MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  miriso Structured version   Visualization version   GIF version

Theorem miriso 26935
Description: The point inversion function is an isometry, i.e. it is conserves congruence. Because it is also a bijection, it is also a motion. Theorem 7.13 of [Schwabhauser] p. 50. (Contributed by Thierry Arnoux, 6-Jun-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirval.a (𝜑𝐴𝑃)
mirfv.m 𝑀 = (𝑆𝐴)
miriso.1 (𝜑𝑋𝑃)
miriso.2 (𝜑𝑌𝑃)
Assertion
Ref Expression
miriso (𝜑 → ((𝑀𝑋) (𝑀𝑌)) = (𝑋 𝑌))

Proof of Theorem miriso
Dummy variables 𝑥 𝑦 𝑧 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . 4 ((𝜑𝑋 = 𝐴) → 𝑋 = 𝐴)
21oveq1d 7270 . . 3 ((𝜑𝑋 = 𝐴) → (𝑋 𝑌) = (𝐴 𝑌))
3 mirval.p . . . 4 𝑃 = (Base‘𝐺)
4 mirval.d . . . 4 = (dist‘𝐺)
5 mirval.i . . . 4 𝐼 = (Itv‘𝐺)
6 mirval.l . . . 4 𝐿 = (LineG‘𝐺)
7 mirval.s . . . 4 𝑆 = (pInvG‘𝐺)
8 mirval.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
98adantr 480 . . . 4 ((𝜑𝑋 = 𝐴) → 𝐺 ∈ TarskiG)
10 mirval.a . . . . 5 (𝜑𝐴𝑃)
1110adantr 480 . . . 4 ((𝜑𝑋 = 𝐴) → 𝐴𝑃)
12 mirfv.m . . . 4 𝑀 = (𝑆𝐴)
13 miriso.2 . . . . 5 (𝜑𝑌𝑃)
1413adantr 480 . . . 4 ((𝜑𝑋 = 𝐴) → 𝑌𝑃)
153, 4, 5, 6, 7, 9, 11, 12, 14mircgr 26922 . . 3 ((𝜑𝑋 = 𝐴) → (𝐴 (𝑀𝑌)) = (𝐴 𝑌))
16 miriso.1 . . . . . 6 (𝜑𝑋𝑃)
1716adantr 480 . . . . 5 ((𝜑𝑋 = 𝐴) → 𝑋𝑃)
181eqcomd 2744 . . . . . 6 ((𝜑𝑋 = 𝐴) → 𝐴 = 𝑋)
1918oveq2d 7271 . . . . 5 ((𝜑𝑋 = 𝐴) → (𝐴 𝐴) = (𝐴 𝑋))
203, 4, 5, 9, 11, 17tgbtwntriv1 26756 . . . . 5 ((𝜑𝑋 = 𝐴) → 𝐴 ∈ (𝐴𝐼𝑋))
213, 4, 5, 6, 7, 9, 11, 12, 17, 11, 19, 20ismir 26924 . . . 4 ((𝜑𝑋 = 𝐴) → 𝐴 = (𝑀𝑋))
2221oveq1d 7270 . . 3 ((𝜑𝑋 = 𝐴) → (𝐴 (𝑀𝑌)) = ((𝑀𝑋) (𝑀𝑌)))
232, 15, 223eqtr2rd 2785 . 2 ((𝜑𝑋 = 𝐴) → ((𝑀𝑋) (𝑀𝑌)) = (𝑋 𝑌))
248adantr 480 . . . . . . . . . 10 ((𝜑𝑋𝐴) → 𝐺 ∈ TarskiG)
2524ad2antrr 722 . . . . . . . . 9 ((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) → 𝐺 ∈ TarskiG)
2625ad6antr 732 . . . . . . . 8 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝐺 ∈ TarskiG)
27 simplr 765 . . . . . . . . 9 ((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) → 𝑥𝑃)
2827ad6antr 732 . . . . . . . 8 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝑥𝑃)
2916adantr 480 . . . . . . . . 9 ((𝜑𝑋𝐴) → 𝑋𝑃)
3029ad8antr 736 . . . . . . . 8 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝑋𝑃)
3110adantr 480 . . . . . . . . . 10 ((𝜑𝑋𝐴) → 𝐴𝑃)
3231ad2antrr 722 . . . . . . . . 9 ((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) → 𝐴𝑃)
3332ad6antr 732 . . . . . . . 8 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝐴𝑃)
3413adantr 480 . . . . . . . . . 10 ((𝜑𝑋𝐴) → 𝑌𝑃)
3534ad2antrr 722 . . . . . . . . 9 ((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) → 𝑌𝑃)
3635ad6antr 732 . . . . . . . 8 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝑌𝑃)
37 simp-4r 780 . . . . . . . 8 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝑧𝑃)
383, 4, 5, 6, 7, 24, 31, 12, 29mircl 26926 . . . . . . . . . 10 ((𝜑𝑋𝐴) → (𝑀𝑋) ∈ 𝑃)
3938ad2antrr 722 . . . . . . . . 9 ((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) → (𝑀𝑋) ∈ 𝑃)
4039ad6antr 732 . . . . . . . 8 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑀𝑋) ∈ 𝑃)
413, 4, 5, 6, 7, 24, 31, 12, 34mircl 26926 . . . . . . . . 9 ((𝜑𝑋𝐴) → (𝑀𝑌) ∈ 𝑃)
4241ad8antr 736 . . . . . . . 8 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑀𝑌) ∈ 𝑃)
433, 4, 5, 6, 7, 26, 33, 12, 30mirbtwn 26923 . . . . . . . . . 10 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝐴 ∈ ((𝑀𝑋)𝐼𝑋))
44 simp-7r 786 . . . . . . . . . . 11 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴)))
4544simpld 494 . . . . . . . . . 10 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝑋 ∈ ((𝑀𝑋)𝐼𝑥))
463, 4, 5, 26, 40, 33, 30, 28, 43, 45tgbtwnexch3 26759 . . . . . . . . 9 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝑋 ∈ (𝐴𝐼𝑥))
473, 4, 5, 26, 33, 30, 28, 46tgbtwncom 26753 . . . . . . . 8 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝑋 ∈ (𝑥𝐼𝐴))
483, 4, 5, 26, 40, 30, 28, 45tgbtwncom 26753 . . . . . . . . . . 11 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝑋 ∈ (𝑥𝐼(𝑀𝑋)))
493, 4, 5, 26, 40, 33, 30, 43tgbtwncom 26753 . . . . . . . . . . 11 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝐴 ∈ (𝑋𝐼(𝑀𝑋)))
503, 4, 5, 26, 28, 30, 33, 40, 48, 49tgbtwnexch2 26761 . . . . . . . . . 10 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝐴 ∈ (𝑥𝐼(𝑀𝑋)))
51 simpllr 772 . . . . . . . . . . 11 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴)))
5251simpld 494 . . . . . . . . . 10 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑀𝑋) ∈ (𝑥𝐼𝑧))
533, 4, 5, 26, 28, 33, 40, 37, 50, 52tgbtwnexch3 26759 . . . . . . . . 9 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑀𝑋) ∈ (𝐴𝐼𝑧))
543, 4, 5, 26, 33, 40, 37, 53tgbtwncom 26753 . . . . . . . 8 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑀𝑋) ∈ (𝑧𝐼𝐴))
55 simp-4r 780 . . . . . . . . . . . 12 ((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) → 𝑦𝑃)
5655ad2antrr 722 . . . . . . . . . . 11 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝑦𝑃)
573, 4, 5, 6, 7, 26, 33, 12, 36mirbtwn 26923 . . . . . . . . . . . . 13 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝐴 ∈ ((𝑀𝑌)𝐼𝑌))
58 simp-5r 782 . . . . . . . . . . . . . 14 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴)))
5958simpld 494 . . . . . . . . . . . . 13 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝑌 ∈ ((𝑀𝑌)𝐼𝑦))
603, 4, 5, 26, 42, 33, 36, 56, 57, 59tgbtwnexch3 26759 . . . . . . . . . . . 12 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝑌 ∈ (𝐴𝐼𝑦))
613, 4, 5, 26, 33, 36, 56, 60tgbtwncom 26753 . . . . . . . . . . 11 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝑌 ∈ (𝑦𝐼𝐴))
623, 4, 5, 6, 7, 26, 33, 12, 30mircgr 26922 . . . . . . . . . . . 12 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝐴 (𝑀𝑋)) = (𝐴 𝑋))
6358simprd 495 . . . . . . . . . . . . 13 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑌 𝑦) = (𝑋 𝐴))
643, 4, 5, 26, 36, 56, 30, 33, 63tgcgrcomlr 26745 . . . . . . . . . . . 12 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑦 𝑌) = (𝐴 𝑋))
6562, 64eqtr4d 2781 . . . . . . . . . . 11 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝐴 (𝑀𝑋)) = (𝑦 𝑌))
6651simprd 495 . . . . . . . . . . 11 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → ((𝑀𝑋) 𝑧) = (𝑌 𝐴))
673, 4, 5, 26, 33, 40, 37, 56, 36, 33, 53, 61, 65, 66tgcgrextend 26750 . . . . . . . . . 10 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝐴 𝑧) = (𝑦 𝐴))
6844simprd 495 . . . . . . . . . . . 12 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑋 𝑥) = (𝑌 𝐴))
6968eqcomd 2744 . . . . . . . . . . 11 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑌 𝐴) = (𝑋 𝑥))
703, 4, 5, 26, 56, 36, 33, 33, 30, 28, 61, 46, 64, 69tgcgrextend 26750 . . . . . . . . . 10 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑦 𝐴) = (𝐴 𝑥))
7167, 70eqtr2d 2779 . . . . . . . . 9 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝐴 𝑥) = (𝐴 𝑧))
723, 4, 5, 26, 33, 28, 33, 37, 71tgcgrcomlr 26745 . . . . . . . 8 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑥 𝐴) = (𝑧 𝐴))
7362eqcomd 2744 . . . . . . . . 9 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝐴 𝑋) = (𝐴 (𝑀𝑋)))
743, 4, 5, 26, 33, 30, 33, 40, 73tgcgrcomlr 26745 . . . . . . . 8 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑋 𝐴) = ((𝑀𝑋) 𝐴))
75 simplr 765 . . . . . . . . . 10 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝑡𝑃)
763, 4, 5, 26, 42, 36, 56, 59tgbtwncom 26753 . . . . . . . . . . . . 13 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝑌 ∈ (𝑦𝐼(𝑀𝑌)))
773, 4, 5, 26, 42, 33, 36, 57tgbtwncom 26753 . . . . . . . . . . . . 13 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝐴 ∈ (𝑌𝐼(𝑀𝑌)))
783, 4, 5, 26, 56, 36, 33, 42, 76, 77tgbtwnexch2 26761 . . . . . . . . . . . 12 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝐴 ∈ (𝑦𝐼(𝑀𝑌)))
79 simpr 484 . . . . . . . . . . . . 13 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴)))
8079simpld 494 . . . . . . . . . . . 12 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑀𝑌) ∈ (𝑦𝐼𝑡))
813, 4, 5, 26, 56, 33, 42, 75, 78, 80tgbtwnexch3 26759 . . . . . . . . . . 11 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑀𝑌) ∈ (𝐴𝐼𝑡))
823, 4, 5, 26, 33, 42, 75, 81tgbtwncom 26753 . . . . . . . . . 10 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑀𝑌) ∈ (𝑡𝐼𝐴))
833, 4, 5, 26, 30, 28, 36, 33, 68tgcgrcomlr 26745 . . . . . . . . . . . . . . 15 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑥 𝑋) = (𝐴 𝑌))
843, 4, 5, 6, 7, 26, 33, 12, 36mircgr 26922 . . . . . . . . . . . . . . 15 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝐴 (𝑀𝑌)) = (𝐴 𝑌))
8583, 84eqtr4d 2781 . . . . . . . . . . . . . 14 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑥 𝑋) = (𝐴 (𝑀𝑌)))
8679simprd 495 . . . . . . . . . . . . . . 15 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → ((𝑀𝑌) 𝑡) = (𝑋 𝐴))
8786eqcomd 2744 . . . . . . . . . . . . . 14 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑋 𝐴) = ((𝑀𝑌) 𝑡))
883, 4, 5, 26, 28, 30, 33, 33, 42, 75, 47, 81, 85, 87tgcgrextend 26750 . . . . . . . . . . . . 13 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑥 𝐴) = (𝐴 𝑡))
893, 4, 5, 26, 33, 75axtgcgrrflx 26727 . . . . . . . . . . . . 13 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝐴 𝑡) = (𝑡 𝐴))
9088, 89eqtrd 2778 . . . . . . . . . . . 12 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑥 𝐴) = (𝑡 𝐴))
913, 4, 5, 26, 28, 33, 75, 33, 90tgcgrcomlr 26745 . . . . . . . . . . 11 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝐴 𝑥) = (𝐴 𝑡))
9270, 91, 893eqtrd 2782 . . . . . . . . . 10 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑦 𝐴) = (𝑡 𝐴))
933, 4, 5, 26, 33, 42, 33, 36, 84tgcgrcomlr 26745 . . . . . . . . . . 11 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → ((𝑀𝑌) 𝐴) = (𝑌 𝐴))
9493eqcomd 2744 . . . . . . . . . 10 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑌 𝐴) = ((𝑀𝑌) 𝐴))
953, 4, 5, 26, 75, 37axtgcgrrflx 26727 . . . . . . . . . . 11 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑡 𝑧) = (𝑧 𝑡))
96 simp-9r 790 . . . . . . . . . . . . . . 15 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝑋𝐴)
9796neneqd 2947 . . . . . . . . . . . . . 14 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → ¬ 𝑋 = 𝐴)
9826adantr 480 . . . . . . . . . . . . . . . 16 (((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) ∧ 𝑥 = 𝐴) → 𝐺 ∈ TarskiG)
9933adantr 480 . . . . . . . . . . . . . . . 16 (((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) ∧ 𝑥 = 𝐴) → 𝐴𝑃)
10030adantr 480 . . . . . . . . . . . . . . . 16 (((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) ∧ 𝑥 = 𝐴) → 𝑋𝑃)
10146adantr 480 . . . . . . . . . . . . . . . . 17 (((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) ∧ 𝑥 = 𝐴) → 𝑋 ∈ (𝐴𝐼𝑥))
102 simpr 484 . . . . . . . . . . . . . . . . . 18 (((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) ∧ 𝑥 = 𝐴) → 𝑥 = 𝐴)
103102oveq2d 7271 . . . . . . . . . . . . . . . . 17 (((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) ∧ 𝑥 = 𝐴) → (𝐴𝐼𝑥) = (𝐴𝐼𝐴))
104101, 103eleqtrd 2841 . . . . . . . . . . . . . . . 16 (((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) ∧ 𝑥 = 𝐴) → 𝑋 ∈ (𝐴𝐼𝐴))
1053, 4, 5, 98, 99, 100, 104axtgbtwnid 26731 . . . . . . . . . . . . . . 15 (((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) ∧ 𝑥 = 𝐴) → 𝐴 = 𝑋)
106105eqcomd 2744 . . . . . . . . . . . . . 14 (((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) ∧ 𝑥 = 𝐴) → 𝑋 = 𝐴)
10797, 106mtand 812 . . . . . . . . . . . . 13 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → ¬ 𝑥 = 𝐴)
108107neqned 2949 . . . . . . . . . . . 12 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝑥𝐴)
1093, 4, 5, 26, 28, 33, 40, 37, 50, 52tgbtwnexch 26763 . . . . . . . . . . . 12 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝐴 ∈ (𝑥𝐼𝑧))
1103, 4, 5, 26, 56, 33, 42, 75, 78, 80tgbtwnexch 26763 . . . . . . . . . . . . 13 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝐴 ∈ (𝑦𝐼𝑡))
1113, 4, 5, 26, 56, 33, 75, 110tgbtwncom 26753 . . . . . . . . . . . 12 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝐴 ∈ (𝑡𝐼𝑦))
1123, 4, 5, 26, 56, 33axtgcgrrflx 26727 . . . . . . . . . . . . 13 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑦 𝐴) = (𝐴 𝑦))
11367, 112eqtrd 2778 . . . . . . . . . . . 12 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝐴 𝑧) = (𝐴 𝑦))
1143, 4, 5, 26, 28, 75axtgcgrrflx 26727 . . . . . . . . . . . 12 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑥 𝑡) = (𝑡 𝑥))
11591eqcomd 2744 . . . . . . . . . . . 12 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝐴 𝑡) = (𝐴 𝑥))
1163, 4, 5, 26, 28, 33, 37, 75, 33, 56, 75, 28, 108, 109, 111, 90, 113, 114, 115axtg5seg 26730 . . . . . . . . . . 11 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑧 𝑡) = (𝑦 𝑥))
11795, 116eqtr2d 2779 . . . . . . . . . 10 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑦 𝑥) = (𝑡 𝑧))
1183, 4, 5, 26, 56, 36, 33, 28, 75, 42, 33, 37, 61, 82, 92, 94, 117, 71tgifscgr 26773 . . . . . . . . 9 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑌 𝑥) = ((𝑀𝑌) 𝑧))
1193, 4, 5, 26, 36, 28, 42, 37, 118tgcgrcomlr 26745 . . . . . . . 8 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑥 𝑌) = (𝑧 (𝑀𝑌)))
12084eqcomd 2744 . . . . . . . 8 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝐴 𝑌) = (𝐴 (𝑀𝑌)))
1213, 4, 5, 26, 28, 30, 33, 36, 37, 40, 33, 42, 47, 54, 72, 74, 119, 120tgifscgr 26773 . . . . . . 7 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑋 𝑌) = ((𝑀𝑋) (𝑀𝑌)))
122121eqcomd 2744 . . . . . 6 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → ((𝑀𝑋) (𝑀𝑌)) = (𝑋 𝑌))
123 simp-6l 783 . . . . . . 7 ((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) → (𝜑𝑋𝐴))
124 simpllr 772 . . . . . . 7 ((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) → (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴)))
12524ad2antrr 722 . . . . . . . 8 ((((𝜑𝑋𝐴) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) → 𝐺 ∈ TarskiG)
126 simplr 765 . . . . . . . 8 ((((𝜑𝑋𝐴) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) → 𝑦𝑃)
12741ad2antrr 722 . . . . . . . 8 ((((𝜑𝑋𝐴) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) → (𝑀𝑌) ∈ 𝑃)
12829ad2antrr 722 . . . . . . . 8 ((((𝜑𝑋𝐴) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) → 𝑋𝑃)
12931ad2antrr 722 . . . . . . . 8 ((((𝜑𝑋𝐴) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) → 𝐴𝑃)
1303, 4, 5, 125, 126, 127, 128, 129axtgsegcon 26729 . . . . . . 7 ((((𝜑𝑋𝐴) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) → ∃𝑡𝑃 ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴)))
131123, 55, 124, 130syl21anc 834 . . . . . 6 ((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) → ∃𝑡𝑃 ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴)))
132122, 131r19.29a 3217 . . . . 5 ((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) → ((𝑀𝑋) (𝑀𝑌)) = (𝑋 𝑌))
1333, 4, 5, 25, 27, 39, 35, 32axtgsegcon 26729 . . . . . 6 ((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) → ∃𝑧𝑃 ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴)))
134133ad2antrr 722 . . . . 5 ((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) → ∃𝑧𝑃 ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴)))
135132, 134r19.29a 3217 . . . 4 ((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) → ((𝑀𝑋) (𝑀𝑌)) = (𝑋 𝑌))
1363, 4, 5, 24, 41, 34, 29, 31axtgsegcon 26729 . . . . 5 ((𝜑𝑋𝐴) → ∃𝑦𝑃 (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴)))
137136ad2antrr 722 . . . 4 ((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) → ∃𝑦𝑃 (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴)))
138135, 137r19.29a 3217 . . 3 ((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) → ((𝑀𝑋) (𝑀𝑌)) = (𝑋 𝑌))
1393, 4, 5, 24, 38, 29, 34, 31axtgsegcon 26729 . . 3 ((𝜑𝑋𝐴) → ∃𝑥𝑃 (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴)))
140138, 139r19.29a 3217 . 2 ((𝜑𝑋𝐴) → ((𝑀𝑋) (𝑀𝑌)) = (𝑋 𝑌))
14123, 140pm2.61dane 3031 1 (𝜑 → ((𝑀𝑋) (𝑀𝑌)) = (𝑋 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  wrex 3064  cfv 6418  (class class class)co 7255  Basecbs 16840  distcds 16897  TarskiGcstrkg 26693  Itvcitv 26699  LineGclng 26700  pInvGcmir 26917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-fz 13169  df-hash 13973  df-trkgc 26713  df-trkgb 26714  df-trkgcb 26715  df-trkg 26718  df-mir 26918
This theorem is referenced by:  mirbtwni  26936  mircgrs  26938  mirmot  26940  miduniq  26950  ragcom  26963  colperpexlem1  26995  lmiisolem  27061  hypcgrlem2  27065  hypcgr  27066
  Copyright terms: Public domain W3C validator