| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ad6antr | Structured version Visualization version GIF version | ||
| Description: Deduction adding 6 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 5-Apr-2022.) |
| Ref | Expression |
|---|---|
| ad2ant.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| ad6antr | ⊢ (((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
| 3 | 2 | ad5antr 734 | 1 ⊢ (((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ad7antr 738 ad7antlr 739 simp-6l 786 catass 17654 funcpropd 17871 natpropd 17948 ghmqusnsg 19221 ghmquskerlem3 19225 rhmqusnsg 21202 restutop 24132 utopreg 24147 restmetu 24465 lgamucov 26955 istrkgcb 28390 tgifscgr 28442 tgbtwnconn1lem3 28508 legtrd 28523 miriso 28604 footexALT 28652 footex 28655 opphllem3 28683 opphl 28688 trgcopy 28738 cgratr 28757 dfcgra2 28764 inaghl 28779 cgrg3col4 28787 f1otrge 28806 clwlkclwwlklem2 29936 gsumwun 33012 cyc3genpm 33116 elrgspnlem4 33203 erler 33223 rlocaddval 33226 rlocmulval 33227 rloccring 33228 rhmquskerlem 33403 elrspunidl 33406 rhmimaidl 33410 ssdifidllem 33434 ssdifidlprm 33436 mxidlirredi 33449 mxidlirred 33450 ssmxidllem 33451 qsdrngi 33473 1arithidom 33515 1arithufdlem3 33524 r1plmhm 33582 r1pquslmic 33583 lbsdiflsp0 33629 dimkerim 33630 fedgmul 33634 fldextrspunlsplem 33675 fldext2chn 33725 constrextdg2lem 33745 txomap 33831 matunitlindflem1 37617 heicant 37656 mblfinlem3 37660 primrootscoprmpow 42094 aks6d1c2lem4 42122 aks6d1c5 42134 limclner 45656 hoidmvle 46605 |
| Copyright terms: Public domain | W3C validator |