MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  miriso Structured version   Visualization version   GIF version

Theorem miriso 27041
Description: The point inversion function is an isometry, i.e. it is conserves congruence. Because it is also a bijection, it is also a motion. Theorem 7.13 of [Schwabhauser] p. 50. (Contributed by Thierry Arnoux, 6-Jun-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirval.a (𝜑𝐴𝑃)
mirfv.m 𝑀 = (𝑆𝐴)
miriso.1 (𝜑𝑋𝑃)
miriso.2 (𝜑𝑌𝑃)
Assertion
Ref Expression
miriso (𝜑 → ((𝑀𝑋) (𝑀𝑌)) = (𝑋 𝑌))

Proof of Theorem miriso
Dummy variables 𝑥 𝑦 𝑧 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . . 4 ((𝜑𝑋 = 𝐴) → 𝑋 = 𝐴)
21oveq1d 7282 . . 3 ((𝜑𝑋 = 𝐴) → (𝑋 𝑌) = (𝐴 𝑌))
3 mirval.p . . . 4 𝑃 = (Base‘𝐺)
4 mirval.d . . . 4 = (dist‘𝐺)
5 mirval.i . . . 4 𝐼 = (Itv‘𝐺)
6 mirval.l . . . 4 𝐿 = (LineG‘𝐺)
7 mirval.s . . . 4 𝑆 = (pInvG‘𝐺)
8 mirval.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
98adantr 481 . . . 4 ((𝜑𝑋 = 𝐴) → 𝐺 ∈ TarskiG)
10 mirval.a . . . . 5 (𝜑𝐴𝑃)
1110adantr 481 . . . 4 ((𝜑𝑋 = 𝐴) → 𝐴𝑃)
12 mirfv.m . . . 4 𝑀 = (𝑆𝐴)
13 miriso.2 . . . . 5 (𝜑𝑌𝑃)
1413adantr 481 . . . 4 ((𝜑𝑋 = 𝐴) → 𝑌𝑃)
153, 4, 5, 6, 7, 9, 11, 12, 14mircgr 27028 . . 3 ((𝜑𝑋 = 𝐴) → (𝐴 (𝑀𝑌)) = (𝐴 𝑌))
16 miriso.1 . . . . . 6 (𝜑𝑋𝑃)
1716adantr 481 . . . . 5 ((𝜑𝑋 = 𝐴) → 𝑋𝑃)
181eqcomd 2744 . . . . . 6 ((𝜑𝑋 = 𝐴) → 𝐴 = 𝑋)
1918oveq2d 7283 . . . . 5 ((𝜑𝑋 = 𝐴) → (𝐴 𝐴) = (𝐴 𝑋))
203, 4, 5, 9, 11, 17tgbtwntriv1 26862 . . . . 5 ((𝜑𝑋 = 𝐴) → 𝐴 ∈ (𝐴𝐼𝑋))
213, 4, 5, 6, 7, 9, 11, 12, 17, 11, 19, 20ismir 27030 . . . 4 ((𝜑𝑋 = 𝐴) → 𝐴 = (𝑀𝑋))
2221oveq1d 7282 . . 3 ((𝜑𝑋 = 𝐴) → (𝐴 (𝑀𝑌)) = ((𝑀𝑋) (𝑀𝑌)))
232, 15, 223eqtr2rd 2785 . 2 ((𝜑𝑋 = 𝐴) → ((𝑀𝑋) (𝑀𝑌)) = (𝑋 𝑌))
248adantr 481 . . . . . . . . . 10 ((𝜑𝑋𝐴) → 𝐺 ∈ TarskiG)
2524ad2antrr 723 . . . . . . . . 9 ((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) → 𝐺 ∈ TarskiG)
2625ad6antr 733 . . . . . . . 8 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝐺 ∈ TarskiG)
27 simplr 766 . . . . . . . . 9 ((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) → 𝑥𝑃)
2827ad6antr 733 . . . . . . . 8 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝑥𝑃)
2916adantr 481 . . . . . . . . 9 ((𝜑𝑋𝐴) → 𝑋𝑃)
3029ad8antr 737 . . . . . . . 8 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝑋𝑃)
3110adantr 481 . . . . . . . . . 10 ((𝜑𝑋𝐴) → 𝐴𝑃)
3231ad2antrr 723 . . . . . . . . 9 ((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) → 𝐴𝑃)
3332ad6antr 733 . . . . . . . 8 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝐴𝑃)
3413adantr 481 . . . . . . . . . 10 ((𝜑𝑋𝐴) → 𝑌𝑃)
3534ad2antrr 723 . . . . . . . . 9 ((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) → 𝑌𝑃)
3635ad6antr 733 . . . . . . . 8 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝑌𝑃)
37 simp-4r 781 . . . . . . . 8 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝑧𝑃)
383, 4, 5, 6, 7, 24, 31, 12, 29mircl 27032 . . . . . . . . . 10 ((𝜑𝑋𝐴) → (𝑀𝑋) ∈ 𝑃)
3938ad2antrr 723 . . . . . . . . 9 ((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) → (𝑀𝑋) ∈ 𝑃)
4039ad6antr 733 . . . . . . . 8 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑀𝑋) ∈ 𝑃)
413, 4, 5, 6, 7, 24, 31, 12, 34mircl 27032 . . . . . . . . 9 ((𝜑𝑋𝐴) → (𝑀𝑌) ∈ 𝑃)
4241ad8antr 737 . . . . . . . 8 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑀𝑌) ∈ 𝑃)
433, 4, 5, 6, 7, 26, 33, 12, 30mirbtwn 27029 . . . . . . . . . 10 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝐴 ∈ ((𝑀𝑋)𝐼𝑋))
44 simp-7r 787 . . . . . . . . . . 11 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴)))
4544simpld 495 . . . . . . . . . 10 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝑋 ∈ ((𝑀𝑋)𝐼𝑥))
463, 4, 5, 26, 40, 33, 30, 28, 43, 45tgbtwnexch3 26865 . . . . . . . . 9 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝑋 ∈ (𝐴𝐼𝑥))
473, 4, 5, 26, 33, 30, 28, 46tgbtwncom 26859 . . . . . . . 8 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝑋 ∈ (𝑥𝐼𝐴))
483, 4, 5, 26, 40, 30, 28, 45tgbtwncom 26859 . . . . . . . . . . 11 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝑋 ∈ (𝑥𝐼(𝑀𝑋)))
493, 4, 5, 26, 40, 33, 30, 43tgbtwncom 26859 . . . . . . . . . . 11 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝐴 ∈ (𝑋𝐼(𝑀𝑋)))
503, 4, 5, 26, 28, 30, 33, 40, 48, 49tgbtwnexch2 26867 . . . . . . . . . 10 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝐴 ∈ (𝑥𝐼(𝑀𝑋)))
51 simpllr 773 . . . . . . . . . . 11 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴)))
5251simpld 495 . . . . . . . . . 10 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑀𝑋) ∈ (𝑥𝐼𝑧))
533, 4, 5, 26, 28, 33, 40, 37, 50, 52tgbtwnexch3 26865 . . . . . . . . 9 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑀𝑋) ∈ (𝐴𝐼𝑧))
543, 4, 5, 26, 33, 40, 37, 53tgbtwncom 26859 . . . . . . . 8 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑀𝑋) ∈ (𝑧𝐼𝐴))
55 simp-4r 781 . . . . . . . . . . . 12 ((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) → 𝑦𝑃)
5655ad2antrr 723 . . . . . . . . . . 11 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝑦𝑃)
573, 4, 5, 6, 7, 26, 33, 12, 36mirbtwn 27029 . . . . . . . . . . . . 13 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝐴 ∈ ((𝑀𝑌)𝐼𝑌))
58 simp-5r 783 . . . . . . . . . . . . . 14 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴)))
5958simpld 495 . . . . . . . . . . . . 13 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝑌 ∈ ((𝑀𝑌)𝐼𝑦))
603, 4, 5, 26, 42, 33, 36, 56, 57, 59tgbtwnexch3 26865 . . . . . . . . . . . 12 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝑌 ∈ (𝐴𝐼𝑦))
613, 4, 5, 26, 33, 36, 56, 60tgbtwncom 26859 . . . . . . . . . . 11 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝑌 ∈ (𝑦𝐼𝐴))
623, 4, 5, 6, 7, 26, 33, 12, 30mircgr 27028 . . . . . . . . . . . 12 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝐴 (𝑀𝑋)) = (𝐴 𝑋))
6358simprd 496 . . . . . . . . . . . . 13 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑌 𝑦) = (𝑋 𝐴))
643, 4, 5, 26, 36, 56, 30, 33, 63tgcgrcomlr 26851 . . . . . . . . . . . 12 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑦 𝑌) = (𝐴 𝑋))
6562, 64eqtr4d 2781 . . . . . . . . . . 11 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝐴 (𝑀𝑋)) = (𝑦 𝑌))
6651simprd 496 . . . . . . . . . . 11 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → ((𝑀𝑋) 𝑧) = (𝑌 𝐴))
673, 4, 5, 26, 33, 40, 37, 56, 36, 33, 53, 61, 65, 66tgcgrextend 26856 . . . . . . . . . 10 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝐴 𝑧) = (𝑦 𝐴))
6844simprd 496 . . . . . . . . . . . 12 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑋 𝑥) = (𝑌 𝐴))
6968eqcomd 2744 . . . . . . . . . . 11 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑌 𝐴) = (𝑋 𝑥))
703, 4, 5, 26, 56, 36, 33, 33, 30, 28, 61, 46, 64, 69tgcgrextend 26856 . . . . . . . . . 10 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑦 𝐴) = (𝐴 𝑥))
7167, 70eqtr2d 2779 . . . . . . . . 9 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝐴 𝑥) = (𝐴 𝑧))
723, 4, 5, 26, 33, 28, 33, 37, 71tgcgrcomlr 26851 . . . . . . . 8 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑥 𝐴) = (𝑧 𝐴))
7362eqcomd 2744 . . . . . . . . 9 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝐴 𝑋) = (𝐴 (𝑀𝑋)))
743, 4, 5, 26, 33, 30, 33, 40, 73tgcgrcomlr 26851 . . . . . . . 8 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑋 𝐴) = ((𝑀𝑋) 𝐴))
75 simplr 766 . . . . . . . . . 10 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝑡𝑃)
763, 4, 5, 26, 42, 36, 56, 59tgbtwncom 26859 . . . . . . . . . . . . 13 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝑌 ∈ (𝑦𝐼(𝑀𝑌)))
773, 4, 5, 26, 42, 33, 36, 57tgbtwncom 26859 . . . . . . . . . . . . 13 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝐴 ∈ (𝑌𝐼(𝑀𝑌)))
783, 4, 5, 26, 56, 36, 33, 42, 76, 77tgbtwnexch2 26867 . . . . . . . . . . . 12 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝐴 ∈ (𝑦𝐼(𝑀𝑌)))
79 simpr 485 . . . . . . . . . . . . 13 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴)))
8079simpld 495 . . . . . . . . . . . 12 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑀𝑌) ∈ (𝑦𝐼𝑡))
813, 4, 5, 26, 56, 33, 42, 75, 78, 80tgbtwnexch3 26865 . . . . . . . . . . 11 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑀𝑌) ∈ (𝐴𝐼𝑡))
823, 4, 5, 26, 33, 42, 75, 81tgbtwncom 26859 . . . . . . . . . 10 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑀𝑌) ∈ (𝑡𝐼𝐴))
833, 4, 5, 26, 30, 28, 36, 33, 68tgcgrcomlr 26851 . . . . . . . . . . . . . . 15 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑥 𝑋) = (𝐴 𝑌))
843, 4, 5, 6, 7, 26, 33, 12, 36mircgr 27028 . . . . . . . . . . . . . . 15 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝐴 (𝑀𝑌)) = (𝐴 𝑌))
8583, 84eqtr4d 2781 . . . . . . . . . . . . . 14 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑥 𝑋) = (𝐴 (𝑀𝑌)))
8679simprd 496 . . . . . . . . . . . . . . 15 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → ((𝑀𝑌) 𝑡) = (𝑋 𝐴))
8786eqcomd 2744 . . . . . . . . . . . . . 14 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑋 𝐴) = ((𝑀𝑌) 𝑡))
883, 4, 5, 26, 28, 30, 33, 33, 42, 75, 47, 81, 85, 87tgcgrextend 26856 . . . . . . . . . . . . 13 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑥 𝐴) = (𝐴 𝑡))
893, 4, 5, 26, 33, 75axtgcgrrflx 26833 . . . . . . . . . . . . 13 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝐴 𝑡) = (𝑡 𝐴))
9088, 89eqtrd 2778 . . . . . . . . . . . 12 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑥 𝐴) = (𝑡 𝐴))
913, 4, 5, 26, 28, 33, 75, 33, 90tgcgrcomlr 26851 . . . . . . . . . . 11 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝐴 𝑥) = (𝐴 𝑡))
9270, 91, 893eqtrd 2782 . . . . . . . . . 10 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑦 𝐴) = (𝑡 𝐴))
933, 4, 5, 26, 33, 42, 33, 36, 84tgcgrcomlr 26851 . . . . . . . . . . 11 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → ((𝑀𝑌) 𝐴) = (𝑌 𝐴))
9493eqcomd 2744 . . . . . . . . . 10 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑌 𝐴) = ((𝑀𝑌) 𝐴))
953, 4, 5, 26, 75, 37axtgcgrrflx 26833 . . . . . . . . . . 11 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑡 𝑧) = (𝑧 𝑡))
96 simp-9r 791 . . . . . . . . . . . . . . 15 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝑋𝐴)
9796neneqd 2948 . . . . . . . . . . . . . 14 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → ¬ 𝑋 = 𝐴)
9826adantr 481 . . . . . . . . . . . . . . . 16 (((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) ∧ 𝑥 = 𝐴) → 𝐺 ∈ TarskiG)
9933adantr 481 . . . . . . . . . . . . . . . 16 (((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) ∧ 𝑥 = 𝐴) → 𝐴𝑃)
10030adantr 481 . . . . . . . . . . . . . . . 16 (((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) ∧ 𝑥 = 𝐴) → 𝑋𝑃)
10146adantr 481 . . . . . . . . . . . . . . . . 17 (((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) ∧ 𝑥 = 𝐴) → 𝑋 ∈ (𝐴𝐼𝑥))
102 simpr 485 . . . . . . . . . . . . . . . . . 18 (((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) ∧ 𝑥 = 𝐴) → 𝑥 = 𝐴)
103102oveq2d 7283 . . . . . . . . . . . . . . . . 17 (((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) ∧ 𝑥 = 𝐴) → (𝐴𝐼𝑥) = (𝐴𝐼𝐴))
104101, 103eleqtrd 2841 . . . . . . . . . . . . . . . 16 (((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) ∧ 𝑥 = 𝐴) → 𝑋 ∈ (𝐴𝐼𝐴))
1053, 4, 5, 98, 99, 100, 104axtgbtwnid 26837 . . . . . . . . . . . . . . 15 (((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) ∧ 𝑥 = 𝐴) → 𝐴 = 𝑋)
106105eqcomd 2744 . . . . . . . . . . . . . 14 (((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) ∧ 𝑥 = 𝐴) → 𝑋 = 𝐴)
10797, 106mtand 813 . . . . . . . . . . . . 13 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → ¬ 𝑥 = 𝐴)
108107neqned 2950 . . . . . . . . . . . 12 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝑥𝐴)
1093, 4, 5, 26, 28, 33, 40, 37, 50, 52tgbtwnexch 26869 . . . . . . . . . . . 12 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝐴 ∈ (𝑥𝐼𝑧))
1103, 4, 5, 26, 56, 33, 42, 75, 78, 80tgbtwnexch 26869 . . . . . . . . . . . . 13 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝐴 ∈ (𝑦𝐼𝑡))
1113, 4, 5, 26, 56, 33, 75, 110tgbtwncom 26859 . . . . . . . . . . . 12 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝐴 ∈ (𝑡𝐼𝑦))
1123, 4, 5, 26, 56, 33axtgcgrrflx 26833 . . . . . . . . . . . . 13 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑦 𝐴) = (𝐴 𝑦))
11367, 112eqtrd 2778 . . . . . . . . . . . 12 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝐴 𝑧) = (𝐴 𝑦))
1143, 4, 5, 26, 28, 75axtgcgrrflx 26833 . . . . . . . . . . . 12 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑥 𝑡) = (𝑡 𝑥))
11591eqcomd 2744 . . . . . . . . . . . 12 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝐴 𝑡) = (𝐴 𝑥))
1163, 4, 5, 26, 28, 33, 37, 75, 33, 56, 75, 28, 108, 109, 111, 90, 113, 114, 115axtg5seg 26836 . . . . . . . . . . 11 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑧 𝑡) = (𝑦 𝑥))
11795, 116eqtr2d 2779 . . . . . . . . . 10 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑦 𝑥) = (𝑡 𝑧))
1183, 4, 5, 26, 56, 36, 33, 28, 75, 42, 33, 37, 61, 82, 92, 94, 117, 71tgifscgr 26879 . . . . . . . . 9 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑌 𝑥) = ((𝑀𝑌) 𝑧))
1193, 4, 5, 26, 36, 28, 42, 37, 118tgcgrcomlr 26851 . . . . . . . 8 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑥 𝑌) = (𝑧 (𝑀𝑌)))
12084eqcomd 2744 . . . . . . . 8 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝐴 𝑌) = (𝐴 (𝑀𝑌)))
1213, 4, 5, 26, 28, 30, 33, 36, 37, 40, 33, 42, 47, 54, 72, 74, 119, 120tgifscgr 26879 . . . . . . 7 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑋 𝑌) = ((𝑀𝑋) (𝑀𝑌)))
122121eqcomd 2744 . . . . . 6 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → ((𝑀𝑋) (𝑀𝑌)) = (𝑋 𝑌))
123 simp-6l 784 . . . . . . 7 ((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) → (𝜑𝑋𝐴))
124 simpllr 773 . . . . . . 7 ((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) → (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴)))
12524ad2antrr 723 . . . . . . . 8 ((((𝜑𝑋𝐴) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) → 𝐺 ∈ TarskiG)
126 simplr 766 . . . . . . . 8 ((((𝜑𝑋𝐴) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) → 𝑦𝑃)
12741ad2antrr 723 . . . . . . . 8 ((((𝜑𝑋𝐴) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) → (𝑀𝑌) ∈ 𝑃)
12829ad2antrr 723 . . . . . . . 8 ((((𝜑𝑋𝐴) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) → 𝑋𝑃)
12931ad2antrr 723 . . . . . . . 8 ((((𝜑𝑋𝐴) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) → 𝐴𝑃)
1303, 4, 5, 125, 126, 127, 128, 129axtgsegcon 26835 . . . . . . 7 ((((𝜑𝑋𝐴) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) → ∃𝑡𝑃 ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴)))
131123, 55, 124, 130syl21anc 835 . . . . . 6 ((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) → ∃𝑡𝑃 ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴)))
132122, 131r19.29a 3216 . . . . 5 ((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) → ((𝑀𝑋) (𝑀𝑌)) = (𝑋 𝑌))
1333, 4, 5, 25, 27, 39, 35, 32axtgsegcon 26835 . . . . . 6 ((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) → ∃𝑧𝑃 ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴)))
134133ad2antrr 723 . . . . 5 ((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) → ∃𝑧𝑃 ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴)))
135132, 134r19.29a 3216 . . . 4 ((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) → ((𝑀𝑋) (𝑀𝑌)) = (𝑋 𝑌))
1363, 4, 5, 24, 41, 34, 29, 31axtgsegcon 26835 . . . . 5 ((𝜑𝑋𝐴) → ∃𝑦𝑃 (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴)))
137136ad2antrr 723 . . . 4 ((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) → ∃𝑦𝑃 (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴)))
138135, 137r19.29a 3216 . . 3 ((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) → ((𝑀𝑋) (𝑀𝑌)) = (𝑋 𝑌))
1393, 4, 5, 24, 38, 29, 34, 31axtgsegcon 26835 . . 3 ((𝜑𝑋𝐴) → ∃𝑥𝑃 (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴)))
140138, 139r19.29a 3216 . 2 ((𝜑𝑋𝐴) → ((𝑀𝑋) (𝑀𝑌)) = (𝑋 𝑌))
14123, 140pm2.61dane 3032 1 (𝜑 → ((𝑀𝑋) (𝑀𝑌)) = (𝑋 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  wrex 3065  cfv 6426  (class class class)co 7267  Basecbs 16922  distcds 16981  TarskiGcstrkg 26798  Itvcitv 26804  LineGclng 26805  pInvGcmir 27023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5208  ax-sep 5221  ax-nul 5228  ax-pow 5286  ax-pr 5350  ax-un 7578  ax-cnex 10937  ax-resscn 10938  ax-1cn 10939  ax-icn 10940  ax-addcl 10941  ax-addrcl 10942  ax-mulcl 10943  ax-mulrcl 10944  ax-mulcom 10945  ax-addass 10946  ax-mulass 10947  ax-distr 10948  ax-i2m1 10949  ax-1ne0 10950  ax-1rid 10951  ax-rnegex 10952  ax-rrecex 10953  ax-cnre 10954  ax-pre-lttri 10955  ax-pre-lttrn 10956  ax-pre-ltadd 10957  ax-pre-mulgt0 10958
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-pss 3905  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5074  df-opab 5136  df-mpt 5157  df-tr 5191  df-id 5484  df-eprel 5490  df-po 5498  df-so 5499  df-fr 5539  df-we 5541  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-pred 6195  df-ord 6262  df-on 6263  df-lim 6264  df-suc 6265  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-riota 7224  df-ov 7270  df-oprab 7271  df-mpo 7272  df-om 7703  df-1st 7820  df-2nd 7821  df-frecs 8084  df-wrecs 8115  df-recs 8189  df-rdg 8228  df-1o 8284  df-oadd 8288  df-er 8485  df-en 8721  df-dom 8722  df-sdom 8723  df-fin 8724  df-dju 9669  df-card 9707  df-pnf 11021  df-mnf 11022  df-xr 11023  df-ltxr 11024  df-le 11025  df-sub 11217  df-neg 11218  df-nn 11984  df-2 12046  df-n0 12244  df-xnn0 12316  df-z 12330  df-uz 12593  df-fz 13250  df-hash 14055  df-trkgc 26819  df-trkgb 26820  df-trkgcb 26821  df-trkg 26824  df-mir 27024
This theorem is referenced by:  mirbtwni  27042  mircgrs  27044  mirmot  27046  miduniq  27056  ragcom  27069  colperpexlem1  27101  lmiisolem  27167  hypcgrlem2  27171  hypcgr  27172
  Copyright terms: Public domain W3C validator