| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ad6antr | Structured version Visualization version GIF version | ||
| Description: Deduction adding 6 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 5-Apr-2022.) |
| Ref | Expression |
|---|---|
| ad2ant.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| ad6antr | ⊢ (((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
| 3 | 2 | ad5antr 734 | 1 ⊢ (((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ad7antr 738 ad7antlr 739 simp-6l 786 catass 17610 funcpropd 17827 natpropd 17904 ghmqusnsg 19179 ghmquskerlem3 19183 rhmqusnsg 21210 restutop 24141 utopreg 24156 restmetu 24474 lgamucov 26964 istrkgcb 28419 tgifscgr 28471 tgbtwnconn1lem3 28537 legtrd 28552 miriso 28633 footexALT 28681 footex 28684 opphllem3 28712 opphl 28717 trgcopy 28767 cgratr 28786 dfcgra2 28793 inaghl 28808 cgrg3col4 28816 f1otrge 28835 clwlkclwwlklem2 29962 gsumwun 33031 cyc3genpm 33107 elrgspnlem4 33198 erler 33218 rlocaddval 33221 rlocmulval 33222 rloccring 33223 rhmquskerlem 33375 elrspunidl 33378 rhmimaidl 33382 ssdifidllem 33406 ssdifidlprm 33408 mxidlirredi 33421 mxidlirred 33422 ssmxidllem 33423 qsdrngi 33445 1arithidom 33487 1arithufdlem3 33496 r1plmhm 33554 r1pquslmic 33555 lbsdiflsp0 33601 dimkerim 33602 fedgmul 33606 fldextrspunlsplem 33647 fldext2chn 33697 constrextdg2lem 33717 txomap 33803 matunitlindflem1 37598 heicant 37637 mblfinlem3 37641 primrootscoprmpow 42075 aks6d1c2lem4 42103 aks6d1c5 42115 limclner 45636 hoidmvle 46585 |
| Copyright terms: Public domain | W3C validator |