| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ad6antr | Structured version Visualization version GIF version | ||
| Description: Deduction adding 6 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 5-Apr-2022.) |
| Ref | Expression |
|---|---|
| ad2ant.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| ad6antr | ⊢ (((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
| 3 | 2 | ad5antr 734 | 1 ⊢ (((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ad7antr 738 ad7antlr 739 simp-6l 786 catass 17592 funcpropd 17809 natpropd 17886 ghmqusnsg 19195 ghmquskerlem3 19199 rhmqusnsg 21223 restutop 24153 utopreg 24168 restmetu 24486 lgamucov 26976 istrkgcb 28435 tgifscgr 28487 tgbtwnconn1lem3 28553 legtrd 28568 miriso 28649 footexALT 28697 footex 28700 opphllem3 28728 opphl 28733 trgcopy 28783 cgratr 28802 dfcgra2 28809 inaghl 28824 cgrg3col4 28832 f1otrge 28851 clwlkclwwlklem2 29978 gsumwun 33043 cyc3genpm 33119 elrgspnlem4 33210 erler 33230 rlocaddval 33233 rlocmulval 33234 rloccring 33235 rhmquskerlem 33388 elrspunidl 33391 rhmimaidl 33395 ssdifidllem 33419 ssdifidlprm 33421 mxidlirredi 33434 mxidlirred 33435 ssmxidllem 33436 qsdrngi 33458 1arithidom 33500 1arithufdlem3 33509 r1plmhm 33568 r1pquslmic 33569 lbsdiflsp0 33637 dimkerim 33638 fedgmul 33642 fldextrspunlsplem 33684 fldext2chn 33739 constrextdg2lem 33759 txomap 33845 matunitlindflem1 37662 heicant 37701 mblfinlem3 37705 primrootscoprmpow 42138 aks6d1c2lem4 42166 aks6d1c5 42178 limclner 45695 hoidmvle 46644 |
| Copyright terms: Public domain | W3C validator |