Step | Hyp | Ref
| Expression |
1 | | simp-6l 809 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑐 ∈ (𝐻 “ 𝐴)) ∧ 𝑧 ∈ 𝐴) ∧ (𝐻‘𝑧) = 𝑐) ∧ 𝑥 ∈ 𝐽) ∧ 𝑦 ∈ 𝐾) ∧ (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) → 𝜑) |
2 | | simpllr 793 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑐 ∈ (𝐻 “ 𝐴)) ∧ 𝑧 ∈ 𝐴) ∧ (𝐻‘𝑧) = 𝑐) ∧ 𝑥 ∈ 𝐽) ∧ 𝑦 ∈ 𝐾) ∧ (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) → 𝑥 ∈ 𝐽) |
3 | | txomap.1 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → (𝐹 “ 𝑥) ∈ 𝐿) |
4 | 1, 2, 3 | syl2anc 579 |
. . . . . 6
⊢
(((((((𝜑 ∧ 𝑐 ∈ (𝐻 “ 𝐴)) ∧ 𝑧 ∈ 𝐴) ∧ (𝐻‘𝑧) = 𝑐) ∧ 𝑥 ∈ 𝐽) ∧ 𝑦 ∈ 𝐾) ∧ (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) → (𝐹 “ 𝑥) ∈ 𝐿) |
5 | | simplr 785 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑐 ∈ (𝐻 “ 𝐴)) ∧ 𝑧 ∈ 𝐴) ∧ (𝐻‘𝑧) = 𝑐) ∧ 𝑥 ∈ 𝐽) ∧ 𝑦 ∈ 𝐾) ∧ (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) → 𝑦 ∈ 𝐾) |
6 | | txomap.2 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → (𝐺 “ 𝑦) ∈ 𝑀) |
7 | 1, 5, 6 | syl2anc 579 |
. . . . . 6
⊢
(((((((𝜑 ∧ 𝑐 ∈ (𝐻 “ 𝐴)) ∧ 𝑧 ∈ 𝐴) ∧ (𝐻‘𝑧) = 𝑐) ∧ 𝑥 ∈ 𝐽) ∧ 𝑦 ∈ 𝐾) ∧ (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) → (𝐺 “ 𝑦) ∈ 𝑀) |
8 | | txomap.h |
. . . . . . . . . 10
⊢ 𝐻 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑦)〉) |
9 | | opex 5155 |
. . . . . . . . . 10
⊢
〈(𝐹‘𝑥), (𝐺‘𝑦)〉 ∈ V |
10 | 8, 9 | fnmpt2i 7507 |
. . . . . . . . 9
⊢ 𝐻 Fn (𝑋 × 𝑌) |
11 | 10 | a1i 11 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑐 ∈ (𝐻 “ 𝐴)) ∧ 𝑧 ∈ 𝐴) ∧ (𝐻‘𝑧) = 𝑐) ∧ 𝑥 ∈ 𝐽) ∧ 𝑦 ∈ 𝐾) ∧ (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) → 𝐻 Fn (𝑋 × 𝑌)) |
12 | | txomap.j |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
13 | 1, 12 | syl 17 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑐 ∈ (𝐻 “ 𝐴)) ∧ 𝑧 ∈ 𝐴) ∧ (𝐻‘𝑧) = 𝑐) ∧ 𝑥 ∈ 𝐽) ∧ 𝑦 ∈ 𝐾) ∧ (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) → 𝐽 ∈ (TopOn‘𝑋)) |
14 | | toponss 21109 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ∈ 𝐽) → 𝑥 ⊆ 𝑋) |
15 | 13, 2, 14 | syl2anc 579 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑐 ∈ (𝐻 “ 𝐴)) ∧ 𝑧 ∈ 𝐴) ∧ (𝐻‘𝑧) = 𝑐) ∧ 𝑥 ∈ 𝐽) ∧ 𝑦 ∈ 𝐾) ∧ (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) → 𝑥 ⊆ 𝑋) |
16 | | txomap.k |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
17 | 1, 16 | syl 17 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑐 ∈ (𝐻 “ 𝐴)) ∧ 𝑧 ∈ 𝐴) ∧ (𝐻‘𝑧) = 𝑐) ∧ 𝑥 ∈ 𝐽) ∧ 𝑦 ∈ 𝐾) ∧ (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) → 𝐾 ∈ (TopOn‘𝑌)) |
18 | | toponss 21109 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝑦 ∈ 𝐾) → 𝑦 ⊆ 𝑌) |
19 | 17, 5, 18 | syl2anc 579 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑐 ∈ (𝐻 “ 𝐴)) ∧ 𝑧 ∈ 𝐴) ∧ (𝐻‘𝑧) = 𝑐) ∧ 𝑥 ∈ 𝐽) ∧ 𝑦 ∈ 𝐾) ∧ (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) → 𝑦 ⊆ 𝑌) |
20 | | xpss12 5361 |
. . . . . . . . 9
⊢ ((𝑥 ⊆ 𝑋 ∧ 𝑦 ⊆ 𝑌) → (𝑥 × 𝑦) ⊆ (𝑋 × 𝑌)) |
21 | 15, 19, 20 | syl2anc 579 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑐 ∈ (𝐻 “ 𝐴)) ∧ 𝑧 ∈ 𝐴) ∧ (𝐻‘𝑧) = 𝑐) ∧ 𝑥 ∈ 𝐽) ∧ 𝑦 ∈ 𝐾) ∧ (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) → (𝑥 × 𝑦) ⊆ (𝑋 × 𝑌)) |
22 | | simprl 787 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑐 ∈ (𝐻 “ 𝐴)) ∧ 𝑧 ∈ 𝐴) ∧ (𝐻‘𝑧) = 𝑐) ∧ 𝑥 ∈ 𝐽) ∧ 𝑦 ∈ 𝐾) ∧ (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) → 𝑧 ∈ (𝑥 × 𝑦)) |
23 | | fnfvima 6757 |
. . . . . . . 8
⊢ ((𝐻 Fn (𝑋 × 𝑌) ∧ (𝑥 × 𝑦) ⊆ (𝑋 × 𝑌) ∧ 𝑧 ∈ (𝑥 × 𝑦)) → (𝐻‘𝑧) ∈ (𝐻 “ (𝑥 × 𝑦))) |
24 | 11, 21, 22, 23 | syl3anc 1494 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑐 ∈ (𝐻 “ 𝐴)) ∧ 𝑧 ∈ 𝐴) ∧ (𝐻‘𝑧) = 𝑐) ∧ 𝑥 ∈ 𝐽) ∧ 𝑦 ∈ 𝐾) ∧ (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) → (𝐻‘𝑧) ∈ (𝐻 “ (𝑥 × 𝑦))) |
25 | | simp-4r 803 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑐 ∈ (𝐻 “ 𝐴)) ∧ 𝑧 ∈ 𝐴) ∧ (𝐻‘𝑧) = 𝑐) ∧ 𝑥 ∈ 𝐽) ∧ 𝑦 ∈ 𝐾) ∧ (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) → (𝐻‘𝑧) = 𝑐) |
26 | | txomap.f |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:𝑋⟶𝑍) |
27 | | ffn 6282 |
. . . . . . . . 9
⊢ (𝐹:𝑋⟶𝑍 → 𝐹 Fn 𝑋) |
28 | 1, 26, 27 | 3syl 18 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑐 ∈ (𝐻 “ 𝐴)) ∧ 𝑧 ∈ 𝐴) ∧ (𝐻‘𝑧) = 𝑐) ∧ 𝑥 ∈ 𝐽) ∧ 𝑦 ∈ 𝐾) ∧ (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) → 𝐹 Fn 𝑋) |
29 | | txomap.g |
. . . . . . . . 9
⊢ (𝜑 → 𝐺:𝑌⟶𝑇) |
30 | | ffn 6282 |
. . . . . . . . 9
⊢ (𝐺:𝑌⟶𝑇 → 𝐺 Fn 𝑌) |
31 | 1, 29, 30 | 3syl 18 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑐 ∈ (𝐻 “ 𝐴)) ∧ 𝑧 ∈ 𝐴) ∧ (𝐻‘𝑧) = 𝑐) ∧ 𝑥 ∈ 𝐽) ∧ 𝑦 ∈ 𝐾) ∧ (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) → 𝐺 Fn 𝑌) |
32 | 8, 28, 31, 15, 19 | fimaproj 30441 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑐 ∈ (𝐻 “ 𝐴)) ∧ 𝑧 ∈ 𝐴) ∧ (𝐻‘𝑧) = 𝑐) ∧ 𝑥 ∈ 𝐽) ∧ 𝑦 ∈ 𝐾) ∧ (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) → (𝐻 “ (𝑥 × 𝑦)) = ((𝐹 “ 𝑥) × (𝐺 “ 𝑦))) |
33 | 24, 25, 32 | 3eltr3d 2920 |
. . . . . 6
⊢
(((((((𝜑 ∧ 𝑐 ∈ (𝐻 “ 𝐴)) ∧ 𝑧 ∈ 𝐴) ∧ (𝐻‘𝑧) = 𝑐) ∧ 𝑥 ∈ 𝐽) ∧ 𝑦 ∈ 𝐾) ∧ (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) → 𝑐 ∈ ((𝐹 “ 𝑥) × (𝐺 “ 𝑦))) |
34 | | imass2 5746 |
. . . . . . . 8
⊢ ((𝑥 × 𝑦) ⊆ 𝐴 → (𝐻 “ (𝑥 × 𝑦)) ⊆ (𝐻 “ 𝐴)) |
35 | 34 | ad2antll 720 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑐 ∈ (𝐻 “ 𝐴)) ∧ 𝑧 ∈ 𝐴) ∧ (𝐻‘𝑧) = 𝑐) ∧ 𝑥 ∈ 𝐽) ∧ 𝑦 ∈ 𝐾) ∧ (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) → (𝐻 “ (𝑥 × 𝑦)) ⊆ (𝐻 “ 𝐴)) |
36 | 32, 35 | eqsstr3d 3865 |
. . . . . 6
⊢
(((((((𝜑 ∧ 𝑐 ∈ (𝐻 “ 𝐴)) ∧ 𝑧 ∈ 𝐴) ∧ (𝐻‘𝑧) = 𝑐) ∧ 𝑥 ∈ 𝐽) ∧ 𝑦 ∈ 𝐾) ∧ (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) → ((𝐹 “ 𝑥) × (𝐺 “ 𝑦)) ⊆ (𝐻 “ 𝐴)) |
37 | | xpeq1 5360 |
. . . . . . . . 9
⊢ (𝑎 = (𝐹 “ 𝑥) → (𝑎 × 𝑏) = ((𝐹 “ 𝑥) × 𝑏)) |
38 | 37 | eleq2d 2892 |
. . . . . . . 8
⊢ (𝑎 = (𝐹 “ 𝑥) → (𝑐 ∈ (𝑎 × 𝑏) ↔ 𝑐 ∈ ((𝐹 “ 𝑥) × 𝑏))) |
39 | 37 | sseq1d 3857 |
. . . . . . . 8
⊢ (𝑎 = (𝐹 “ 𝑥) → ((𝑎 × 𝑏) ⊆ (𝐻 “ 𝐴) ↔ ((𝐹 “ 𝑥) × 𝑏) ⊆ (𝐻 “ 𝐴))) |
40 | 38, 39 | anbi12d 624 |
. . . . . . 7
⊢ (𝑎 = (𝐹 “ 𝑥) → ((𝑐 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐻 “ 𝐴)) ↔ (𝑐 ∈ ((𝐹 “ 𝑥) × 𝑏) ∧ ((𝐹 “ 𝑥) × 𝑏) ⊆ (𝐻 “ 𝐴)))) |
41 | | xpeq2 5367 |
. . . . . . . . 9
⊢ (𝑏 = (𝐺 “ 𝑦) → ((𝐹 “ 𝑥) × 𝑏) = ((𝐹 “ 𝑥) × (𝐺 “ 𝑦))) |
42 | 41 | eleq2d 2892 |
. . . . . . . 8
⊢ (𝑏 = (𝐺 “ 𝑦) → (𝑐 ∈ ((𝐹 “ 𝑥) × 𝑏) ↔ 𝑐 ∈ ((𝐹 “ 𝑥) × (𝐺 “ 𝑦)))) |
43 | 41 | sseq1d 3857 |
. . . . . . . 8
⊢ (𝑏 = (𝐺 “ 𝑦) → (((𝐹 “ 𝑥) × 𝑏) ⊆ (𝐻 “ 𝐴) ↔ ((𝐹 “ 𝑥) × (𝐺 “ 𝑦)) ⊆ (𝐻 “ 𝐴))) |
44 | 42, 43 | anbi12d 624 |
. . . . . . 7
⊢ (𝑏 = (𝐺 “ 𝑦) → ((𝑐 ∈ ((𝐹 “ 𝑥) × 𝑏) ∧ ((𝐹 “ 𝑥) × 𝑏) ⊆ (𝐻 “ 𝐴)) ↔ (𝑐 ∈ ((𝐹 “ 𝑥) × (𝐺 “ 𝑦)) ∧ ((𝐹 “ 𝑥) × (𝐺 “ 𝑦)) ⊆ (𝐻 “ 𝐴)))) |
45 | 40, 44 | rspc2ev 3541 |
. . . . . 6
⊢ (((𝐹 “ 𝑥) ∈ 𝐿 ∧ (𝐺 “ 𝑦) ∈ 𝑀 ∧ (𝑐 ∈ ((𝐹 “ 𝑥) × (𝐺 “ 𝑦)) ∧ ((𝐹 “ 𝑥) × (𝐺 “ 𝑦)) ⊆ (𝐻 “ 𝐴))) → ∃𝑎 ∈ 𝐿 ∃𝑏 ∈ 𝑀 (𝑐 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐻 “ 𝐴))) |
46 | 4, 7, 33, 36, 45 | syl112anc 1497 |
. . . . 5
⊢
(((((((𝜑 ∧ 𝑐 ∈ (𝐻 “ 𝐴)) ∧ 𝑧 ∈ 𝐴) ∧ (𝐻‘𝑧) = 𝑐) ∧ 𝑥 ∈ 𝐽) ∧ 𝑦 ∈ 𝐾) ∧ (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) → ∃𝑎 ∈ 𝐿 ∃𝑏 ∈ 𝑀 (𝑐 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐻 “ 𝐴))) |
47 | | txomap.a |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ (𝐽 ×t 𝐾)) |
48 | | eltx 21749 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐴 ∈ (𝐽 ×t 𝐾) ↔ ∀𝑧 ∈ 𝐴 ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐾 (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴))) |
49 | 12, 16, 48 | syl2anc 579 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴 ∈ (𝐽 ×t 𝐾) ↔ ∀𝑧 ∈ 𝐴 ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐾 (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴))) |
50 | 47, 49 | mpbid 224 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑧 ∈ 𝐴 ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐾 (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) |
51 | 50 | r19.21bi 3141 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐾 (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) |
52 | 51 | adantlr 706 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐻 “ 𝐴)) ∧ 𝑧 ∈ 𝐴) → ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐾 (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) |
53 | 52 | adantr 474 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑐 ∈ (𝐻 “ 𝐴)) ∧ 𝑧 ∈ 𝐴) ∧ (𝐻‘𝑧) = 𝑐) → ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐾 (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) |
54 | 46, 53 | r19.29vva 3291 |
. . . 4
⊢ ((((𝜑 ∧ 𝑐 ∈ (𝐻 “ 𝐴)) ∧ 𝑧 ∈ 𝐴) ∧ (𝐻‘𝑧) = 𝑐) → ∃𝑎 ∈ 𝐿 ∃𝑏 ∈ 𝑀 (𝑐 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐻 “ 𝐴))) |
55 | 8 | mpt2fun 7027 |
. . . . . 6
⊢ Fun 𝐻 |
56 | | fvelima 6499 |
. . . . . 6
⊢ ((Fun
𝐻 ∧ 𝑐 ∈ (𝐻 “ 𝐴)) → ∃𝑧 ∈ 𝐴 (𝐻‘𝑧) = 𝑐) |
57 | 55, 56 | mpan 681 |
. . . . 5
⊢ (𝑐 ∈ (𝐻 “ 𝐴) → ∃𝑧 ∈ 𝐴 (𝐻‘𝑧) = 𝑐) |
58 | 57 | adantl 475 |
. . . 4
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐻 “ 𝐴)) → ∃𝑧 ∈ 𝐴 (𝐻‘𝑧) = 𝑐) |
59 | 54, 58 | r19.29a 3288 |
. . 3
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐻 “ 𝐴)) → ∃𝑎 ∈ 𝐿 ∃𝑏 ∈ 𝑀 (𝑐 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐻 “ 𝐴))) |
60 | 59 | ralrimiva 3175 |
. 2
⊢ (𝜑 → ∀𝑐 ∈ (𝐻 “ 𝐴)∃𝑎 ∈ 𝐿 ∃𝑏 ∈ 𝑀 (𝑐 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐻 “ 𝐴))) |
61 | | txomap.l |
. . 3
⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) |
62 | | txomap.m |
. . 3
⊢ (𝜑 → 𝑀 ∈ (TopOn‘𝑇)) |
63 | | eltx 21749 |
. . 3
⊢ ((𝐿 ∈ (TopOn‘𝑍) ∧ 𝑀 ∈ (TopOn‘𝑇)) → ((𝐻 “ 𝐴) ∈ (𝐿 ×t 𝑀) ↔ ∀𝑐 ∈ (𝐻 “ 𝐴)∃𝑎 ∈ 𝐿 ∃𝑏 ∈ 𝑀 (𝑐 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐻 “ 𝐴)))) |
64 | 61, 62, 63 | syl2anc 579 |
. 2
⊢ (𝜑 → ((𝐻 “ 𝐴) ∈ (𝐿 ×t 𝑀) ↔ ∀𝑐 ∈ (𝐻 “ 𝐴)∃𝑎 ∈ 𝐿 ∃𝑏 ∈ 𝑀 (𝑐 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐻 “ 𝐴)))) |
65 | 60, 64 | mpbird 249 |
1
⊢ (𝜑 → (𝐻 “ 𝐴) ∈ (𝐿 ×t 𝑀)) |