Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ad6antr | Structured version Visualization version GIF version |
Description: Deduction adding 6 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 5-Apr-2022.) |
Ref | Expression |
---|---|
ad2ant.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ad6antr | ⊢ (((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
3 | 2 | ad5antr 730 | 1 ⊢ (((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: ad7antr 734 ad7antlr 735 simp-6l 783 catass 17312 funcpropd 17532 natpropd 17610 restutop 23297 utopreg 23312 restmetu 23632 lgamucov 26092 istrkgcb 26721 tgifscgr 26773 tgbtwnconn1lem3 26839 legtrd 26854 miriso 26935 footexALT 26983 footex 26986 opphllem3 27014 opphl 27019 trgcopy 27069 cgratr 27088 dfcgra2 27095 inaghl 27110 cgrg3col4 27118 f1otrge 27137 clwlkclwwlklem2 28265 cyc3genpm 31321 elrspunidl 31508 rhmimaidl 31511 ssmxidllem 31543 lbsdiflsp0 31609 dimkerim 31610 fedgmul 31614 txomap 31686 matunitlindflem1 35700 heicant 35739 mblfinlem3 35743 limclner 43082 hoidmvle 44028 |
Copyright terms: Public domain | W3C validator |