Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  txomap Structured version   Visualization version   GIF version

Theorem txomap 31100
 Description: Given two open maps 𝐹 and 𝐺, 𝐻 mapping pairs of sets, is also an open map for the product topology. (Contributed by Thierry Arnoux, 29-Dec-2019.)
Hypotheses
Ref Expression
txomap.f (𝜑𝐹:𝑋𝑍)
txomap.g (𝜑𝐺:𝑌𝑇)
txomap.j (𝜑𝐽 ∈ (TopOn‘𝑋))
txomap.k (𝜑𝐾 ∈ (TopOn‘𝑌))
txomap.l (𝜑𝐿 ∈ (TopOn‘𝑍))
txomap.m (𝜑𝑀 ∈ (TopOn‘𝑇))
txomap.1 ((𝜑𝑥𝐽) → (𝐹𝑥) ∈ 𝐿)
txomap.2 ((𝜑𝑦𝐾) → (𝐺𝑦) ∈ 𝑀)
txomap.a (𝜑𝐴 ∈ (𝐽 ×t 𝐾))
txomap.h 𝐻 = (𝑥𝑋, 𝑦𝑌 ↦ ⟨(𝐹𝑥), (𝐺𝑦)⟩)
Assertion
Ref Expression
txomap (𝜑 → (𝐻𝐴) ∈ (𝐿 ×t 𝑀))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥,𝐻,𝑦   𝑥,𝐽,𝑦   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝑥,𝑀,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑇(𝑥,𝑦)   𝑍(𝑥,𝑦)

Proof of Theorem txomap
Dummy variables 𝑎 𝑏 𝑐 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp-6l 785 . . . . . . 7 (((((((𝜑𝑐 ∈ (𝐻𝐴)) ∧ 𝑧𝐴) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝐽) ∧ 𝑦𝐾) ∧ (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) → 𝜑)
2 simpllr 774 . . . . . . 7 (((((((𝜑𝑐 ∈ (𝐻𝐴)) ∧ 𝑧𝐴) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝐽) ∧ 𝑦𝐾) ∧ (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) → 𝑥𝐽)
3 txomap.1 . . . . . . 7 ((𝜑𝑥𝐽) → (𝐹𝑥) ∈ 𝐿)
41, 2, 3syl2anc 586 . . . . . 6 (((((((𝜑𝑐 ∈ (𝐻𝐴)) ∧ 𝑧𝐴) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝐽) ∧ 𝑦𝐾) ∧ (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) → (𝐹𝑥) ∈ 𝐿)
5 simplr 767 . . . . . . 7 (((((((𝜑𝑐 ∈ (𝐻𝐴)) ∧ 𝑧𝐴) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝐽) ∧ 𝑦𝐾) ∧ (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) → 𝑦𝐾)
6 txomap.2 . . . . . . 7 ((𝜑𝑦𝐾) → (𝐺𝑦) ∈ 𝑀)
71, 5, 6syl2anc 586 . . . . . 6 (((((((𝜑𝑐 ∈ (𝐻𝐴)) ∧ 𝑧𝐴) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝐽) ∧ 𝑦𝐾) ∧ (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) → (𝐺𝑦) ∈ 𝑀)
8 txomap.h . . . . . . . . 9 𝐻 = (𝑥𝑋, 𝑦𝑌 ↦ ⟨(𝐹𝑥), (𝐺𝑦)⟩)
9 opex 5358 . . . . . . . . 9 ⟨(𝐹𝑥), (𝐺𝑦)⟩ ∈ V
108, 9fnmpoi 7770 . . . . . . . 8 𝐻 Fn (𝑋 × 𝑌)
11 txomap.j . . . . . . . . . . 11 (𝜑𝐽 ∈ (TopOn‘𝑋))
1211ad6antr 734 . . . . . . . . . 10 (((((((𝜑𝑐 ∈ (𝐻𝐴)) ∧ 𝑧𝐴) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝐽) ∧ 𝑦𝐾) ∧ (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) → 𝐽 ∈ (TopOn‘𝑋))
13 toponss 21537 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥𝐽) → 𝑥𝑋)
1412, 2, 13syl2anc 586 . . . . . . . . 9 (((((((𝜑𝑐 ∈ (𝐻𝐴)) ∧ 𝑧𝐴) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝐽) ∧ 𝑦𝐾) ∧ (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) → 𝑥𝑋)
15 txomap.k . . . . . . . . . . 11 (𝜑𝐾 ∈ (TopOn‘𝑌))
1615ad6antr 734 . . . . . . . . . 10 (((((((𝜑𝑐 ∈ (𝐻𝐴)) ∧ 𝑧𝐴) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝐽) ∧ 𝑦𝐾) ∧ (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) → 𝐾 ∈ (TopOn‘𝑌))
17 toponss 21537 . . . . . . . . . 10 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝑦𝐾) → 𝑦𝑌)
1816, 5, 17syl2anc 586 . . . . . . . . 9 (((((((𝜑𝑐 ∈ (𝐻𝐴)) ∧ 𝑧𝐴) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝐽) ∧ 𝑦𝐾) ∧ (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) → 𝑦𝑌)
19 xpss12 5572 . . . . . . . . 9 ((𝑥𝑋𝑦𝑌) → (𝑥 × 𝑦) ⊆ (𝑋 × 𝑌))
2014, 18, 19syl2anc 586 . . . . . . . 8 (((((((𝜑𝑐 ∈ (𝐻𝐴)) ∧ 𝑧𝐴) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝐽) ∧ 𝑦𝐾) ∧ (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) → (𝑥 × 𝑦) ⊆ (𝑋 × 𝑌))
21 simprl 769 . . . . . . . 8 (((((((𝜑𝑐 ∈ (𝐻𝐴)) ∧ 𝑧𝐴) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝐽) ∧ 𝑦𝐾) ∧ (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) → 𝑧 ∈ (𝑥 × 𝑦))
22 fnfvima 6997 . . . . . . . 8 ((𝐻 Fn (𝑋 × 𝑌) ∧ (𝑥 × 𝑦) ⊆ (𝑋 × 𝑌) ∧ 𝑧 ∈ (𝑥 × 𝑦)) → (𝐻𝑧) ∈ (𝐻 “ (𝑥 × 𝑦)))
2310, 20, 21, 22mp3an2i 1462 . . . . . . 7 (((((((𝜑𝑐 ∈ (𝐻𝐴)) ∧ 𝑧𝐴) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝐽) ∧ 𝑦𝐾) ∧ (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) → (𝐻𝑧) ∈ (𝐻 “ (𝑥 × 𝑦)))
24 simp-4r 782 . . . . . . 7 (((((((𝜑𝑐 ∈ (𝐻𝐴)) ∧ 𝑧𝐴) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝐽) ∧ 𝑦𝐾) ∧ (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) → (𝐻𝑧) = 𝑐)
25 txomap.f . . . . . . . . 9 (𝜑𝐹:𝑋𝑍)
26 ffn 6516 . . . . . . . . 9 (𝐹:𝑋𝑍𝐹 Fn 𝑋)
271, 25, 263syl 18 . . . . . . . 8 (((((((𝜑𝑐 ∈ (𝐻𝐴)) ∧ 𝑧𝐴) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝐽) ∧ 𝑦𝐾) ∧ (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) → 𝐹 Fn 𝑋)
28 txomap.g . . . . . . . . 9 (𝜑𝐺:𝑌𝑇)
29 ffn 6516 . . . . . . . . 9 (𝐺:𝑌𝑇𝐺 Fn 𝑌)
301, 28, 293syl 18 . . . . . . . 8 (((((((𝜑𝑐 ∈ (𝐻𝐴)) ∧ 𝑧𝐴) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝐽) ∧ 𝑦𝐾) ∧ (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) → 𝐺 Fn 𝑌)
318, 27, 30, 14, 18fimaproj 7831 . . . . . . 7 (((((((𝜑𝑐 ∈ (𝐻𝐴)) ∧ 𝑧𝐴) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝐽) ∧ 𝑦𝐾) ∧ (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) → (𝐻 “ (𝑥 × 𝑦)) = ((𝐹𝑥) × (𝐺𝑦)))
3223, 24, 313eltr3d 2929 . . . . . 6 (((((((𝜑𝑐 ∈ (𝐻𝐴)) ∧ 𝑧𝐴) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝐽) ∧ 𝑦𝐾) ∧ (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) → 𝑐 ∈ ((𝐹𝑥) × (𝐺𝑦)))
33 imass2 5967 . . . . . . . 8 ((𝑥 × 𝑦) ⊆ 𝐴 → (𝐻 “ (𝑥 × 𝑦)) ⊆ (𝐻𝐴))
3433ad2antll 727 . . . . . . 7 (((((((𝜑𝑐 ∈ (𝐻𝐴)) ∧ 𝑧𝐴) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝐽) ∧ 𝑦𝐾) ∧ (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) → (𝐻 “ (𝑥 × 𝑦)) ⊆ (𝐻𝐴))
3531, 34eqsstrrd 4008 . . . . . 6 (((((((𝜑𝑐 ∈ (𝐻𝐴)) ∧ 𝑧𝐴) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝐽) ∧ 𝑦𝐾) ∧ (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) → ((𝐹𝑥) × (𝐺𝑦)) ⊆ (𝐻𝐴))
36 xpeq1 5571 . . . . . . . . 9 (𝑎 = (𝐹𝑥) → (𝑎 × 𝑏) = ((𝐹𝑥) × 𝑏))
3736eleq2d 2900 . . . . . . . 8 (𝑎 = (𝐹𝑥) → (𝑐 ∈ (𝑎 × 𝑏) ↔ 𝑐 ∈ ((𝐹𝑥) × 𝑏)))
3836sseq1d 4000 . . . . . . . 8 (𝑎 = (𝐹𝑥) → ((𝑎 × 𝑏) ⊆ (𝐻𝐴) ↔ ((𝐹𝑥) × 𝑏) ⊆ (𝐻𝐴)))
3937, 38anbi12d 632 . . . . . . 7 (𝑎 = (𝐹𝑥) → ((𝑐 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐻𝐴)) ↔ (𝑐 ∈ ((𝐹𝑥) × 𝑏) ∧ ((𝐹𝑥) × 𝑏) ⊆ (𝐻𝐴))))
40 xpeq2 5578 . . . . . . . . 9 (𝑏 = (𝐺𝑦) → ((𝐹𝑥) × 𝑏) = ((𝐹𝑥) × (𝐺𝑦)))
4140eleq2d 2900 . . . . . . . 8 (𝑏 = (𝐺𝑦) → (𝑐 ∈ ((𝐹𝑥) × 𝑏) ↔ 𝑐 ∈ ((𝐹𝑥) × (𝐺𝑦))))
4240sseq1d 4000 . . . . . . . 8 (𝑏 = (𝐺𝑦) → (((𝐹𝑥) × 𝑏) ⊆ (𝐻𝐴) ↔ ((𝐹𝑥) × (𝐺𝑦)) ⊆ (𝐻𝐴)))
4341, 42anbi12d 632 . . . . . . 7 (𝑏 = (𝐺𝑦) → ((𝑐 ∈ ((𝐹𝑥) × 𝑏) ∧ ((𝐹𝑥) × 𝑏) ⊆ (𝐻𝐴)) ↔ (𝑐 ∈ ((𝐹𝑥) × (𝐺𝑦)) ∧ ((𝐹𝑥) × (𝐺𝑦)) ⊆ (𝐻𝐴))))
4439, 43rspc2ev 3637 . . . . . 6 (((𝐹𝑥) ∈ 𝐿 ∧ (𝐺𝑦) ∈ 𝑀 ∧ (𝑐 ∈ ((𝐹𝑥) × (𝐺𝑦)) ∧ ((𝐹𝑥) × (𝐺𝑦)) ⊆ (𝐻𝐴))) → ∃𝑎𝐿𝑏𝑀 (𝑐 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐻𝐴)))
454, 7, 32, 35, 44syl112anc 1370 . . . . 5 (((((((𝜑𝑐 ∈ (𝐻𝐴)) ∧ 𝑧𝐴) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝐽) ∧ 𝑦𝐾) ∧ (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) → ∃𝑎𝐿𝑏𝑀 (𝑐 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐻𝐴)))
46 txomap.a . . . . . . . 8 (𝜑𝐴 ∈ (𝐽 ×t 𝐾))
47 eltx 22178 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐴 ∈ (𝐽 ×t 𝐾) ↔ ∀𝑧𝐴𝑥𝐽𝑦𝐾 (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)))
4811, 15, 47syl2anc 586 . . . . . . . 8 (𝜑 → (𝐴 ∈ (𝐽 ×t 𝐾) ↔ ∀𝑧𝐴𝑥𝐽𝑦𝐾 (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)))
4946, 48mpbid 234 . . . . . . 7 (𝜑 → ∀𝑧𝐴𝑥𝐽𝑦𝐾 (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴))
5049r19.21bi 3210 . . . . . 6 ((𝜑𝑧𝐴) → ∃𝑥𝐽𝑦𝐾 (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴))
5150ad4ant13 749 . . . . 5 ((((𝜑𝑐 ∈ (𝐻𝐴)) ∧ 𝑧𝐴) ∧ (𝐻𝑧) = 𝑐) → ∃𝑥𝐽𝑦𝐾 (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴))
5245, 51r19.29vva 3338 . . . 4 ((((𝜑𝑐 ∈ (𝐻𝐴)) ∧ 𝑧𝐴) ∧ (𝐻𝑧) = 𝑐) → ∃𝑎𝐿𝑏𝑀 (𝑐 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐻𝐴)))
538mpofun 7278 . . . . . 6 Fun 𝐻
54 fvelima 6733 . . . . . 6 ((Fun 𝐻𝑐 ∈ (𝐻𝐴)) → ∃𝑧𝐴 (𝐻𝑧) = 𝑐)
5553, 54mpan 688 . . . . 5 (𝑐 ∈ (𝐻𝐴) → ∃𝑧𝐴 (𝐻𝑧) = 𝑐)
5655adantl 484 . . . 4 ((𝜑𝑐 ∈ (𝐻𝐴)) → ∃𝑧𝐴 (𝐻𝑧) = 𝑐)
5752, 56r19.29a 3291 . . 3 ((𝜑𝑐 ∈ (𝐻𝐴)) → ∃𝑎𝐿𝑏𝑀 (𝑐 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐻𝐴)))
5857ralrimiva 3184 . 2 (𝜑 → ∀𝑐 ∈ (𝐻𝐴)∃𝑎𝐿𝑏𝑀 (𝑐 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐻𝐴)))
59 txomap.l . . 3 (𝜑𝐿 ∈ (TopOn‘𝑍))
60 txomap.m . . 3 (𝜑𝑀 ∈ (TopOn‘𝑇))
61 eltx 22178 . . 3 ((𝐿 ∈ (TopOn‘𝑍) ∧ 𝑀 ∈ (TopOn‘𝑇)) → ((𝐻𝐴) ∈ (𝐿 ×t 𝑀) ↔ ∀𝑐 ∈ (𝐻𝐴)∃𝑎𝐿𝑏𝑀 (𝑐 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐻𝐴))))
6259, 60, 61syl2anc 586 . 2 (𝜑 → ((𝐻𝐴) ∈ (𝐿 ×t 𝑀) ↔ ∀𝑐 ∈ (𝐻𝐴)∃𝑎𝐿𝑏𝑀 (𝑐 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐻𝐴))))
6358, 62mpbird 259 1 (𝜑 → (𝐻𝐴) ∈ (𝐿 ×t 𝑀))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 208   ∧ wa 398   = wceq 1537   ∈ wcel 2114  ∀wral 3140  ∃wrex 3141   ⊆ wss 3938  ⟨cop 4575   × cxp 5555   “ cima 5560  Fun wfun 6351   Fn wfn 6352  ⟶wf 6353  ‘cfv 6357  (class class class)co 7158   ∈ cmpo 7160  TopOnctopon 21520   ×t ctx 22170 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-1st 7691  df-2nd 7692  df-topgen 16719  df-topon 21521  df-tx 22172 This theorem is referenced by:  qtophaus  31102
 Copyright terms: Public domain W3C validator