![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ad6antr | Structured version Visualization version GIF version |
Description: Deduction adding 6 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 5-Apr-2022.) |
Ref | Expression |
---|---|
ad2ant.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ad6antr | ⊢ (((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | adantr 482 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
3 | 2 | ad5antr 733 | 1 ⊢ (((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: ad7antr 737 ad7antlr 738 simp-6l 786 catass 17630 funcpropd 17851 natpropd 17929 restutop 23742 utopreg 23757 restmetu 24079 lgamucov 26542 istrkgcb 27707 tgifscgr 27759 tgbtwnconn1lem3 27825 legtrd 27840 miriso 27921 footexALT 27969 footex 27972 opphllem3 28000 opphl 28005 trgcopy 28055 cgratr 28074 dfcgra2 28081 inaghl 28096 cgrg3col4 28104 f1otrge 28123 clwlkclwwlklem2 29253 cyc3genpm 32311 ghmquskerlem3 32531 rhmquskerlem 32543 elrspunidl 32546 rhmimaidl 32550 mxidlirredi 32587 mxidlirred 32588 ssmxidllem 32589 qsdrngi 32609 lbsdiflsp0 32711 dimkerim 32712 fedgmul 32716 txomap 32814 matunitlindflem1 36484 heicant 36523 mblfinlem3 36527 limclner 44367 hoidmvle 45316 |
Copyright terms: Public domain | W3C validator |