| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ad6antr | Structured version Visualization version GIF version | ||
| Description: Deduction adding 6 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 5-Apr-2022.) |
| Ref | Expression |
|---|---|
| ad2ant.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| ad6antr | ⊢ (((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
| 3 | 2 | ad5antr 734 | 1 ⊢ (((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ad7antr 738 ad7antlr 739 simp-6l 786 catass 17596 funcpropd 17813 natpropd 17890 ghmqusnsg 19198 ghmquskerlem3 19202 rhmqusnsg 21226 restutop 24155 utopreg 24170 restmetu 24488 lgamucov 26978 istrkgcb 28437 tgifscgr 28489 tgbtwnconn1lem3 28555 legtrd 28570 miriso 28651 footexALT 28699 footex 28702 opphllem3 28730 opphl 28735 trgcopy 28785 cgratr 28804 dfcgra2 28811 inaghl 28826 cgrg3col4 28834 f1otrge 28853 clwlkclwwlklem2 29984 gsumwun 33054 cyc3genpm 33130 elrgspnlem4 33221 erler 33241 rlocaddval 33244 rlocmulval 33245 rloccring 33246 rhmquskerlem 33399 elrspunidl 33402 rhmimaidl 33406 ssdifidllem 33430 ssdifidlprm 33432 mxidlirredi 33445 mxidlirred 33446 ssmxidllem 33447 qsdrngi 33469 1arithidom 33511 1arithufdlem3 33520 r1plmhm 33579 r1pquslmic 33580 lbsdiflsp0 33662 dimkerim 33663 fedgmul 33667 fldextrspunlsplem 33709 fldext2chn 33764 constrextdg2lem 33784 txomap 33870 matunitlindflem1 37679 heicant 37718 mblfinlem3 37722 primrootscoprmpow 42215 aks6d1c2lem4 42243 aks6d1c5 42255 limclner 45776 hoidmvle 46725 chnerlem1 47007 |
| Copyright terms: Public domain | W3C validator |