768 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → 𝑒 ∈ ℝ+)
54 2rp 12956 . . . . . . . . . . . . . . . . . . . . . . 23 2 ∈ ℝ+
5554a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑦𝑋) → 2 ∈ ℝ+)
56 df-f1 6516 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓:𝑋1-1→ℕ ↔ (𝑓:𝑋⟶ℕ ∧ Fun 𝑓))
5756simplbi 497 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓:𝑋1-1→ℕ → 𝑓:𝑋⟶ℕ)
5857adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑓:𝑋1-1→ℕ) → 𝑓:𝑋⟶ℕ)
5958ffvelcdmda 7056 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑦𝑋) → (𝑓𝑦) ∈ ℕ)
6059nnzd 12556 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑦𝑋) → (𝑓𝑦) ∈ ℤ)
6155, 60rpexpcld 14212 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑦𝑋) → (2↑(𝑓𝑦)) ∈ ℝ+)
6261adantlr 715 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (2↑(𝑓𝑦)) ∈ ℝ+)
6353, 62rpdivcld 13012 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (𝑒 / (2↑(𝑓𝑦))) ∈ ℝ+)
6452, 63sselid 3944 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (𝑒 / (2↑(𝑓𝑦))) ∈ ℝ)
6564adantl3r 750 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (𝑒 / (2↑(𝑓𝑦))) ∈ ℝ)
66 rexadd 13192 . . . . . . . . . . . . . . . . 17 (((𝑀𝐴) ∈ ℝ ∧ (𝑒 / (2↑(𝑓𝑦))) ∈ ℝ) → ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))) = ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))
6751, 65, 66syl2anc 584 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))) = ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))
689, 46sylan 580 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (𝑀𝐴) ∈ (0[,]+∞))
69 dfrp2 13355 . . . . . . . . . . . . . . . . . . . 20 + = (0(,)+∞)
70 ioossicc 13394 . . . . . . . . . . . . . . . . . . . 20 (0(,)+∞) ⊆ (0[,]+∞)
7169, 70eqsstri 3993 . . . . . . . . . . . . . . . . . . 19 + ⊆ (0[,]+∞)
7271, 63sselid 3944 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (𝑒 / (2↑(𝑓𝑦))) ∈ (0[,]+∞))
7372adantl3r 750 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (𝑒 / (2↑(𝑓𝑦))) ∈ (0[,]+∞))
7468, 73xrge0addcld 32685 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))) ∈ (0[,]+∞))
7567, 74eqeltrrd 2829 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))) ∈ (0[,]+∞))
7652, 53sselid 3944 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → 𝑒 ∈ ℝ)
7776adantl3r 750 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → 𝑒 ∈ ℝ)
7852, 61sselid 3944 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑦𝑋) → (2↑(𝑓𝑦)) ∈ ℝ)
7978adantlr 715 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (2↑(𝑓𝑦)) ∈ ℝ)
8079adantl3r 750 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (2↑(𝑓𝑦)) ∈ ℝ)
81 simplr 768 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → 𝑒 ∈ ℝ+)
8281rpgt0d 12998 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → 0 < 𝑒)
83 2re 12260 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℝ
8483a1i 11 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → 2 ∈ ℝ)
8560adantllr 719 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑦𝑋) → (𝑓𝑦) ∈ ℤ)
8685adantlr 715 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (𝑓𝑦) ∈ ℤ)
87 2pos 12289 . . . . . . . . . . . . . . . . . . . 20 0 < 2
8887a1i 11 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → 0 < 2)
89 expgt0 14060 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℝ ∧ (𝑓𝑦) ∈ ℤ ∧ 0 < 2) → 0 < (2↑(𝑓𝑦)))
9084, 86, 88, 89syl3anc 1373 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → 0 < (2↑(𝑓𝑦)))
9177, 80, 82, 90divgt0d 12118 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → 0 < (𝑒 / (2↑(𝑓𝑦))))
9265, 51ltaddposd 11762 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (0 < (𝑒 / (2↑(𝑓𝑦))) ↔ (𝑀𝐴) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))
9391, 92mpbid 232 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (𝑀𝐴) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))
9429fveq1i 6859 . . . . . . . . . . . . . . . . . . . 20 (𝑀𝐴) = ((toOMeas‘𝑅)‘𝐴)
9526adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦𝑋) → 𝑄𝑉)
9627adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦𝑋) → 𝑅:𝑄⟶(0[,]+∞))
97 omsfval 34285 . . . . . . . . . . . . . . . . . . . . 21 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) → ((toOMeas‘𝑅)‘𝐴) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < ))
9895, 96, 34, 97syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦𝑋) → ((toOMeas‘𝑅)‘𝐴) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < ))
9994, 98eqtrid 2776 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦𝑋) → (𝑀𝐴) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < ))
1009, 99sylan 580 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (𝑀𝐴) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < ))
101100eqcomd 2735 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < ) = (𝑀𝐴))
102101breq1d 5117 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < ) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))) ↔ (𝑀𝐴) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))
10393, 102mpbird 257 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < ) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))
10475, 103jca 511 . . . . . . . . . . . . . 14 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))) ∈ (0[,]+∞) ∧ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < ) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))
105 iccssxr 13391 . . . . . . . . . . . . . . . . . . 19 (0[,]+∞) ⊆ ℝ*
106 xrltso 13101 . . . . . . . . . . . . . . . . . . 19 < Or ℝ*
107 soss 5566 . . . . . . . . . . . . . . . . . . 19 ((0[,]+∞) ⊆ ℝ* → ( < Or ℝ* → < Or (0[,]+∞)))
108105, 106, 107mp2 9 . . . . . . . . . . . . . . . . . 18 < Or (0[,]+∞)
109 biid 261 . . . . . . . . . . . . . . . . . 18 ( < Or (0[,]+∞) ↔ < Or (0[,]+∞))
110108, 109mpbi 230 . . . . . . . . . . . . . . . . 17 < Or (0[,]+∞)
111110a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝑋) → < Or (0[,]+∞))
112 omscl 34286 . . . . . . . . . . . . . . . . . 18 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 ∈ 𝒫 dom 𝑅) → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ⊆ (0[,]+∞))
11395, 96, 45, 112syl3anc 1373 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦𝑋) → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ⊆ (0[,]+∞))
114 xrge0infss 32683 . . . . . . . . . . . . . . . . 17 (ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ⊆ (0[,]+∞) → ∃𝑣 ∈ (0[,]+∞)(∀ ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ¬ < 𝑣 ∧ ∀ ∈ (0[,]+∞)(𝑣 < → ∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))𝑢 < )))
115113, 114syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝑋) → ∃𝑣 ∈ (0[,]+∞)(∀ ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ¬ < 𝑣 ∧ ∀ ∈ (0[,]+∞)(𝑣 < → ∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))𝑢 < )))
116111, 115infglb 9442 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝑋) → ((((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))) ∈ (0[,]+∞) ∧ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < ) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) → ∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))
117116imp 406 . . . . . . . . . . . . . 14 (((𝜑𝑦𝑋) ∧ (((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))) ∈ (0[,]+∞) ∧ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < ) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → ∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))
11823, 24, 104, 117syl21anc 837 . . . . . . . . . . . . 13 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → ∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))
119 eqid 2729 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) = (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))
120 esumex 34019 . . . . . . . . . . . . . . . . . . 19 Σ*𝑤𝑥(𝑅𝑤) ∈ V
121119, 120elrnmpti 5926 . . . . . . . . . . . . . . . . . 18 (𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ↔ ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}𝑢 = Σ*𝑤𝑥(𝑅𝑤))
122121anbi1i 624 . . . . . . . . . . . . . . . . 17 ((𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ∧ 𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) ↔ (∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))
123 r19.41v 3167 . . . . . . . . . . . . . . . . 17 (∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} (𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) ↔ (∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))
124122, 123bitr4i 278 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ∧ 𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) ↔ ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} (𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))
125124exbii 1848 . . . . . . . . . . . . . . 15 (∃𝑢(𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ∧ 𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) ↔ ∃𝑢𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} (𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))
126 df-rex 3054 . . . . . . . . . . . . . . 15 (∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))) ↔ ∃𝑢(𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ∧ 𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))
127 rexcom4 3264 . . . . . . . . . . . . . . 15 (∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}∃𝑢(𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) ↔ ∃𝑢𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} (𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))
128125, 126, 1273bitr4i 303 . . . . . . . . . . . . . 14 (∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))) ↔ ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}∃𝑢(𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))
129 breq1 5110 . . . . . . . . . . . . . . . . . 18 (𝑢 = Σ*𝑤𝑥(𝑅𝑤) → (𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))) ↔ Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))
130 idd 24 . . . . . . . . . . . . . . . . . 18 (𝑢 = Σ*𝑤𝑥(𝑅𝑤) → (Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))) → Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))
131129, 130sylbid 240 . . . . . . . . . . . . . . . . 17 (𝑢 = Σ*𝑤𝑥(𝑅𝑤) → (𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))) → Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))
132131imp 406 . . . . . . . . . . . . . . . 16 ((𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) → Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))
133132exlimiv 1930 . . . . . . . . . . . . . . 15 (∃𝑢(𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) → Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))
134133reximi 3067 . . . . . . . . . . . . . 14 (∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}∃𝑢(𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))
135128, 134sylbi 217 . . . . . . . . . . . . 13 (∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))𝑢 < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))) → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))
136118, 135syl 17 . . . . . . . . . . . 12 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))
137 simpr 484 . . . . . . . . . . . . . . . 16 ((𝐴 𝑧𝑧 ≼ ω) → 𝑧 ≼ ω)
138137a1i 11 . . . . . . . . . . . . . . 15 (𝑧 ∈ 𝒫 dom 𝑅 → ((𝐴 𝑧𝑧 ≼ ω) → 𝑧 ≼ ω))
139138ss2rabi 4040 . . . . . . . . . . . . . 14 {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ⊆ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}
140 rexss 4022 . . . . . . . . . . . . . 14 ({𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ⊆ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} → (∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))) ↔ ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ∧ Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))))
141139, 140ax-mp 5 . . . . . . . . . . . . 13 (∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))) ↔ ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ∧ Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))
142 unieq 4882 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = 𝑥 𝑧 = 𝑥)
143142sseq2d 3979 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑥 → (𝐴 𝑧𝐴 𝑥))
144 breq1 5110 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑥 → (𝑧 ≼ ω ↔ 𝑥 ≼ ω))
145143, 144anbi12d 632 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑥 → ((𝐴 𝑧𝑧 ≼ ω) ↔ (𝐴 𝑥𝑥 ≼ ω)))
146145elrab 3659 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↔ (𝑥 ∈ 𝒫 dom 𝑅 ∧ (𝐴 𝑥𝑥 ≼ ω)))
147146simprbi 496 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} → (𝐴 𝑥𝑥 ≼ ω))
148147simpld 494 . . . . . . . . . . . . . . . 16 (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} → 𝐴 𝑥)
149148a1i 11 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} → 𝐴 𝑥))
150149anim1d 611 . . . . . . . . . . . . . 14 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → ((𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ∧ Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) → (𝐴 𝑥 ∧ Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))))
151150reximdv 3148 . . . . . . . . . . . . 13 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ∧ Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} (𝐴 𝑥 ∧ Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))))
152141, 151biimtrid 242 . . . . . . . . . . . 12 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))) → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} (𝐴 𝑥 ∧ Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))))
153136, 152mpd 15 . . . . . . . . . . 11 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} (𝐴 𝑥 ∧ Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))
154153ex 412 . . . . . . . . . 10 ((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → (𝑦𝑋 → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} (𝐴 𝑥 ∧ Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))))
15522, 154ralrimi 3235 . . . . . . . . 9 ((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → ∀𝑦𝑋𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} (𝐴 𝑥 ∧ Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))
156 unieq 4882 . . . . . . . . . . . . 13 (𝑥 = (𝑔𝑦) → 𝑥 = (𝑔𝑦))
157156sseq2d 3979 . . . . . . . . . . . 12 (𝑥 = (𝑔𝑦) → (𝐴 𝑥𝐴 (𝑔𝑦)))
158 esumeq1 34024 . . . . . . . . . . . . 13 (𝑥 = (𝑔𝑦) → Σ*𝑤𝑥(𝑅𝑤) = Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤))
159158breq1d 5117 . . . . . . . . . . . 12 (𝑥 = (𝑔𝑦) → (Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))) ↔ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))
160157, 159anbi12d 632 . . . . . . . . . . 11 (𝑥 = (𝑔𝑦) → ((𝐴 𝑥 ∧ Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) ↔ (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))))
161160ac6sg 10441 . . . . . . . . . 10 (𝑋 ∈ V → (∀𝑦𝑋𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} (𝐴 𝑥 ∧ Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) → ∃𝑔(𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))))
162161imp 406 . . . . . . . . 9 ((𝑋 ∈ V ∧ ∀𝑦𝑋𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} (𝐴 𝑥 ∧ Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → ∃𝑔(𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))))
16312, 155, 162syl2anc 584 . . . . . . . 8 ((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → ∃𝑔(𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))))
1649ad2antrr 726 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → 𝜑)
16538ralrimiva 3125 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑦𝑋 𝐴 dom 𝑅)
166 iunss 5009 . . . . . . . . . . . . . . . . . 18 ( 𝑦𝑋 𝐴 dom 𝑅 ↔ ∀𝑦𝑋 𝐴 dom 𝑅)
167165, 166sylibr 234 . . . . . . . . . . . . . . . . 17 (𝜑 𝑦𝑋 𝐴 dom 𝑅)
16842ralrimiva 3125 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑦𝑋 𝐴 ∈ V)
169 iunexg 7942 . . . . . . . . . . . . . . . . . . 19 ((𝑋 ∈ V ∧ ∀𝑦𝑋 𝐴 ∈ V) → 𝑦𝑋 𝐴 ∈ V)
17011, 168, 169syl2anc 584 . . . . . . . . . . . . . . . . . 18 (𝜑 𝑦𝑋 𝐴 ∈ V)
171 elpwg 4566 . . . . . . . . . . . . . . . . . 18 ( 𝑦𝑋 𝐴 ∈ V → ( 𝑦𝑋 𝐴 ∈ 𝒫 dom 𝑅 𝑦𝑋 𝐴 dom 𝑅))
172170, 171syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → ( 𝑦𝑋 𝐴 ∈ 𝒫 dom 𝑅 𝑦𝑋 𝐴 dom 𝑅))
173167, 172mpbird 257 . . . . . . . . . . . . . . . 16 (𝜑 𝑦𝑋 𝐴 ∈ 𝒫 dom 𝑅)
17432, 173ffvelcdmd 7057 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀 𝑦𝑋 𝐴) ∈ (0[,]+∞))
175105, 174sselid 3944 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 𝑦𝑋 𝐴) ∈ ℝ*)
176164, 175syl 17 . . . . . . . . . . . . 13 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → (𝑀 𝑦𝑋 𝐴) ∈ ℝ*)
177 simplr 768 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω})
17825ad4antr 732 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → 𝑋 ∈ V)
179177, 178fexd 7201 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → 𝑔 ∈ V)
180 rnexg 7878 . . . . . . . . . . . . . . . 16 (𝑔 ∈ V → ran 𝑔 ∈ V)
181 uniexg 7716 . . . . . . . . . . . . . . . 16 (ran 𝑔 ∈ V → ran 𝑔 ∈ V)
182179, 180, 1813syl 18 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → ran 𝑔 ∈ V)
183 simp-5l 784 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → 𝜑)
18427ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑐 ran 𝑔) → 𝑅:𝑄⟶(0[,]+∞))
185 frn 6695 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} → ran 𝑔 ⊆ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω})
186 ssrab2 4043 . . . . . . . . . . . . . . . . . . . . . . . 24 {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} ⊆ 𝒫 dom 𝑅
187185, 186sstrdi 3959 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} → ran 𝑔 ⊆ 𝒫 dom 𝑅)
188187unissd 4881 . . . . . . . . . . . . . . . . . . . . . 22 (𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} → ran 𝑔 𝒫 dom 𝑅)
189 unipw 5410 . . . . . . . . . . . . . . . . . . . . . 22 𝒫 dom 𝑅 = dom 𝑅
190188, 189sseqtrdi 3987 . . . . . . . . . . . . . . . . . . . . 21 (𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} → ran 𝑔 ⊆ dom 𝑅)
191190adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) → ran 𝑔 ⊆ dom 𝑅)
19235adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) → dom 𝑅 = 𝑄)
193191, 192sseqtrd 3983 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) → ran 𝑔𝑄)
194193sselda 3946 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑐 ran 𝑔) → 𝑐𝑄)
195184, 194ffvelcdmd 7057 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑐 ran 𝑔) → (𝑅𝑐) ∈ (0[,]+∞))
196195ralrimiva 3125 . . . . . . . . . . . . . . . 16 ((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) → ∀𝑐 ran 𝑔(𝑅𝑐) ∈ (0[,]+∞))
197183, 177, 196syl2anc 584 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → ∀𝑐 ran 𝑔(𝑅𝑐) ∈ (0[,]+∞))
198 nfcv 2891 . . . . . . . . . . . . . . . 16 𝑐 ran 𝑔
199198esumcl 34020 . . . . . . . . . . . . . . 15 (( ran 𝑔 ∈ V ∧ ∀𝑐 ran 𝑔(𝑅𝑐) ∈ (0[,]+∞)) → Σ*𝑐 ran 𝑔(𝑅𝑐) ∈ (0[,]+∞))
200182, 197, 199syl2anc 584 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → Σ*𝑐 ran 𝑔(𝑅𝑐) ∈ (0[,]+∞))
201105, 200sselid 3944 . . . . . . . . . . . . 13 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → Σ*𝑐 ran 𝑔(𝑅𝑐) ∈ ℝ*)
202 simp-5r 785 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ)
203202rexrd 11224 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ*)
204 simpllr 775 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → 𝑒 ∈ ℝ+)
205204rpxrd 12996 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → 𝑒 ∈ ℝ*)
206203, 205xaddcld 13261 . . . . . . . . . . . . 13 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → (Σ*𝑦𝑋(𝑀𝐴) +𝑒 𝑒) ∈ ℝ*)
207185ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → ran 𝑔 ⊆ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω})
208 sstr 3955 . . . . . . . . . . . . . . . . . . . . . . . 24 ((ran 𝑔 ⊆ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} ∧ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} ⊆ 𝒫 dom 𝑅) → ran 𝑔 ⊆ 𝒫 dom 𝑅)
209186, 208mpan2 691 . . . . . . . . . . . . . . . . . . . . . . 23 (ran 𝑔 ⊆ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} → ran 𝑔 ⊆ 𝒫 dom 𝑅)
210 sspwuni 5064 . . . . . . . . . . . . . . . . . . . . . . 23 (ran 𝑔 ⊆ 𝒫 dom 𝑅 ran 𝑔 ⊆ dom 𝑅)
211209, 210sylib 218 . . . . . . . . . . . . . . . . . . . . . 22 (ran 𝑔 ⊆ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} → ran 𝑔 ⊆ dom 𝑅)
212207, 211syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → ran 𝑔 ⊆ dom 𝑅)
213 ffn 6688 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} → 𝑔 Fn 𝑋)
214213ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → 𝑔 Fn 𝑋)
215164, 1syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → 𝑋 ≼ ω)
216 fnct 10490 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑔 Fn 𝑋𝑋 ≼ ω) → 𝑔 ≼ ω)
217 rnct 10478 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑔 ≼ ω → ran 𝑔 ≼ ω)
218216, 217syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑔 Fn 𝑋𝑋 ≼ ω) → ran 𝑔 ≼ ω)
219 dfss3 3935 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (ran 𝑔 ⊆ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} ↔ ∀𝑤 ∈ ran 𝑔 𝑤 ∈ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω})
220219biimpi 216 . . . . . . . . . . . . . . . . . . . . . . . . 25 (ran 𝑔 ⊆ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} → ∀𝑤 ∈ ran 𝑔 𝑤 ∈ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω})
221 breq1 5110 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 = 𝑤 → (𝑧 ≼ ω ↔ 𝑤 ≼ ω))
222221elrab 3659 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑤 ∈ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} ↔ (𝑤 ∈ 𝒫 dom 𝑅𝑤 ≼ ω))
223222simprbi 496 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑤 ∈ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} → 𝑤 ≼ ω)
224223ralimi 3066 . . . . . . . . . . . . . . . . . . . . . . . . 25 (∀𝑤 ∈ ran 𝑔 𝑤 ∈ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} → ∀𝑤 ∈ ran 𝑔 𝑤 ≼ ω)
225220, 224syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (ran 𝑔 ⊆ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} → ∀𝑤 ∈ ran 𝑔 𝑤 ≼ ω)
226 unictb 10528 . . . . . . . . . . . . . . . . . . . . . . . 24 ((ran 𝑔 ≼ ω ∧ ∀𝑤 ∈ ran 𝑔 𝑤 ≼ ω) → ran 𝑔 ≼ ω)
227218, 225, 226syl2an 596 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑔 Fn 𝑋𝑋 ≼ ω) ∧ ran 𝑔 ⊆ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) → ran 𝑔 ≼ ω)
228214, 215, 207, 227syl21anc 837 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → ran 𝑔 ≼ ω)
229 ctex 8935 . . . . . . . . . . . . . . . . . . . . . 22 ( ran 𝑔 ≼ ω → ran 𝑔 ∈ V)
230 elpwg 4566 . . . . . . . . . . . . . . . . . . . . . 22 ( ran 𝑔 ∈ V → ( ran 𝑔 ∈ 𝒫 dom 𝑅 ran 𝑔 ⊆ dom 𝑅))
231228, 229, 2303syl 18 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → ( ran 𝑔 ∈ 𝒫 dom 𝑅 ran 𝑔 ⊆ dom 𝑅))
232212, 231mpbird 257 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → ran 𝑔 ∈ 𝒫 dom 𝑅)
233 simpl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) → 𝐴 (𝑔𝑦))
234233ralimi 3066 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) → ∀𝑦𝑋 𝐴 (𝑔𝑦))
235 fvssunirn 6891 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑔𝑦) ⊆ ran 𝑔
236235unissi 4880 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑔𝑦) ⊆ ran 𝑔
237 sstr 3955 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 (𝑔𝑦) ∧ (𝑔𝑦) ⊆ ran 𝑔) → 𝐴 ran 𝑔)
238236, 237mpan2 691 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴 (𝑔𝑦) → 𝐴 ran 𝑔)
239238ralimi 3066 . . . . . . . . . . . . . . . . . . . . . . 23 (∀𝑦𝑋 𝐴 (𝑔𝑦) → ∀𝑦𝑋 𝐴 ran 𝑔)
240 iunss 5009 . . . . . . . . . . . . . . . . . . . . . . 23 ( 𝑦𝑋 𝐴 ran 𝑔 ↔ ∀𝑦𝑋 𝐴 ran 𝑔)
241239, 240sylibr 234 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑦𝑋 𝐴 (𝑔𝑦) → 𝑦𝑋 𝐴 ran 𝑔)
242234, 241syl 17 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) → 𝑦𝑋 𝐴 ran 𝑔)
243242adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → 𝑦𝑋 𝐴 ran 𝑔)
244232, 243, 228jca32 515 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → ( ran 𝑔 ∈ 𝒫 dom 𝑅 ∧ ( 𝑦𝑋 𝐴 ran 𝑔 ran 𝑔 ≼ ω)))
245 unieq 4882 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = ran 𝑔 𝑧 = ran 𝑔)
246245sseq2d 3979 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = ran 𝑔 → ( 𝑦𝑋 𝐴 𝑧 𝑦𝑋 𝐴 ran 𝑔))
247 breq1 5110 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = ran 𝑔 → (𝑧 ≼ ω ↔ ran 𝑔 ≼ ω))
248246, 247anbi12d 632 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = ran 𝑔 → (( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω) ↔ ( 𝑦𝑋 𝐴 ran 𝑔 ran 𝑔 ≼ ω)))
249248elrab 3659 . . . . . . . . . . . . . . . . . . 19 ( ran 𝑔 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ↔ ( ran 𝑔 ∈ 𝒫 dom 𝑅 ∧ ( 𝑦𝑋 𝐴 ran 𝑔 ran 𝑔 ≼ ω)))
250244, 249sylibr 234 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → ran 𝑔 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)})
251 fveq2 6858 . . . . . . . . . . . . . . . . . . 19 (𝑐 = 𝑤 → (𝑅𝑐) = (𝑅𝑤))
252251cbvesumv 34033 . . . . . . . . . . . . . . . . . 18 Σ*𝑐 ran 𝑔(𝑅𝑐) = Σ*𝑤 ran 𝑔(𝑅𝑤)
253 esumeq1 34024 . . . . . . . . . . . . . . . . . . 19 (𝑥 = ran 𝑔 → Σ*𝑤𝑥(𝑅𝑤) = Σ*𝑤 ran 𝑔(𝑅𝑤))
254253rspceeqv 3611 . . . . . . . . . . . . . . . . . 18 (( ran 𝑔 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ∧ Σ*𝑐 ran 𝑔(𝑅𝑐) = Σ*𝑤 ran 𝑔(𝑅𝑤)) → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)}Σ*𝑐 ran 𝑔(𝑅𝑐) = Σ*𝑤𝑥(𝑅𝑤))
255250, 252, 254sylancl 586 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)}Σ*𝑐 ran 𝑔(𝑅𝑐) = Σ*𝑤𝑥(𝑅𝑤))
256 esumex 34019 . . . . . . . . . . . . . . . . . 18 Σ*𝑐 ran 𝑔(𝑅𝑐) ∈ V
257 eqid 2729 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) = (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))
258257elrnmpt 5922 . . . . . . . . . . . . . . . . . 18 *𝑐 ran 𝑔(𝑅𝑐) ∈ V → (Σ*𝑐 ran 𝑔(𝑅𝑐) ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ↔ ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)}Σ*𝑐 ran 𝑔(𝑅𝑐) = Σ*𝑤𝑥(𝑅𝑤)))
259256, 258ax-mp 5 . . . . . . . . . . . . . . . . 17 *𝑐 ran 𝑔(𝑅𝑐) ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ↔ ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)}Σ*𝑐 ran 𝑔(𝑅𝑐) = Σ*𝑤𝑥(𝑅𝑤))
260255, 259sylibr 234 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → Σ*𝑐 ran 𝑔(𝑅𝑐) ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)))
261110a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → < Or (0[,]+∞))
262 omscl 34286 . . . . . . . . . . . . . . . . . . . 20 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝑦𝑋 𝐴 ∈ 𝒫 dom 𝑅) → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ⊆ (0[,]+∞))
26326, 27, 173, 262syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ⊆ (0[,]+∞))
264 xrge0infss 32683 . . . . . . . . . . . . . . . . . . 19 (ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ⊆ (0[,]+∞) → ∃𝑒 ∈ (0[,]+∞)(∀𝑡 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ¬ 𝑡 < 𝑒 ∧ ∀𝑡 ∈ (0[,]+∞)(𝑒 < 𝑡 → ∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))𝑢 < 𝑡)))
265263, 264syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∃𝑒 ∈ (0[,]+∞)(∀𝑡 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ¬ 𝑡 < 𝑒 ∧ ∀𝑡 ∈ (0[,]+∞)(𝑒 < 𝑡 → ∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))𝑢 < 𝑡)))
266261, 265inflb 9441 . . . . . . . . . . . . . . . . 17 (𝜑 → (Σ*𝑐 ran 𝑔(𝑅𝑐) ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) → ¬ Σ*𝑐 ran 𝑔(𝑅𝑐) < inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < )))
26729fveq1i 6859 . . . . . . . . . . . . . . . . . . . 20 (𝑀 𝑦𝑋 𝐴) = ((toOMeas‘𝑅)‘ 𝑦𝑋 𝐴)
268167, 36sseqtrd 3983 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 𝑦𝑋 𝐴 𝑄)
269 omsfval 34285 . . . . . . . . . . . . . . . . . . . . 21 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝑦𝑋 𝐴 𝑄) → ((toOMeas‘𝑅)‘ 𝑦𝑋 𝐴) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < ))
27026, 27, 268, 269syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((toOMeas‘𝑅)‘ 𝑦𝑋 𝐴) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < ))
271267, 270eqtrid 2776 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑀 𝑦𝑋 𝐴) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < ))
272271breq2d 5119 . . . . . . . . . . . . . . . . . 18 (𝜑 → (Σ*𝑐 ran 𝑔(𝑅𝑐) < (𝑀 𝑦𝑋 𝐴) ↔ Σ*𝑐 ran 𝑔(𝑅𝑐) < inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < )))
273272notbid 318 . . . . . . . . . . . . . . . . 17 (𝜑 → (¬ Σ*𝑐 ran 𝑔(𝑅𝑐) < (𝑀 𝑦𝑋 𝐴) ↔ ¬ Σ*𝑐 ran 𝑔(𝑅𝑐) < inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < )))
274266, 273sylibrd 259 . . . . . . . . . . . . . . . 16 (𝜑 → (Σ*𝑐 ran 𝑔(𝑅𝑐) ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ ( 𝑦𝑋 𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) → ¬ Σ*𝑐 ran 𝑔(𝑅𝑐) < (𝑀 𝑦𝑋 𝐴)))
275164, 260, 274sylc 65 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → ¬ Σ*𝑐 ran 𝑔(𝑅𝑐) < (𝑀 𝑦𝑋 𝐴))
276 biid 261 . . . . . . . . . . . . . . 15 (¬ Σ*𝑐 ran 𝑔(𝑅𝑐) < (𝑀 𝑦𝑋 𝐴) ↔ ¬ Σ*𝑐 ran 𝑔(𝑅𝑐) < (𝑀 𝑦𝑋 𝐴))
277275, 276sylib 218 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → ¬ Σ*𝑐 ran 𝑔(𝑅𝑐) < (𝑀 𝑦𝑋 𝐴))
278 xrlenlt 11239 . . . . . . . . . . . . . . 15 (((𝑀 𝑦𝑋 𝐴) ∈ ℝ* ∧ Σ*𝑐 ran 𝑔(𝑅𝑐) ∈ ℝ*) → ((𝑀 𝑦𝑋 𝐴) ≤ Σ*𝑐 ran 𝑔(𝑅𝑐) ↔ ¬ Σ*𝑐 ran 𝑔(𝑅𝑐) < (𝑀 𝑦𝑋 𝐴)))
279176, 201, 278syl2anc 584 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → ((𝑀 𝑦𝑋 𝐴) ≤ Σ*𝑐 ran 𝑔(𝑅𝑐) ↔ ¬ Σ*𝑐 ran 𝑔(𝑅𝑐) < (𝑀 𝑦𝑋 𝐴)))
280277, 279mpbird 257 . . . . . . . . . . . . 13 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → (𝑀 𝑦𝑋 𝐴) ≤ Σ*𝑐 ran 𝑔(𝑅𝑐))
281 nfv 1914 . . . . . . . . . . . . . . . . . . 19 𝑦 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}
28222, 281nfan 1899 . . . . . . . . . . . . . . . . . 18 𝑦((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω})
283 nfra1 3261 . . . . . . . . . . . . . . . . . 18 𝑦𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))
284282, 283nfan 1899 . . . . . . . . . . . . . . . . 17 𝑦(((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))
285 simp-6l 786 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) ∧ 𝑦𝑋) → 𝜑)
286 simpllr 775 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) ∧ 𝑦𝑋) → 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω})
287 simpr 484 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) ∧ 𝑦𝑋) → 𝑦𝑋)
28827ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) ∧ 𝑤 ∈ (𝑔𝑦)) → 𝑅:𝑄⟶(0[,]+∞))
289 simpllr 775 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) ∧ 𝑤 ∈ (𝑔𝑦)) → 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω})
290 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) ∧ 𝑤 ∈ (𝑔𝑦)) → 𝑦𝑋)
291289, 290ffvelcdmd 7057 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) ∧ 𝑤 ∈ (𝑔𝑦)) → (𝑔𝑦) ∈ {𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω})
292186, 291sselid 3944 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) ∧ 𝑤 ∈ (𝑔𝑦)) → (𝑔𝑦) ∈ 𝒫 dom 𝑅)
293292elpwid 4572 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) ∧ 𝑤 ∈ (𝑔𝑦)) → (𝑔𝑦) ⊆ dom 𝑅)
294288, 293fssdmd 6706 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) ∧ 𝑤 ∈ (𝑔𝑦)) → (𝑔𝑦) ⊆ 𝑄)
295 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) ∧ 𝑤 ∈ (𝑔𝑦)) → 𝑤 ∈ (𝑔𝑦))
296294, 295sseldd 3947 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) ∧ 𝑤 ∈ (𝑔𝑦)) → 𝑤𝑄)
297288, 296ffvelcdmd 7057 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) ∧ 𝑤 ∈ (𝑔𝑦)) → (𝑅𝑤) ∈ (0[,]+∞))
298297ralrimiva 3125 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) → ∀𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ∈ (0[,]+∞))
299 fvex 6871 . . . . . . . . . . . . . . . . . . . . 21 (𝑔𝑦) ∈ V
300 nfcv 2891 . . . . . . . . . . . . . . . . . . . . . 22 𝑤(𝑔𝑦)
301300esumcl 34020 . . . . . . . . . . . . . . . . . . . . 21 (((𝑔𝑦) ∈ V ∧ ∀𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ∈ (0[,]+∞)) → Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ∈ (0[,]+∞))
302299, 301mpan 690 . . . . . . . . . . . . . . . . . . . 20 (∀𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ∈ (0[,]+∞) → Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ∈ (0[,]+∞))
303298, 302syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) → Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ∈ (0[,]+∞))
304285, 286, 287, 303syl21anc 837 . . . . . . . . . . . . . . . . . 18 (((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) ∧ 𝑦𝑋) → Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ∈ (0[,]+∞))
305304ex 412 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → (𝑦𝑋 → Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ∈ (0[,]+∞)))
306284, 305ralrimi 3235 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → ∀𝑦𝑋 Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ∈ (0[,]+∞))
30714esumcl 34020 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ V ∧ ∀𝑦𝑋 Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ∈ (0[,]+∞)) → Σ*𝑦𝑋Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ∈ (0[,]+∞))
308178, 306, 307syl2anc 584 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → Σ*𝑦𝑋Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ∈ (0[,]+∞))
309105, 308sselid 3944 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → Σ*𝑦𝑋Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ∈ ℝ*)
310 nfv 1914 . . . . . . . . . . . . . . . . . . 19 𝑤(𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω})
311 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) → 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω})
312 fniunfv 7221 . . . . . . . . . . . . . . . . . . . 20 (𝑔 Fn 𝑋 𝑦𝑋 (𝑔𝑦) = ran 𝑔)
313311, 213, 3123syl 18 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) → 𝑦𝑋 (𝑔𝑦) = ran 𝑔)
314310, 313esumeq1d 34025 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) → Σ*𝑤 𝑦𝑋 (𝑔𝑦)(𝑅𝑤) = Σ*𝑤 ran 𝑔(𝑅𝑤))
31511adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) → 𝑋 ∈ V)
316299a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) → (𝑔𝑦) ∈ V)
317315, 316, 297esumiun 34084 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) → Σ*𝑤 𝑦𝑋 (𝑔𝑦)(𝑅𝑤) ≤ Σ*𝑦𝑋Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤))
318314, 317eqbrtrrd 5131 . . . . . . . . . . . . . . . . 17 ((𝜑𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) → Σ*𝑤 ran 𝑔(𝑅𝑤) ≤ Σ*𝑦𝑋Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤))
3199, 318sylan 580 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) → Σ*𝑤 ran 𝑔(𝑅𝑤) ≤ Σ*𝑦𝑋Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤))
320319adantr 480 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → Σ*𝑤 ran 𝑔(𝑅𝑤) ≤ Σ*𝑦𝑋Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤))
321252, 320eqbrtrid 5142 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → Σ*𝑐 ran 𝑔(𝑅𝑐) ≤ Σ*𝑦𝑋Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤))
322285, 287, 46syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) ∧ 𝑦𝑋) → (𝑀𝐴) ∈ (0[,]+∞))
323 simplll 774 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) ∧ 𝑦𝑋) → (((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+))
324323, 287, 73syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) ∧ 𝑦𝑋) → (𝑒 / (2↑(𝑓𝑦))) ∈ (0[,]+∞))
325322, 324xrge0addcld 32685 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) ∧ 𝑦𝑋) → ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))) ∈ (0[,]+∞))
326325ex 412 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → (𝑦𝑋 → ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))) ∈ (0[,]+∞)))
327284, 326ralrimi 3235 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → ∀𝑦𝑋 ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))) ∈ (0[,]+∞))
32814esumcl 34020 . . . . . . . . . . . . . . . . 17 ((𝑋 ∈ V ∧ ∀𝑦𝑋 ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))) ∈ (0[,]+∞)) → Σ*𝑦𝑋((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))) ∈ (0[,]+∞))
329178, 327, 328syl2anc 584 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → Σ*𝑦𝑋((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))) ∈ (0[,]+∞))
330105, 329sselid 3944 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → Σ*𝑦𝑋((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))) ∈ ℝ*)
331215, 10syl 17 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → 𝑋 ∈ V)
332 simp-4l 782 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) → (𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ))
333 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) → 𝑦𝑋)
334332, 333, 49syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) → (𝑀𝐴) ∈ ℝ)
335334adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) → (𝑀𝐴) ∈ ℝ)
33665adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) → (𝑒 / (2↑(𝑓𝑦))) ∈ ℝ)
337336adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) → (𝑒 / (2↑(𝑓𝑦))) ∈ ℝ)
338 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . 26 *𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))) → Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))
339338adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) → Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))
34066breq2d 5119 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑀𝐴) ∈ ℝ ∧ (𝑒 / (2↑(𝑓𝑦))) ∈ ℝ) → (Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))) ↔ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))
341340biimpar 477 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑀𝐴) ∈ ℝ ∧ (𝑒 / (2↑(𝑓𝑦))) ∈ ℝ) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) → Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))))
342335, 337, 339, 341syl21anc 837 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) → Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))))
343342ex 412 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) → (Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))) → Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦))))))
344332simpld 494 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) → 𝜑)
345 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) → 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω})
346344, 345, 333, 303syl21anc 837 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) → Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ∈ (0[,]+∞))
347105, 346sselid 3944 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) → Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ∈ ℝ*)
348334rexrd 11224 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) → (𝑀𝐴) ∈ ℝ*)
349336rexrd 11224 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) → (𝑒 / (2↑(𝑓𝑦))) ∈ ℝ*)
350348, 349xaddcld 13261 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) → ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))) ∈ ℝ*)
351 xrltle 13109 . . . . . . . . . . . . . . . . . . . . . . . 24 ((Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ∈ ℝ* ∧ ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))) ∈ ℝ*) → (Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))) → Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ≤ ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦))))))
352347, 350, 351syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) → (Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))) → Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ≤ ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦))))))
353343, 352syld 47 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) → (Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))) → Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ≤ ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦))))))
354353adantld 490 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ 𝑦𝑋) → ((𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) → Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ≤ ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦))))))
355354ex 412 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) → (𝑦𝑋 → ((𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) → Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ≤ ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))))))
356282, 355ralrimi 3235 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) → ∀𝑦𝑋 ((𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) → Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ≤ ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦))))))
357 ralim 3069 . . . . . . . . . . . . . . . . . . 19 (∀𝑦𝑋 ((𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) → Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ≤ ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦))))) → (∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) → ∀𝑦𝑋 Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ≤ ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦))))))
358356, 357syl 17 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) → (∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))) → ∀𝑦𝑋 Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ≤ ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦))))))
359358imp 406 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → ∀𝑦𝑋 Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ≤ ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))))
360359r19.21bi 3229 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) ∧ 𝑦𝑋) → Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ≤ ((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))))
361284, 14, 331, 304, 325, 360esumlef 34052 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → Σ*𝑦𝑋Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ≤ Σ*𝑦𝑋((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))))
362164, 46sylan 580 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) ∧ 𝑦𝑋) → (𝑀𝐴) ∈ (0[,]+∞))
363284, 14, 331, 362, 324esumaddf 34051 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → Σ*𝑦𝑋((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))) = (Σ*𝑦𝑋(𝑀𝐴) +𝑒 Σ*𝑦𝑋(𝑒 / (2↑(𝑓𝑦)))))
364324ex 412 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → (𝑦𝑋 → (𝑒 / (2↑(𝑓𝑦))) ∈ (0[,]+∞)))
365284, 364ralrimi 3235 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → ∀𝑦𝑋 (𝑒 / (2↑(𝑓𝑦))) ∈ (0[,]+∞))
36614esumcl 34020 . . . . . . . . . . . . . . . . . . 19 ((𝑋 ∈ V ∧ ∀𝑦𝑋 (𝑒 / (2↑(𝑓𝑦))) ∈ (0[,]+∞)) → Σ*𝑦𝑋(𝑒 / (2↑(𝑓𝑦))) ∈ (0[,]+∞))
367178, 365, 366syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → Σ*𝑦𝑋(𝑒 / (2↑(𝑓𝑦))) ∈ (0[,]+∞))
368105, 367sselid 3944 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → Σ*𝑦𝑋(𝑒 / (2↑(𝑓𝑦))) ∈ ℝ*)
369 simp-4r 783 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → 𝑓:𝑋1-1→ℕ)
370 vex 3451 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑓 ∈ V
371370rnex 7886 . . . . . . . . . . . . . . . . . . . . . . 23 ran 𝑓 ∈ V
372371a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → ran 𝑓 ∈ V)
37358frnd 6696 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑓:𝑋1-1→ℕ) → ran 𝑓 ⊆ ℕ)
374373adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → ran 𝑓 ⊆ ℕ)
375374sselda 3946 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ran 𝑓) → 𝑧 ∈ ℕ)
37654a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑧 ∈ ℕ) → 2 ∈ ℝ+)
377 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑧 ∈ ℕ) → 𝑧 ∈ ℕ)
378377nnzd 12556 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑧 ∈ ℕ) → 𝑧 ∈ ℤ)
379376, 378rpexpcld 14212 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑧 ∈ ℕ) → (2↑𝑧) ∈ ℝ+)
380379rpreccld 13005 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑧 ∈ ℕ) → (1 / (2↑𝑧)) ∈ ℝ+)
38171, 380sselid 3944 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑧 ∈ ℕ) → (1 / (2↑𝑧)) ∈ (0[,]+∞))
382381adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℕ) → (1 / (2↑𝑧)) ∈ (0[,]+∞))
383375, 382syldan 591 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ran 𝑓) → (1 / (2↑𝑧)) ∈ (0[,]+∞))
384383ralrimiva 3125 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → ∀𝑧 ∈ ran 𝑓(1 / (2↑𝑧)) ∈ (0[,]+∞))
385 nfcv 2891 . . . . . . . . . . . . . . . . . . . . . . 23 𝑧ran 𝑓
386385esumcl 34020 . . . . . . . . . . . . . . . . . . . . . 22 ((ran 𝑓 ∈ V ∧ ∀𝑧 ∈ ran 𝑓(1 / (2↑𝑧)) ∈ (0[,]+∞)) → Σ*𝑧 ∈ ran 𝑓(1 / (2↑𝑧)) ∈ (0[,]+∞))
387372, 384, 386syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → Σ*𝑧 ∈ ran 𝑓(1 / (2↑𝑧)) ∈ (0[,]+∞))
388105, 387sselid 3944 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → Σ*𝑧 ∈ ran 𝑓(1 / (2↑𝑧)) ∈ ℝ*)
389 1xr 11233 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℝ*
390389a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → 1 ∈ ℝ*)
39171sseli 3942 . . . . . . . . . . . . . . . . . . . . . 22 (𝑒 ∈ ℝ+𝑒 ∈ (0[,]+∞))
392391adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → 𝑒 ∈ (0[,]+∞))
393 elxrge0 13418 . . . . . . . . . . . . . . . . . . . . 21 (𝑒 ∈ (0[,]+∞) ↔ (𝑒 ∈ ℝ* ∧ 0 ≤ 𝑒))
394392, 393sylib 218 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → (𝑒 ∈ ℝ* ∧ 0 ≤ 𝑒))
395 nfv 1914 . . . . . . . . . . . . . . . . . . . . . . 23 𝑧(𝜑𝑓:𝑋1-1→ℕ)
396 nnex 12192 . . . . . . . . . . . . . . . . . . . . . . . 24 ℕ ∈ V
397396a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑓:𝑋1-1→ℕ) → ℕ ∈ V)
398395, 397, 381, 373esummono 34044 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑓:𝑋1-1→ℕ) → Σ*𝑧 ∈ ran 𝑓(1 / (2↑𝑧)) ≤ Σ*𝑧 ∈ ℕ(1 / (2↑𝑧)))
399 oveq2 7395 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 = 𝑤 → (2↑𝑧) = (2↑𝑤))
400399oveq2d 7403 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 = 𝑤 → (1 / (2↑𝑧)) = (1 / (2↑𝑤)))
401 ioossico 13399 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (0(,)+∞) ⊆ (0[,)+∞)
40269, 401eqsstri 3993 . . . . . . . . . . . . . . . . . . . . . . . . 25 + ⊆ (0[,)+∞)
403402, 380sselid 3944 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑧 ∈ ℕ) → (1 / (2↑𝑧)) ∈ (0[,)+∞))
404 eqidd 2730 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 ∈ ℕ → (𝑤 ∈ ℕ ↦ (1 / (2↑𝑤))) = (𝑤 ∈ ℕ ↦ (1 / (2↑𝑤))))
405 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑧 ∈ ℕ ∧ 𝑤 = 𝑧) → 𝑤 = 𝑧)
406405oveq2d 7403 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑧 ∈ ℕ ∧ 𝑤 = 𝑧) → (2↑𝑤) = (2↑𝑧))
407406oveq2d 7403 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑧 ∈ ℕ ∧ 𝑤 = 𝑧) → (1 / (2↑𝑤)) = (1 / (2↑𝑧)))
408 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 ∈ ℕ → 𝑧 ∈ ℕ)
409 ovexd 7422 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 ∈ ℕ → (1 / (2↑𝑧)) ∈ V)
410404, 407, 408, 409fvmptd 6975 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 ∈ ℕ → ((𝑤 ∈ ℕ ↦ (1 / (2↑𝑤)))‘𝑧) = (1 / (2↑𝑧)))
411410adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑧 ∈ ℕ) → ((𝑤 ∈ ℕ ↦ (1 / (2↑𝑤)))‘𝑧) = (1 / (2↑𝑧)))
412 ax-1cn 11126 . . . . . . . . . . . . . . . . . . . . . . . . . 26 1 ∈ ℂ
413 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑤 ∈ ℕ ↦ (1 / (2↑𝑤))) = (𝑤 ∈ ℕ ↦ (1 / (2↑𝑤)))
414413geo2lim 15841 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (1 ∈ ℂ → seq1( + , (𝑤 ∈ ℕ ↦ (1 / (2↑𝑤)))) ⇝ 1)
415412, 414ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . 25 seq1( + , (𝑤 ∈ ℕ ↦ (1 / (2↑𝑤)))) ⇝ 1
416415a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑓:𝑋1-1→ℕ) → seq1( + , (𝑤 ∈ ℕ ↦ (1 / (2↑𝑤)))) ⇝ 1)
417 1re 11174 . . . . . . . . . . . . . . . . . . . . . . . . 25 1 ∈ ℝ
418417a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑓:𝑋1-1→ℕ) → 1 ∈ ℝ)
419400, 403, 411, 416, 418esumcvgsum 34078 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑓:𝑋1-1→ℕ) → Σ*𝑧 ∈ ℕ(1 / (2↑𝑧)) = Σ𝑧 ∈ ℕ (1 / (2↑𝑧)))
420 geoihalfsum 15848 . . . . . . . . . . . . . . . . . . . . . . 23 Σ𝑧 ∈ ℕ (1 / (2↑𝑧)) = 1
421419, 420eqtrdi 2780 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑓:𝑋1-1→ℕ) → Σ*𝑧 ∈ ℕ(1 / (2↑𝑧)) = 1)
422398, 421breqtrd 5133 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑓:𝑋1-1→ℕ) → Σ*𝑧 ∈ ran 𝑓(1 / (2↑𝑧)) ≤ 1)
423422adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → Σ*𝑧 ∈ ran 𝑓(1 / (2↑𝑧)) ≤ 1)
424 xlemul2a 13249 . . . . . . . . . . . . . . . . . . . 20 (((Σ*𝑧 ∈ ran 𝑓(1 / (2↑𝑧)) ∈ ℝ* ∧ 1 ∈ ℝ* ∧ (𝑒 ∈ ℝ* ∧ 0 ≤ 𝑒)) ∧ Σ*𝑧 ∈ ran 𝑓(1 / (2↑𝑧)) ≤ 1) → (𝑒 ·e Σ*𝑧 ∈ ran 𝑓(1 / (2↑𝑧))) ≤ (𝑒 ·e 1))
425388, 390, 394, 423, 424syl31anc 1375 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → (𝑒 ·e Σ*𝑧 ∈ ran 𝑓(1 / (2↑𝑧))) ≤ (𝑒 ·e 1))
42613, 19nfan 1899 . . . . . . . . . . . . . . . . . . . . . 22 𝑦(𝜑𝑓:𝑋1-1→ℕ)
427426, 21nfan 1899 . . . . . . . . . . . . . . . . . . . . 21 𝑦((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+)
42876recnd 11202 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → 𝑒 ∈ ℂ)
42978recnd 11202 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑦𝑋) → (2↑(𝑓𝑦)) ∈ ℂ)
430429adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (2↑(𝑓𝑦)) ∈ ℂ)
431 2cn 12261 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2 ∈ ℂ
432431a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑦𝑋) → 2 ∈ ℂ)
433 2ne0 12290 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2 ≠ 0
434433a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑦𝑋) → 2 ≠ 0)
435432, 434, 60expne0d 14117 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑦𝑋) → (2↑(𝑓𝑦)) ≠ 0)
436435adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (2↑(𝑓𝑦)) ≠ 0)
437428, 430, 436divrecd 11961 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (𝑒 / (2↑(𝑓𝑦))) = (𝑒 · (1 / (2↑(𝑓𝑦)))))
438 1rp 12955 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1 ∈ ℝ+
439438a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑦𝑋) → 1 ∈ ℝ+)
440439, 61rpdivcld 13012 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑦𝑋) → (1 / (2↑(𝑓𝑦))) ∈ ℝ+)
44152, 440sselid 3944 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑦𝑋) → (1 / (2↑(𝑓𝑦))) ∈ ℝ)
442441adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (1 / (2↑(𝑓𝑦))) ∈ ℝ)
443 rexmul 13231 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑒 ∈ ℝ ∧ (1 / (2↑(𝑓𝑦))) ∈ ℝ) → (𝑒 ·e (1 / (2↑(𝑓𝑦)))) = (𝑒 · (1 / (2↑(𝑓𝑦)))))
44476, 442, 443syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (𝑒 ·e (1 / (2↑(𝑓𝑦)))) = (𝑒 · (1 / (2↑(𝑓𝑦)))))
445437, 444eqtr4d 2767 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (𝑒 / (2↑(𝑓𝑦))) = (𝑒 ·e (1 / (2↑(𝑓𝑦)))))
446445ralrimiva 3125 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → ∀𝑦𝑋 (𝑒 / (2↑(𝑓𝑦))) = (𝑒 ·e (1 / (2↑(𝑓𝑦)))))
447427, 446esumeq2d 34027 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → Σ*𝑦𝑋(𝑒 / (2↑(𝑓𝑦))) = Σ*𝑦𝑋(𝑒 ·e (1 / (2↑(𝑓𝑦)))))
44811ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → 𝑋 ∈ V)
44971, 440sselid 3944 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑦𝑋) → (1 / (2↑(𝑓𝑦))) ∈ (0[,]+∞))
450449adantlr 715 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦𝑋) → (1 / (2↑(𝑓𝑦))) ∈ (0[,]+∞))
451402a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑓:𝑋1-1→ℕ) → ℝ+ ⊆ (0[,)+∞))
452451sselda 3946 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → 𝑒 ∈ (0[,)+∞))
453448, 450, 452esummulc2 34072 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → (𝑒 ·e Σ*𝑦𝑋(1 / (2↑(𝑓𝑦)))) = Σ*𝑦𝑋(𝑒 ·e (1 / (2↑(𝑓𝑦)))))
454 nfcv 2891 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑦(1 / (2↑𝑧))
455 oveq2 7395 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 = (𝑓𝑦) → (2↑𝑧) = (2↑(𝑓𝑦)))
456455oveq2d 7403 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 = (𝑓𝑦) → (1 / (2↑𝑧)) = (1 / (2↑(𝑓𝑦))))
45711adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑓:𝑋1-1→ℕ) → 𝑋 ∈ V)
45856simprbi 496 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓:𝑋1-1→ℕ → Fun 𝑓)
45957feqmptd 6929 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑓:𝑋1-1→ℕ → 𝑓 = (𝑦𝑋 ↦ (𝑓𝑦)))
460459cnveqd 5839 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓:𝑋1-1→ℕ → 𝑓 = (𝑦𝑋 ↦ (𝑓𝑦)))
461460funeqd 6538 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓:𝑋1-1→ℕ → (Fun 𝑓 ↔ Fun (𝑦𝑋 ↦ (𝑓𝑦))))
462458, 461mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓:𝑋1-1→ℕ → Fun (𝑦𝑋 ↦ (𝑓𝑦)))
463462adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑓:𝑋1-1→ℕ) → Fun (𝑦𝑋 ↦ (𝑓𝑦)))
464454, 426, 14, 456, 457, 463, 449, 59esumc 34041 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑓:𝑋1-1→ℕ) → Σ*𝑦𝑋(1 / (2↑(𝑓𝑦))) = Σ*𝑧 ∈ {𝑥 ∣ ∃𝑦𝑋 𝑥 = (𝑓𝑦)} (1 / (2↑𝑧)))
465 ffn 6688 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓:𝑋⟶ℕ → 𝑓 Fn 𝑋)
466 fnrnfv 6920 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 Fn 𝑋 → ran 𝑓 = {𝑥 ∣ ∃𝑦𝑋 𝑥 = (𝑓𝑦)})
46758, 465, 4663syl 18 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑓:𝑋1-1→ℕ) → ran 𝑓 = {𝑥 ∣ ∃𝑦𝑋 𝑥 = (𝑓𝑦)})
468395, 467esumeq1d 34025 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑓:𝑋1-1→ℕ) → Σ*𝑧 ∈ ran 𝑓(1 / (2↑𝑧)) = Σ*𝑧 ∈ {𝑥 ∣ ∃𝑦𝑋 𝑥 = (𝑓𝑦)} (1 / (2↑𝑧)))
469464, 468eqtr4d 2767 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑓:𝑋1-1→ℕ) → Σ*𝑦𝑋(1 / (2↑(𝑓𝑦))) = Σ*𝑧 ∈ ran 𝑓(1 / (2↑𝑧)))
470469adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → Σ*𝑦𝑋(1 / (2↑(𝑓𝑦))) = Σ*𝑧 ∈ ran 𝑓(1 / (2↑𝑧)))
471470oveq2d 7403 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → (𝑒 ·e Σ*𝑦𝑋(1 / (2↑(𝑓𝑦)))) = (𝑒 ·e Σ*𝑧 ∈ ran 𝑓(1 / (2↑𝑧))))
472447, 453, 4713eqtr2rd 2771 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → (𝑒 ·e Σ*𝑧 ∈ ran 𝑓(1 / (2↑𝑧))) = Σ*𝑦𝑋(𝑒 / (2↑(𝑓𝑦))))
473394simpld 494 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ*)
474 xmulrid 13239 . . . . . . . . . . . . . . . . . . . 20 (𝑒 ∈ ℝ* → (𝑒 ·e 1) = 𝑒)
475473, 474syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → (𝑒 ·e 1) = 𝑒)
476425, 472, 4753brtr3d 5138 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → Σ*𝑦𝑋(𝑒 / (2↑(𝑓𝑦))) ≤ 𝑒)
477164, 369, 204, 476syl21anc 837 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → Σ*𝑦𝑋(𝑒 / (2↑(𝑓𝑦))) ≤ 𝑒)
478 xleadd2a 13214 . . . . . . . . . . . . . . . . 17 (((Σ*𝑦𝑋(𝑒 / (2↑(𝑓𝑦))) ∈ ℝ*𝑒 ∈ ℝ* ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ*) ∧ Σ*𝑦𝑋(𝑒 / (2↑(𝑓𝑦))) ≤ 𝑒) → (Σ*𝑦𝑋(𝑀𝐴) +𝑒 Σ*𝑦𝑋(𝑒 / (2↑(𝑓𝑦)))) ≤ (Σ*𝑦𝑋(𝑀𝐴) +𝑒 𝑒))
479368, 205, 203, 477, 478syl31anc 1375 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → (Σ*𝑦𝑋(𝑀𝐴) +𝑒 Σ*𝑦𝑋(𝑒 / (2↑(𝑓𝑦)))) ≤ (Σ*𝑦𝑋(𝑀𝐴) +𝑒 𝑒))
480363, 479eqbrtrd 5129 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → Σ*𝑦𝑋((𝑀𝐴) +𝑒 (𝑒 / (2↑(𝑓𝑦)))) ≤ (Σ*𝑦𝑋(𝑀𝐴) +𝑒 𝑒))
481309, 330, 206, 361, 480xrletrd 13122 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → Σ*𝑦𝑋Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) ≤ (Σ*𝑦𝑋(𝑀𝐴) +𝑒 𝑒))
482201, 309, 206, 321, 481xrletrd 13122 . . . . . . . . . . . . 13 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → Σ*𝑐 ran 𝑔(𝑅𝑐) ≤ (Σ*𝑦𝑋(𝑀𝐴) +𝑒 𝑒))
483176, 201, 206, 280, 482xrletrd 13122 . . . . . . . . . . . 12 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → (𝑀 𝑦𝑋 𝐴) ≤ (Σ*𝑦𝑋(𝑀𝐴) +𝑒 𝑒))
484204rpred 12995 . . . . . . . . . . . . 13 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → 𝑒 ∈ ℝ)
485 rexadd 13192 . . . . . . . . . . . . 13 ((Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ ∧ 𝑒 ∈ ℝ) → (Σ*𝑦𝑋(𝑀𝐴) +𝑒 𝑒) = (Σ*𝑦𝑋(𝑀𝐴) + 𝑒))
486202, 484, 485syl2anc 584 . . . . . . . . . . . 12 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → (Σ*𝑦𝑋(𝑀𝐴) +𝑒 𝑒) = (Σ*𝑦𝑋(𝑀𝐴) + 𝑒))
487483, 486breqtrd 5133 . . . . . . . . . . 11 ((((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω}) ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → (𝑀 𝑦𝑋 𝐴) ≤ (Σ*𝑦𝑋(𝑀𝐴) + 𝑒))
488487anasss 466 . . . . . . . . . 10 (((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦))))))) → (𝑀 𝑦𝑋 𝐴) ≤ (Σ*𝑦𝑋(𝑀𝐴) + 𝑒))
489488ex 412 . . . . . . . . 9 ((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → ((𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → (𝑀 𝑦𝑋 𝐴) ≤ (Σ*𝑦𝑋(𝑀𝐴) + 𝑒)))
490489exlimdv 1933 . . . . . . . 8 ((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → (∃𝑔(𝑔:𝑋⟶{𝑧 ∈ 𝒫 dom 𝑅𝑧 ≼ ω} ∧ ∀𝑦𝑋 (𝐴 (𝑔𝑦) ∧ Σ*𝑤 ∈ (𝑔𝑦)(𝑅𝑤) < ((𝑀𝐴) + (𝑒 / (2↑(𝑓𝑦)))))) → (𝑀 𝑦𝑋 𝐴) ≤ (Σ*𝑦𝑋(𝑀𝐴) + 𝑒)))
491163, 490mpd 15 . . . . . . 7 ((((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) ∧ 𝑒 ∈ ℝ+) → (𝑀 𝑦𝑋 𝐴) ≤ (Σ*𝑦𝑋(𝑀𝐴) + 𝑒))
492491ralrimiva 3125 . . . . . 6 (((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) → ∀𝑒 ∈ ℝ+ (𝑀 𝑦𝑋 𝐴) ≤ (Σ*𝑦𝑋(𝑀𝐴) + 𝑒))
493 xralrple 13165 . . . . . . . 8 (((𝑀 𝑦𝑋 𝐴) ∈ ℝ* ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) → ((𝑀 𝑦𝑋 𝐴) ≤ Σ*𝑦𝑋(𝑀𝐴) ↔ ∀𝑒 ∈ ℝ+ (𝑀 𝑦𝑋 𝐴) ≤ (Σ*𝑦𝑋(𝑀𝐴) + 𝑒)))
494175, 493sylan 580 . . . . . . 7 ((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) → ((𝑀 𝑦𝑋 𝐴) ≤ Σ*𝑦𝑋(𝑀𝐴) ↔ ∀𝑒 ∈ ℝ+ (𝑀 𝑦𝑋 𝐴) ≤ (Σ*𝑦𝑋(𝑀𝐴) + 𝑒)))
495494adantr 480 . . . . . 6 (((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) → ((𝑀 𝑦𝑋 𝐴) ≤ Σ*𝑦𝑋(𝑀𝐴) ↔ ∀𝑒 ∈ ℝ+ (𝑀 𝑦𝑋 𝐴) ≤ (Σ*𝑦𝑋(𝑀𝐴) + 𝑒)))
496492, 495mpbird 257 . . . . 5 (((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) ∧ 𝑓:𝑋1-1→ℕ) → (𝑀 𝑦𝑋 𝐴) ≤ Σ*𝑦𝑋(𝑀𝐴))
497496ex 412 . . . 4 ((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) → (𝑓:𝑋1-1→ℕ → (𝑀 𝑦𝑋 𝐴) ≤ Σ*𝑦𝑋(𝑀𝐴)))
498497exlimdv 1933 . . 3 ((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) → (∃𝑓 𝑓:𝑋1-1→ℕ → (𝑀 𝑦𝑋 𝐴) ≤ Σ*𝑦𝑋(𝑀𝐴)))
4998, 498mpd 15 . 2 ((𝜑 ∧ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) → (𝑀 𝑦𝑋 𝐴) ≤ Σ*𝑦𝑋(𝑀𝐴))
500175adantr 480 . . . 4 ((𝜑 ∧ ¬ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) → (𝑀 𝑦𝑋 𝐴) ∈ ℝ*)
501 pnfge 13090 . . . 4 ((𝑀 𝑦𝑋 𝐴) ∈ ℝ* → (𝑀 𝑦𝑋 𝐴) ≤ +∞)
502500, 501syl 17 . . 3 ((𝜑 ∧ ¬ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) → (𝑀 𝑦𝑋 𝐴) ≤ +∞)
50346ralrimiva 3125 . . . . 5 (𝜑 → ∀𝑦𝑋 (𝑀𝐴) ∈ (0[,]+∞))
50414esumcl 34020 . . . . 5 ((𝑋 ∈ V ∧ ∀𝑦𝑋 (𝑀𝐴) ∈ (0[,]+∞)) → Σ*𝑦𝑋(𝑀𝐴) ∈ (0[,]+∞))
50511, 503, 504syl2anc 584 . . . 4 (𝜑 → Σ*𝑦𝑋(𝑀𝐴) ∈ (0[,]+∞))
506 xrge0nre 13414 . . . 4 ((Σ*𝑦𝑋(𝑀𝐴) ∈ (0[,]+∞) ∧ ¬ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) → Σ*𝑦𝑋(𝑀𝐴) = +∞)
507505, 506sylan 580 . . 3 ((𝜑 ∧ ¬ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) → Σ*𝑦𝑋(𝑀𝐴) = +∞)
508502, 507breqtrrd 5135 . 2 ((𝜑 ∧ ¬ Σ*𝑦𝑋(𝑀𝐴) ∈ ℝ) → (𝑀 𝑦𝑋 𝐴) ≤ Σ*𝑦𝑋(𝑀𝐴))
509499, 508pm2.61dan 812 1 (𝜑 → (𝑀 𝑦𝑋 𝐴) ≤ Σ*𝑦𝑋(𝑀𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wne 2925  wral 3044  wrex 3053  {crab 3405  Vcvv 3447  wss 3914  𝒫 cpw 4563   cuni 4871   ciun 4955   class class class wbr 5107  cmpt 5188   Or wor 5545  ccnv 5637  dom cdm 5638  ran crn 5639  Fun wfun 6505   Fn wfn 6506  wf 6507  1-1wf1 6508  cfv 6511  (class class class)co 7387  ωcom 7842  cen 8915  cdom 8916  infcinf 9392  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  +∞cpnf 11205  *cxr 11207   < clt 11208  cle 11209   / cdiv 11835  cn 12186  2c2 12241  cz 12529  +crp 12951   +𝑒 cxad 13070   ·e cxmu 13071  (,)cioo 13306  [,)cico 13308  [,]cicc 13309  seqcseq 13966  cexp 14026  cli 15450  Σcsu 15652  Σ*cesum 34017  toOMeascoms 34282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-reg 9545  ax-inf2 9594  ax-cc 10388  ax-ac2 10416  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147  ax-mulf 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-r1 9717  df-rank 9718  df-card 9892  df-acn 9895  df-ac 10069  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-pi 16038  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-ordt 17464  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-ps 18525  df-tsr 18526  df-plusf 18566  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-subrng 20455  df-subrg 20479  df-abv 20718  df-lmod 20768  df-scaf 20769  df-sra 21080  df-rgmod 21081  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-tmd 23959  df-tgp 23960  df-tsms 24014  df-trg 24047  df-xms 24208  df-ms 24209  df-tms 24210  df-nm 24470  df-ngp 24471  df-nrg 24473  df-nlm 24474  df-ii 24770  df-cncf 24771  df-limc 25767  df-dv 25768  df-log 26465  df-esum 34018  df-oms 34283
This theorem is referenced by:  omsmeas  34314
  Copyright terms: Public domain W3C validator