![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ad6antr | Structured version Visualization version GIF version |
Description: Deduction adding 6 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 5-Apr-2022.) |
Ref | Expression |
---|---|
ad2ant.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ad6antr | ⊢ (((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | adantr 479 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
3 | 2 | ad5antr 730 | 1 ⊢ (((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 |
This theorem is referenced by: ad7antr 734 ad7antlr 735 simp-6l 783 catass 17634 funcpropd 17855 natpropd 17933 restutop 23962 utopreg 23977 restmetu 24299 lgamucov 26778 istrkgcb 27974 tgifscgr 28026 tgbtwnconn1lem3 28092 legtrd 28107 miriso 28188 footexALT 28236 footex 28239 opphllem3 28267 opphl 28272 trgcopy 28322 cgratr 28341 dfcgra2 28348 inaghl 28363 cgrg3col4 28371 f1otrge 28390 clwlkclwwlklem2 29520 cyc3genpm 32581 ghmquskerlem3 32805 rhmquskerlem 32817 elrspunidl 32820 rhmimaidl 32824 mxidlirredi 32861 mxidlirred 32862 ssmxidllem 32863 qsdrngi 32883 r1plmhm 32955 r1pquslmic 32956 lbsdiflsp0 32999 dimkerim 33000 fedgmul 33004 txomap 33112 matunitlindflem1 36787 heicant 36826 mblfinlem3 36830 limclner 44665 hoidmvle 45614 |
Copyright terms: Public domain | W3C validator |