Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ad6antr | Structured version Visualization version GIF version |
Description: Deduction adding 6 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 5-Apr-2022.) |
Ref | Expression |
---|---|
ad2ant.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ad6antr | ⊢ (((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | adantr 481 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
3 | 2 | ad5antr 731 | 1 ⊢ (((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: ad7antr 735 ad7antlr 736 simp-6l 784 catass 17492 funcpropd 17713 natpropd 17791 restutop 23495 utopreg 23510 restmetu 23832 lgamucov 26293 istrkgcb 27106 tgifscgr 27158 tgbtwnconn1lem3 27224 legtrd 27239 miriso 27320 footexALT 27368 footex 27371 opphllem3 27399 opphl 27404 trgcopy 27454 cgratr 27473 dfcgra2 27480 inaghl 27495 cgrg3col4 27503 f1otrge 27522 clwlkclwwlklem2 28652 cyc3genpm 31706 elrspunidl 31903 rhmimaidl 31906 ssmxidllem 31938 lbsdiflsp0 32005 dimkerim 32006 fedgmul 32010 txomap 32082 matunitlindflem1 35878 heicant 35917 mblfinlem3 35921 limclner 43528 hoidmvle 44475 |
Copyright terms: Public domain | W3C validator |