![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ad6antr | Structured version Visualization version GIF version |
Description: Deduction adding 6 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 5-Apr-2022.) |
Ref | Expression |
---|---|
ad2ant.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ad6antr | ⊢ (((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
3 | 2 | ad5antr 733 | 1 ⊢ (((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: ad7antr 737 ad7antlr 738 simp-6l 786 catass 17744 funcpropd 17967 natpropd 18046 ghmqusnsg 19322 ghmquskerlem3 19326 rhmqusnsg 21318 restutop 24267 utopreg 24282 restmetu 24604 lgamucov 27099 istrkgcb 28482 tgifscgr 28534 tgbtwnconn1lem3 28600 legtrd 28615 miriso 28696 footexALT 28744 footex 28747 opphllem3 28775 opphl 28780 trgcopy 28830 cgratr 28849 dfcgra2 28856 inaghl 28871 cgrg3col4 28879 f1otrge 28898 clwlkclwwlklem2 30032 cyc3genpm 33145 erler 33237 rlocaddval 33240 rlocmulval 33241 rloccring 33242 rhmquskerlem 33418 elrspunidl 33421 rhmimaidl 33425 ssdifidllem 33449 ssdifidlprm 33451 mxidlirredi 33464 mxidlirred 33465 ssmxidllem 33466 qsdrngi 33488 1arithidom 33530 1arithufdlem3 33539 r1plmhm 33595 r1pquslmic 33596 lbsdiflsp0 33639 dimkerim 33640 fedgmul 33644 txomap 33780 matunitlindflem1 37576 heicant 37615 mblfinlem3 37619 primrootscoprmpow 42056 aks6d1c2lem4 42084 aks6d1c5 42096 limclner 45572 hoidmvle 46521 |
Copyright terms: Public domain | W3C validator |