Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ad6antr | Structured version Visualization version GIF version |
Description: Deduction adding 6 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 5-Apr-2022.) |
Ref | Expression |
---|---|
ad2ant.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ad6antr | ⊢ (((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | adantr 481 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
3 | 2 | ad5antr 731 | 1 ⊢ (((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: ad7antr 735 ad7antlr 736 simp-6l 784 catass 17395 funcpropd 17616 natpropd 17694 restutop 23389 utopreg 23404 restmetu 23726 lgamucov 26187 istrkgcb 26817 tgifscgr 26869 tgbtwnconn1lem3 26935 legtrd 26950 miriso 27031 footexALT 27079 footex 27082 opphllem3 27110 opphl 27115 trgcopy 27165 cgratr 27184 dfcgra2 27191 inaghl 27206 cgrg3col4 27214 f1otrge 27233 clwlkclwwlklem2 28364 cyc3genpm 31419 elrspunidl 31606 rhmimaidl 31609 ssmxidllem 31641 lbsdiflsp0 31707 dimkerim 31708 fedgmul 31712 txomap 31784 matunitlindflem1 35773 heicant 35812 mblfinlem3 35816 limclner 43192 hoidmvle 44138 |
Copyright terms: Public domain | W3C validator |