| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ad6antr | Structured version Visualization version GIF version | ||
| Description: Deduction adding 6 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 5-Apr-2022.) |
| Ref | Expression |
|---|---|
| ad2ant.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| ad6antr | ⊢ (((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
| 3 | 2 | ad5antr 734 | 1 ⊢ (((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ad7antr 738 ad7antlr 739 simp-6l 786 catass 17647 funcpropd 17864 natpropd 17941 ghmqusnsg 19214 ghmquskerlem3 19218 rhmqusnsg 21195 restutop 24125 utopreg 24140 restmetu 24458 lgamucov 26948 istrkgcb 28383 tgifscgr 28435 tgbtwnconn1lem3 28501 legtrd 28516 miriso 28597 footexALT 28645 footex 28648 opphllem3 28676 opphl 28681 trgcopy 28731 cgratr 28750 dfcgra2 28757 inaghl 28772 cgrg3col4 28780 f1otrge 28799 clwlkclwwlklem2 29929 gsumwun 33005 cyc3genpm 33109 elrgspnlem4 33196 erler 33216 rlocaddval 33219 rlocmulval 33220 rloccring 33221 rhmquskerlem 33396 elrspunidl 33399 rhmimaidl 33403 ssdifidllem 33427 ssdifidlprm 33429 mxidlirredi 33442 mxidlirred 33443 ssmxidllem 33444 qsdrngi 33466 1arithidom 33508 1arithufdlem3 33517 r1plmhm 33575 r1pquslmic 33576 lbsdiflsp0 33622 dimkerim 33623 fedgmul 33627 fldextrspunlsplem 33668 fldext2chn 33718 constrextdg2lem 33738 txomap 33824 matunitlindflem1 37610 heicant 37649 mblfinlem3 37653 primrootscoprmpow 42087 aks6d1c2lem4 42115 aks6d1c5 42127 limclner 45649 hoidmvle 46598 |
| Copyright terms: Public domain | W3C validator |