![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ad6antr | Structured version Visualization version GIF version |
Description: Deduction adding 6 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 5-Apr-2022.) |
Ref | Expression |
---|---|
ad2ant.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ad6antr | ⊢ (((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | adantr 481 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
3 | 2 | ad5antr 730 | 1 ⊢ (((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 208 df-an 397 |
This theorem is referenced by: ad7antr 734 ad7antlr 735 simp-6l 783 catass 16790 funcpropd 17003 natpropd 17079 restutop 22533 utopreg 22548 restmetu 22867 lgamucov 25301 istrkgcb 25928 tgifscgr 25980 tgbtwnconn1lem3 26046 legtrd 26061 miriso 26142 footexALT 26190 footex 26193 opphllem3 26221 opphl 26226 trgcopy 26276 cgratr 26295 dfcgra2 26302 inaghl 26318 cgrg3col4 26326 f1otrge 26345 clwlkclwwlklem2 27464 cyc3genpm 30428 lbsdiflsp0 30622 dimkerim 30623 fedgmul 30627 matunitlindflem1 34440 heicant 34479 mblfinlem3 34483 limclner 41495 hoidmvle 42446 |
Copyright terms: Public domain | W3C validator |