![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ad6antr | Structured version Visualization version GIF version |
Description: Deduction adding 6 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 5-Apr-2022.) |
Ref | Expression |
---|---|
ad2ant.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ad6antr | ⊢ (((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
3 | 2 | ad5antr 734 | 1 ⊢ (((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: ad7antr 738 ad7antlr 739 simp-6l 787 catass 17731 funcpropd 17954 natpropd 18033 ghmqusnsg 19313 ghmquskerlem3 19317 rhmqusnsg 21313 restutop 24262 utopreg 24277 restmetu 24599 lgamucov 27096 istrkgcb 28479 tgifscgr 28531 tgbtwnconn1lem3 28597 legtrd 28612 miriso 28693 footexALT 28741 footex 28744 opphllem3 28772 opphl 28777 trgcopy 28827 cgratr 28846 dfcgra2 28853 inaghl 28868 cgrg3col4 28876 f1otrge 28895 clwlkclwwlklem2 30029 gsumwun 33051 cyc3genpm 33155 elrgspnlem4 33235 erler 33252 rlocaddval 33255 rlocmulval 33256 rloccring 33257 rhmquskerlem 33433 elrspunidl 33436 rhmimaidl 33440 ssdifidllem 33464 ssdifidlprm 33466 mxidlirredi 33479 mxidlirred 33480 ssmxidllem 33481 qsdrngi 33503 1arithidom 33545 1arithufdlem3 33554 r1plmhm 33610 r1pquslmic 33611 lbsdiflsp0 33654 dimkerim 33655 fedgmul 33659 txomap 33795 matunitlindflem1 37603 heicant 37642 mblfinlem3 37646 primrootscoprmpow 42081 aks6d1c2lem4 42109 aks6d1c5 42121 limclner 45607 hoidmvle 46556 |
Copyright terms: Public domain | W3C validator |