Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem51 Structured version   Visualization version   GIF version

Theorem fourierdlem51 42436
Description: 𝑋 is in the periodic partition, when the considered interval is centered at 𝑋. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem51.a (𝜑𝐴 ∈ ℝ)
fourierdlem51.b (𝜑𝐵 ∈ ℝ)
fourierdlem51.alt0 (𝜑𝐴 < 0)
fourierdlem51.bgt0 (𝜑 → 0 < 𝐵)
fourierdlem51.t 𝑇 = (𝐵𝐴)
fourierdlem51.cfi (𝜑𝐶 ∈ Fin)
fourierdlem51.css (𝜑𝐶 ⊆ (𝐴[,]𝐵))
fourierdlem51.bc (𝜑𝐵𝐶)
fourierdlem51.e 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
fourierdlem51.x (𝜑𝑋 ∈ ℝ)
fourierdlem51.exc (𝜑 → (𝐸𝑋) ∈ 𝐶)
fourierdlem51.d 𝐷 = ({(𝐴 + 𝑋), (𝐵 + 𝑋)} ∪ {𝑦 ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶})
fourierdlem51.f 𝐹 = (℩𝑓𝑓 Isom < , < ((0...((♯‘𝐷) − 1)), 𝐷))
fourierdlem51.h 𝐻 = {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}
Assertion
Ref Expression
fourierdlem51 (𝜑𝑋 ∈ ran 𝐹)
Distinct variable groups:   𝐴,𝑘,𝑥,𝑦   𝐵,𝑘,𝑥,𝑦   𝐶,𝑘,𝑥,𝑦   𝐷,𝑓   𝑘,𝐸,𝑥   𝑓,𝐹   𝑥,𝐻   𝑇,𝑘,𝑥,𝑦   𝑘,𝑋,𝑥,𝑦   𝜑,𝑓   𝜑,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑓)   𝐵(𝑓)   𝐶(𝑓)   𝐷(𝑥,𝑦,𝑘)   𝑇(𝑓)   𝐸(𝑦,𝑓)   𝐹(𝑥,𝑦,𝑘)   𝐻(𝑦,𝑓,𝑘)   𝑋(𝑓)

Proof of Theorem fourierdlem51
Dummy variables 𝑖 𝑗 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem51.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
2 fourierdlem51.x . . . . . . 7 (𝜑𝑋 ∈ ℝ)
31, 2readdcld 10664 . . . . . 6 (𝜑 → (𝐴 + 𝑋) ∈ ℝ)
4 fourierdlem51.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
54, 2readdcld 10664 . . . . . 6 (𝜑 → (𝐵 + 𝑋) ∈ ℝ)
6 0red 10638 . . . . . . . . 9 (𝜑 → 0 ∈ ℝ)
7 fourierdlem51.alt0 . . . . . . . . 9 (𝜑𝐴 < 0)
81, 6, 2, 7ltadd1dd 11245 . . . . . . . 8 (𝜑 → (𝐴 + 𝑋) < (0 + 𝑋))
92recnd 10663 . . . . . . . . 9 (𝜑𝑋 ∈ ℂ)
109addid2d 10835 . . . . . . . 8 (𝜑 → (0 + 𝑋) = 𝑋)
118, 10breqtrd 5084 . . . . . . 7 (𝜑 → (𝐴 + 𝑋) < 𝑋)
123, 2, 11ltled 10782 . . . . . 6 (𝜑 → (𝐴 + 𝑋) ≤ 𝑋)
13 fourierdlem51.bgt0 . . . . . . . . 9 (𝜑 → 0 < 𝐵)
146, 4, 2, 13ltadd1dd 11245 . . . . . . . 8 (𝜑 → (0 + 𝑋) < (𝐵 + 𝑋))
1510, 14eqbrtrrd 5082 . . . . . . 7 (𝜑𝑋 < (𝐵 + 𝑋))
162, 5, 15ltled 10782 . . . . . 6 (𝜑𝑋 ≤ (𝐵 + 𝑋))
173, 5, 2, 12, 16eliccd 41772 . . . . 5 (𝜑𝑋 ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋)))
184, 2resubcld 11062 . . . . . . . 8 (𝜑 → (𝐵𝑋) ∈ ℝ)
19 fourierdlem51.t . . . . . . . . 9 𝑇 = (𝐵𝐴)
204, 1resubcld 11062 . . . . . . . . 9 (𝜑 → (𝐵𝐴) ∈ ℝ)
2119, 20eqeltrid 2917 . . . . . . . 8 (𝜑𝑇 ∈ ℝ)
221, 6, 4, 7, 13lttrd 10795 . . . . . . . . . . 11 (𝜑𝐴 < 𝐵)
231, 4posdifd 11221 . . . . . . . . . . 11 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
2422, 23mpbid 234 . . . . . . . . . 10 (𝜑 → 0 < (𝐵𝐴))
2519eqcomi 2830 . . . . . . . . . . 11 (𝐵𝐴) = 𝑇
2625a1i 11 . . . . . . . . . 10 (𝜑 → (𝐵𝐴) = 𝑇)
2724, 26breqtrd 5084 . . . . . . . . 9 (𝜑 → 0 < 𝑇)
2827gt0ne0d 11198 . . . . . . . 8 (𝜑𝑇 ≠ 0)
2918, 21, 28redivcld 11462 . . . . . . 7 (𝜑 → ((𝐵𝑋) / 𝑇) ∈ ℝ)
3029flcld 13162 . . . . . 6 (𝜑 → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)
31 fourierdlem51.e . . . . . . . . 9 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
3231a1i 11 . . . . . . . 8 (𝜑𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))))
33 id 22 . . . . . . . . . 10 (𝑥 = 𝑋𝑥 = 𝑋)
34 oveq2 7158 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → (𝐵𝑥) = (𝐵𝑋))
3534oveq1d 7165 . . . . . . . . . . . 12 (𝑥 = 𝑋 → ((𝐵𝑥) / 𝑇) = ((𝐵𝑋) / 𝑇))
3635fveq2d 6668 . . . . . . . . . . 11 (𝑥 = 𝑋 → (⌊‘((𝐵𝑥) / 𝑇)) = (⌊‘((𝐵𝑋) / 𝑇)))
3736oveq1d 7165 . . . . . . . . . 10 (𝑥 = 𝑋 → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
3833, 37oveq12d 7168 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
3938adantl 484 . . . . . . . 8 ((𝜑𝑥 = 𝑋) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
4030zred 12081 . . . . . . . . . 10 (𝜑 → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℝ)
4140, 21remulcld 10665 . . . . . . . . 9 (𝜑 → ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) ∈ ℝ)
422, 41readdcld 10664 . . . . . . . 8 (𝜑 → (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) ∈ ℝ)
4332, 39, 2, 42fvmptd 6769 . . . . . . 7 (𝜑 → (𝐸𝑋) = (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
44 fourierdlem51.exc . . . . . . 7 (𝜑 → (𝐸𝑋) ∈ 𝐶)
4543, 44eqeltrrd 2914 . . . . . 6 (𝜑 → (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) ∈ 𝐶)
46 oveq1 7157 . . . . . . . . 9 (𝑘 = (⌊‘((𝐵𝑋) / 𝑇)) → (𝑘 · 𝑇) = ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
4746oveq2d 7166 . . . . . . . 8 (𝑘 = (⌊‘((𝐵𝑋) / 𝑇)) → (𝑋 + (𝑘 · 𝑇)) = (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
4847eleq1d 2897 . . . . . . 7 (𝑘 = (⌊‘((𝐵𝑋) / 𝑇)) → ((𝑋 + (𝑘 · 𝑇)) ∈ 𝐶 ↔ (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) ∈ 𝐶))
4948rspcev 3622 . . . . . 6 (((⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ ∧ (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) ∈ 𝐶) → ∃𝑘 ∈ ℤ (𝑋 + (𝑘 · 𝑇)) ∈ 𝐶)
5030, 45, 49syl2anc 586 . . . . 5 (𝜑 → ∃𝑘 ∈ ℤ (𝑋 + (𝑘 · 𝑇)) ∈ 𝐶)
51 oveq1 7157 . . . . . . . 8 (𝑦 = 𝑋 → (𝑦 + (𝑘 · 𝑇)) = (𝑋 + (𝑘 · 𝑇)))
5251eleq1d 2897 . . . . . . 7 (𝑦 = 𝑋 → ((𝑦 + (𝑘 · 𝑇)) ∈ 𝐶 ↔ (𝑋 + (𝑘 · 𝑇)) ∈ 𝐶))
5352rexbidv 3297 . . . . . 6 (𝑦 = 𝑋 → (∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶 ↔ ∃𝑘 ∈ ℤ (𝑋 + (𝑘 · 𝑇)) ∈ 𝐶))
5453elrab 3679 . . . . 5 (𝑋 ∈ {𝑦 ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶} ↔ (𝑋 ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋)) ∧ ∃𝑘 ∈ ℤ (𝑋 + (𝑘 · 𝑇)) ∈ 𝐶))
5517, 50, 54sylanbrc 585 . . . 4 (𝜑𝑋 ∈ {𝑦 ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶})
56 elun2 4152 . . . 4 (𝑋 ∈ {𝑦 ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶} → 𝑋 ∈ ({(𝐴 + 𝑋), (𝐵 + 𝑋)} ∪ {𝑦 ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}))
5755, 56syl 17 . . 3 (𝜑𝑋 ∈ ({(𝐴 + 𝑋), (𝐵 + 𝑋)} ∪ {𝑦 ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}))
58 fourierdlem51.d . . 3 𝐷 = ({(𝐴 + 𝑋), (𝐵 + 𝑋)} ∪ {𝑦 ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶})
5957, 58eleqtrrdi 2924 . 2 (𝜑𝑋𝐷)
60 prfi 8787 . . . . . 6 {(𝐴 + 𝑋), (𝐵 + 𝑋)} ∈ Fin
61 snfi 8588 . . . . . . . 8 {(𝐴 + 𝑋)} ∈ Fin
62 fourierdlem51.cfi . . . . . . . . 9 (𝜑𝐶 ∈ Fin)
63 fvres 6683 . . . . . . . . . . . . . 14 (𝑥 ∈ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶} → ((𝐸 ↾ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶})‘𝑥) = (𝐸𝑥))
6463adantl 484 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}) → ((𝐸 ↾ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶})‘𝑥) = (𝐸𝑥))
65 oveq1 7157 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑥 → (𝑦 + (𝑘 · 𝑇)) = (𝑥 + (𝑘 · 𝑇)))
6665eleq1d 2897 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑥 → ((𝑦 + (𝑘 · 𝑇)) ∈ 𝐶 ↔ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐶))
6766rexbidv 3297 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑥 → (∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶 ↔ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐶))
6867elrab 3679 . . . . . . . . . . . . . . . 16 (𝑥 ∈ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶} ↔ (𝑥 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∧ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐶))
6968simprbi 499 . . . . . . . . . . . . . . 15 (𝑥 ∈ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶} → ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐶)
7069adantl 484 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}) → ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐶)
71 nfv 1911 . . . . . . . . . . . . . . . 16 𝑘𝜑
72 nfre1 3306 . . . . . . . . . . . . . . . . . 18 𝑘𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶
73 nfcv 2977 . . . . . . . . . . . . . . . . . 18 𝑘((𝐴 + 𝑋)(,](𝐵 + 𝑋))
7472, 73nfrabw 3385 . . . . . . . . . . . . . . . . 17 𝑘{𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}
7574nfcri 2971 . . . . . . . . . . . . . . . 16 𝑘 𝑥 ∈ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}
7671, 75nfan 1896 . . . . . . . . . . . . . . 15 𝑘(𝜑𝑥 ∈ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶})
77 nfv 1911 . . . . . . . . . . . . . . 15 𝑘(𝐸𝑥) ∈ 𝐶
78 simpl 485 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}) → 𝜑)
793rexrd 10685 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐴 + 𝑋) ∈ ℝ*)
80 iocssre 12810 . . . . . . . . . . . . . . . . . . 19 (((𝐴 + 𝑋) ∈ ℝ* ∧ (𝐵 + 𝑋) ∈ ℝ) → ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ⊆ ℝ)
8179, 5, 80syl2anc 586 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ⊆ ℝ)
8281adantr 483 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}) → ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ⊆ ℝ)
83 elrabi 3674 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶} → 𝑥 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)))
8483adantl 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}) → 𝑥 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)))
8582, 84sseldd 3967 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}) → 𝑥 ∈ ℝ)
86 simpr 487 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
874adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑥 ∈ ℝ) → 𝐵 ∈ ℝ)
8887, 86resubcld 11062 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑥 ∈ ℝ) → (𝐵𝑥) ∈ ℝ)
8921adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑥 ∈ ℝ) → 𝑇 ∈ ℝ)
9028adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑥 ∈ ℝ) → 𝑇 ≠ 0)
9188, 89, 90redivcld 11462 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑥 ∈ ℝ) → ((𝐵𝑥) / 𝑇) ∈ ℝ)
9291flcld 13162 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑥 ∈ ℝ) → (⌊‘((𝐵𝑥) / 𝑇)) ∈ ℤ)
9392zred 12081 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑥 ∈ ℝ) → (⌊‘((𝐵𝑥) / 𝑇)) ∈ ℝ)
9493, 89remulcld 10665 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑥 ∈ ℝ) → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) ∈ ℝ)
9586, 94readdcld 10664 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑥 ∈ ℝ) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∈ ℝ)
9631fvmpt2 6773 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℝ ∧ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∈ ℝ) → (𝐸𝑥) = (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
9786, 95, 96syl2anc 586 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ ℝ) → (𝐸𝑥) = (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
9897ad2antrr 724 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) ∧ (𝑥 + (𝑘 · 𝑇)) = 𝐴) → (𝐸𝑥) = (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
99 simpl 485 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) ∧ (𝑥 + (𝑘 · 𝑇)) = 𝐴) → ((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ))
10092ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) ∧ (𝑥 + (𝑘 · 𝑇)) = 𝐴) → (⌊‘((𝐵𝑥) / 𝑇)) ∈ ℤ)
101 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑥 + (𝑘 · 𝑇)) = 𝐴) → (𝑥 + (𝑘 · 𝑇)) = 𝐴)
1021rexrd 10685 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝐴 ∈ ℝ*)
1034rexrd 10685 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝐵 ∈ ℝ*)
1041, 4, 22ltled 10782 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝐴𝐵)
105 lbicc2 12846 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
106102, 103, 104, 105syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝐴 ∈ (𝐴[,]𝐵))
107106adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑥 + (𝑘 · 𝑇)) = 𝐴) → 𝐴 ∈ (𝐴[,]𝐵))
108101, 107eqeltrd 2913 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑥 + (𝑘 · 𝑇)) = 𝐴) → (𝑥 + (𝑘 · 𝑇)) ∈ (𝐴[,]𝐵))
109108ad4ant14 750 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) ∧ (𝑥 + (𝑘 · 𝑇)) = 𝐴) → (𝑥 + (𝑘 · 𝑇)) ∈ (𝐴[,]𝐵))
11099, 100, 109jca31 517 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) ∧ (𝑥 + (𝑘 · 𝑇)) = 𝐴) → ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) ∧ (⌊‘((𝐵𝑥) / 𝑇)) ∈ ℤ) ∧ (𝑥 + (𝑘 · 𝑇)) ∈ (𝐴[,]𝐵)))
111 iocssicc 12819 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵)
1121, 4, 22, 19, 31fourierdlem4 42390 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝐸:ℝ⟶(𝐴(,]𝐵))
113112ffvelrnda 6845 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑥 ∈ ℝ) → (𝐸𝑥) ∈ (𝐴(,]𝐵))
114111, 113sseldi 3964 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑥 ∈ ℝ) → (𝐸𝑥) ∈ (𝐴[,]𝐵))
11597, 114eqeltrrd 2914 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑥 ∈ ℝ) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∈ (𝐴[,]𝐵))
116115ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) ∧ (𝑥 + (𝑘 · 𝑇)) = 𝐴) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∈ (𝐴[,]𝐵))
117102adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑥 ∈ ℝ) → 𝐴 ∈ ℝ*)
11887rexrd 10685 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑥 ∈ ℝ) → 𝐵 ∈ ℝ*)
119 iocgtlb 41770 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐸𝑥) ∈ (𝐴(,]𝐵)) → 𝐴 < (𝐸𝑥))
120117, 118, 113, 119syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑥 ∈ ℝ) → 𝐴 < (𝐸𝑥))
121120ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) ∧ (𝑥 + (𝑘 · 𝑇)) = 𝐴) → 𝐴 < (𝐸𝑥))
122 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑥 + (𝑘 · 𝑇)) = 𝐴 → (𝑥 + (𝑘 · 𝑇)) = 𝐴)
123122eqcomd 2827 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥 + (𝑘 · 𝑇)) = 𝐴𝐴 = (𝑥 + (𝑘 · 𝑇)))
124123adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) ∧ (𝑥 + (𝑘 · 𝑇)) = 𝐴) → 𝐴 = (𝑥 + (𝑘 · 𝑇)))
125121, 124, 983brtr3d 5089 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) ∧ (𝑥 + (𝑘 · 𝑇)) = 𝐴) → (𝑥 + (𝑘 · 𝑇)) < (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
126 zre 11979 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑘 ∈ ℤ → 𝑘 ∈ ℝ)
127126adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑘 ∈ ℤ) → 𝑘 ∈ ℝ)
12821adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑘 ∈ ℤ) → 𝑇 ∈ ℝ)
129127, 128remulcld 10665 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑘 ∈ ℤ) → (𝑘 · 𝑇) ∈ ℝ)
130129adantlr 713 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) → (𝑘 · 𝑇) ∈ ℝ)
131130adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) ∧ (𝑥 + (𝑘 · 𝑇)) = 𝐴) → (𝑘 · 𝑇) ∈ ℝ)
13294ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) ∧ (𝑥 + (𝑘 · 𝑇)) = 𝐴) → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) ∈ ℝ)
133 simpllr 774 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) ∧ (𝑥 + (𝑘 · 𝑇)) = 𝐴) → 𝑥 ∈ ℝ)
134131, 132, 133ltadd2d 10790 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) ∧ (𝑥 + (𝑘 · 𝑇)) = 𝐴) → ((𝑘 · 𝑇) < ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) ↔ (𝑥 + (𝑘 · 𝑇)) < (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))))
135125, 134mpbird 259 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) ∧ (𝑥 + (𝑘 · 𝑇)) = 𝐴) → (𝑘 · 𝑇) < ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))
136126ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) ∧ (𝑥 + (𝑘 · 𝑇)) = 𝐴) → 𝑘 ∈ ℝ)
13793ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) ∧ (𝑥 + (𝑘 · 𝑇)) = 𝐴) → (⌊‘((𝐵𝑥) / 𝑇)) ∈ ℝ)
13821, 27elrpd 12422 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝑇 ∈ ℝ+)
139138ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) ∧ (𝑥 + (𝑘 · 𝑇)) = 𝐴) → 𝑇 ∈ ℝ+)
140136, 137, 139ltmul1d 12466 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) ∧ (𝑥 + (𝑘 · 𝑇)) = 𝐴) → (𝑘 < (⌊‘((𝐵𝑥) / 𝑇)) ↔ (𝑘 · 𝑇) < ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
141135, 140mpbird 259 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) ∧ (𝑥 + (𝑘 · 𝑇)) = 𝐴) → 𝑘 < (⌊‘((𝐵𝑥) / 𝑇)))
142 fvex 6677 . . . . . . . . . . . . . . . . . . . . . . . . 25 (⌊‘((𝐵𝑥) / 𝑇)) ∈ V
143 eleq1 2900 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑗 = (⌊‘((𝐵𝑥) / 𝑇)) → (𝑗 ∈ ℤ ↔ (⌊‘((𝐵𝑥) / 𝑇)) ∈ ℤ))
144143anbi2d 630 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑗 = (⌊‘((𝐵𝑥) / 𝑇)) → ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ↔ (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) ∧ (⌊‘((𝐵𝑥) / 𝑇)) ∈ ℤ)))
145144anbi1d 631 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑗 = (⌊‘((𝐵𝑥) / 𝑇)) → (((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ (𝑥 + (𝑘 · 𝑇)) ∈ (𝐴[,]𝐵)) ↔ ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) ∧ (⌊‘((𝐵𝑥) / 𝑇)) ∈ ℤ) ∧ (𝑥 + (𝑘 · 𝑇)) ∈ (𝐴[,]𝐵))))
146 oveq1 7157 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑗 = (⌊‘((𝐵𝑥) / 𝑇)) → (𝑗 · 𝑇) = ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))
147146oveq2d 7166 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑗 = (⌊‘((𝐵𝑥) / 𝑇)) → (𝑥 + (𝑗 · 𝑇)) = (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
148147eleq1d 2897 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑗 = (⌊‘((𝐵𝑥) / 𝑇)) → ((𝑥 + (𝑗 · 𝑇)) ∈ (𝐴[,]𝐵) ↔ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∈ (𝐴[,]𝐵)))
149145, 148anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑗 = (⌊‘((𝐵𝑥) / 𝑇)) → ((((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ (𝑥 + (𝑘 · 𝑇)) ∈ (𝐴[,]𝐵)) ∧ (𝑥 + (𝑗 · 𝑇)) ∈ (𝐴[,]𝐵)) ↔ (((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) ∧ (⌊‘((𝐵𝑥) / 𝑇)) ∈ ℤ) ∧ (𝑥 + (𝑘 · 𝑇)) ∈ (𝐴[,]𝐵)) ∧ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∈ (𝐴[,]𝐵))))
150 breq2 5062 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑗 = (⌊‘((𝐵𝑥) / 𝑇)) → (𝑘 < 𝑗𝑘 < (⌊‘((𝐵𝑥) / 𝑇))))
151149, 150anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑗 = (⌊‘((𝐵𝑥) / 𝑇)) → (((((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ (𝑥 + (𝑘 · 𝑇)) ∈ (𝐴[,]𝐵)) ∧ (𝑥 + (𝑗 · 𝑇)) ∈ (𝐴[,]𝐵)) ∧ 𝑘 < 𝑗) ↔ ((((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) ∧ (⌊‘((𝐵𝑥) / 𝑇)) ∈ ℤ) ∧ (𝑥 + (𝑘 · 𝑇)) ∈ (𝐴[,]𝐵)) ∧ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∈ (𝐴[,]𝐵)) ∧ 𝑘 < (⌊‘((𝐵𝑥) / 𝑇)))))
152 eqeq1 2825 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑗 = (⌊‘((𝐵𝑥) / 𝑇)) → (𝑗 = (𝑘 + 1) ↔ (⌊‘((𝐵𝑥) / 𝑇)) = (𝑘 + 1)))
153151, 152imbi12d 347 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑗 = (⌊‘((𝐵𝑥) / 𝑇)) → ((((((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ (𝑥 + (𝑘 · 𝑇)) ∈ (𝐴[,]𝐵)) ∧ (𝑥 + (𝑗 · 𝑇)) ∈ (𝐴[,]𝐵)) ∧ 𝑘 < 𝑗) → 𝑗 = (𝑘 + 1)) ↔ (((((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) ∧ (⌊‘((𝐵𝑥) / 𝑇)) ∈ ℤ) ∧ (𝑥 + (𝑘 · 𝑇)) ∈ (𝐴[,]𝐵)) ∧ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∈ (𝐴[,]𝐵)) ∧ 𝑘 < (⌊‘((𝐵𝑥) / 𝑇))) → (⌊‘((𝐵𝑥) / 𝑇)) = (𝑘 + 1))))
154 eleq1 2900 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑖 = 𝑘 → (𝑖 ∈ ℤ ↔ 𝑘 ∈ ℤ))
155154anbi2d 630 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑖 = 𝑘 → (((𝜑𝑥 ∈ ℝ) ∧ 𝑖 ∈ ℤ) ↔ ((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ)))
156155anbi1d 631 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑖 = 𝑘 → ((((𝜑𝑥 ∈ ℝ) ∧ 𝑖 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ↔ (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) ∧ 𝑗 ∈ ℤ)))
157 oveq1 7157 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑖 = 𝑘 → (𝑖 · 𝑇) = (𝑘 · 𝑇))
158157oveq2d 7166 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑖 = 𝑘 → (𝑥 + (𝑖 · 𝑇)) = (𝑥 + (𝑘 · 𝑇)))
159158eleq1d 2897 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑖 = 𝑘 → ((𝑥 + (𝑖 · 𝑇)) ∈ (𝐴[,]𝐵) ↔ (𝑥 + (𝑘 · 𝑇)) ∈ (𝐴[,]𝐵)))
160156, 159anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑖 = 𝑘 → (((((𝜑𝑥 ∈ ℝ) ∧ 𝑖 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ (𝑥 + (𝑖 · 𝑇)) ∈ (𝐴[,]𝐵)) ↔ ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ (𝑥 + (𝑘 · 𝑇)) ∈ (𝐴[,]𝐵))))
161160anbi1d 631 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑖 = 𝑘 → ((((((𝜑𝑥 ∈ ℝ) ∧ 𝑖 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ (𝑥 + (𝑖 · 𝑇)) ∈ (𝐴[,]𝐵)) ∧ (𝑥 + (𝑗 · 𝑇)) ∈ (𝐴[,]𝐵)) ↔ (((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ (𝑥 + (𝑘 · 𝑇)) ∈ (𝐴[,]𝐵)) ∧ (𝑥 + (𝑗 · 𝑇)) ∈ (𝐴[,]𝐵))))
162 breq1 5061 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑖 = 𝑘 → (𝑖 < 𝑗𝑘 < 𝑗))
163161, 162anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑖 = 𝑘 → (((((((𝜑𝑥 ∈ ℝ) ∧ 𝑖 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ (𝑥 + (𝑖 · 𝑇)) ∈ (𝐴[,]𝐵)) ∧ (𝑥 + (𝑗 · 𝑇)) ∈ (𝐴[,]𝐵)) ∧ 𝑖 < 𝑗) ↔ ((((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ (𝑥 + (𝑘 · 𝑇)) ∈ (𝐴[,]𝐵)) ∧ (𝑥 + (𝑗 · 𝑇)) ∈ (𝐴[,]𝐵)) ∧ 𝑘 < 𝑗)))
164 oveq1 7157 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑖 = 𝑘 → (𝑖 + 1) = (𝑘 + 1))
165164eqeq2d 2832 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑖 = 𝑘 → (𝑗 = (𝑖 + 1) ↔ 𝑗 = (𝑘 + 1)))
166163, 165imbi12d 347 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑖 = 𝑘 → ((((((((𝜑𝑥 ∈ ℝ) ∧ 𝑖 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ (𝑥 + (𝑖 · 𝑇)) ∈ (𝐴[,]𝐵)) ∧ (𝑥 + (𝑗 · 𝑇)) ∈ (𝐴[,]𝐵)) ∧ 𝑖 < 𝑗) → 𝑗 = (𝑖 + 1)) ↔ (((((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ (𝑥 + (𝑘 · 𝑇)) ∈ (𝐴[,]𝐵)) ∧ (𝑥 + (𝑗 · 𝑇)) ∈ (𝐴[,]𝐵)) ∧ 𝑘 < 𝑗) → 𝑗 = (𝑘 + 1))))
167 simp-6l 785 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((𝜑𝑥 ∈ ℝ) ∧ 𝑖 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ (𝑥 + (𝑖 · 𝑇)) ∈ (𝐴[,]𝐵)) ∧ (𝑥 + (𝑗 · 𝑇)) ∈ (𝐴[,]𝐵)) ∧ 𝑖 < 𝑗) → 𝜑)
168167, 1syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((𝜑𝑥 ∈ ℝ) ∧ 𝑖 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ (𝑥 + (𝑖 · 𝑇)) ∈ (𝐴[,]𝐵)) ∧ (𝑥 + (𝑗 · 𝑇)) ∈ (𝐴[,]𝐵)) ∧ 𝑖 < 𝑗) → 𝐴 ∈ ℝ)
169167, 4syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((𝜑𝑥 ∈ ℝ) ∧ 𝑖 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ (𝑥 + (𝑖 · 𝑇)) ∈ (𝐴[,]𝐵)) ∧ (𝑥 + (𝑗 · 𝑇)) ∈ (𝐴[,]𝐵)) ∧ 𝑖 < 𝑗) → 𝐵 ∈ ℝ)
170167, 22syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((𝜑𝑥 ∈ ℝ) ∧ 𝑖 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ (𝑥 + (𝑖 · 𝑇)) ∈ (𝐴[,]𝐵)) ∧ (𝑥 + (𝑗 · 𝑇)) ∈ (𝐴[,]𝐵)) ∧ 𝑖 < 𝑗) → 𝐴 < 𝐵)
171 simp-6r 786 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((𝜑𝑥 ∈ ℝ) ∧ 𝑖 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ (𝑥 + (𝑖 · 𝑇)) ∈ (𝐴[,]𝐵)) ∧ (𝑥 + (𝑗 · 𝑇)) ∈ (𝐴[,]𝐵)) ∧ 𝑖 < 𝑗) → 𝑥 ∈ ℝ)
172 simp-5r 784 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((𝜑𝑥 ∈ ℝ) ∧ 𝑖 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ (𝑥 + (𝑖 · 𝑇)) ∈ (𝐴[,]𝐵)) ∧ (𝑥 + (𝑗 · 𝑇)) ∈ (𝐴[,]𝐵)) ∧ 𝑖 < 𝑗) → 𝑖 ∈ ℤ)
173 simp-4r 782 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((𝜑𝑥 ∈ ℝ) ∧ 𝑖 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ (𝑥 + (𝑖 · 𝑇)) ∈ (𝐴[,]𝐵)) ∧ (𝑥 + (𝑗 · 𝑇)) ∈ (𝐴[,]𝐵)) ∧ 𝑖 < 𝑗) → 𝑗 ∈ ℤ)
174 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((𝜑𝑥 ∈ ℝ) ∧ 𝑖 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ (𝑥 + (𝑖 · 𝑇)) ∈ (𝐴[,]𝐵)) ∧ (𝑥 + (𝑗 · 𝑇)) ∈ (𝐴[,]𝐵)) ∧ 𝑖 < 𝑗) → 𝑖 < 𝑗)
175 simpllr 774 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((𝜑𝑥 ∈ ℝ) ∧ 𝑖 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ (𝑥 + (𝑖 · 𝑇)) ∈ (𝐴[,]𝐵)) ∧ (𝑥 + (𝑗 · 𝑇)) ∈ (𝐴[,]𝐵)) ∧ 𝑖 < 𝑗) → (𝑥 + (𝑖 · 𝑇)) ∈ (𝐴[,]𝐵))
176 simplr 767 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((𝜑𝑥 ∈ ℝ) ∧ 𝑖 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ (𝑥 + (𝑖 · 𝑇)) ∈ (𝐴[,]𝐵)) ∧ (𝑥 + (𝑗 · 𝑇)) ∈ (𝐴[,]𝐵)) ∧ 𝑖 < 𝑗) → (𝑥 + (𝑗 · 𝑇)) ∈ (𝐴[,]𝐵))
177168, 169, 170, 19, 171, 172, 173, 174, 175, 176fourierdlem6 42392 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((𝜑𝑥 ∈ ℝ) ∧ 𝑖 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ (𝑥 + (𝑖 · 𝑇)) ∈ (𝐴[,]𝐵)) ∧ (𝑥 + (𝑗 · 𝑇)) ∈ (𝐴[,]𝐵)) ∧ 𝑖 < 𝑗) → 𝑗 = (𝑖 + 1))
178166, 177chvarvv 2001 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ (𝑥 + (𝑘 · 𝑇)) ∈ (𝐴[,]𝐵)) ∧ (𝑥 + (𝑗 · 𝑇)) ∈ (𝐴[,]𝐵)) ∧ 𝑘 < 𝑗) → 𝑗 = (𝑘 + 1))
179142, 153, 178vtocl 3559 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) ∧ (⌊‘((𝐵𝑥) / 𝑇)) ∈ ℤ) ∧ (𝑥 + (𝑘 · 𝑇)) ∈ (𝐴[,]𝐵)) ∧ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∈ (𝐴[,]𝐵)) ∧ 𝑘 < (⌊‘((𝐵𝑥) / 𝑇))) → (⌊‘((𝐵𝑥) / 𝑇)) = (𝑘 + 1))
180110, 116, 141, 179syl21anc 835 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) ∧ (𝑥 + (𝑘 · 𝑇)) = 𝐴) → (⌊‘((𝐵𝑥) / 𝑇)) = (𝑘 + 1))
181180oveq1d 7165 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) ∧ (𝑥 + (𝑘 · 𝑇)) = 𝐴) → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((𝑘 + 1) · 𝑇))
182181oveq2d 7166 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) ∧ (𝑥 + (𝑘 · 𝑇)) = 𝐴) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑥 + ((𝑘 + 1) · 𝑇)))
183127recnd 10663 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑘 ∈ ℤ) → 𝑘 ∈ ℂ)
18421recnd 10663 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝑇 ∈ ℂ)
185184adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑘 ∈ ℤ) → 𝑇 ∈ ℂ)
186183, 185adddirp1d 10661 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ ℤ) → ((𝑘 + 1) · 𝑇) = ((𝑘 · 𝑇) + 𝑇))
187186oveq2d 7166 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ ℤ) → (𝑥 + ((𝑘 + 1) · 𝑇)) = (𝑥 + ((𝑘 · 𝑇) + 𝑇)))
188187adantlr 713 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) → (𝑥 + ((𝑘 + 1) · 𝑇)) = (𝑥 + ((𝑘 · 𝑇) + 𝑇)))
189188adantr 483 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) ∧ (𝑥 + (𝑘 · 𝑇)) = 𝐴) → (𝑥 + ((𝑘 + 1) · 𝑇)) = (𝑥 + ((𝑘 · 𝑇) + 𝑇)))
19086recnd 10663 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
191190adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) → 𝑥 ∈ ℂ)
192130recnd 10663 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) → (𝑘 · 𝑇) ∈ ℂ)
193184ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) → 𝑇 ∈ ℂ)
194191, 192, 193addassd 10657 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) → ((𝑥 + (𝑘 · 𝑇)) + 𝑇) = (𝑥 + ((𝑘 · 𝑇) + 𝑇)))
195194eqcomd 2827 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) → (𝑥 + ((𝑘 · 𝑇) + 𝑇)) = ((𝑥 + (𝑘 · 𝑇)) + 𝑇))
196195adantr 483 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) ∧ (𝑥 + (𝑘 · 𝑇)) = 𝐴) → (𝑥 + ((𝑘 · 𝑇) + 𝑇)) = ((𝑥 + (𝑘 · 𝑇)) + 𝑇))
197 oveq1 7157 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 + (𝑘 · 𝑇)) = 𝐴 → ((𝑥 + (𝑘 · 𝑇)) + 𝑇) = (𝐴 + 𝑇))
198197adantl 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) ∧ (𝑥 + (𝑘 · 𝑇)) = 𝐴) → ((𝑥 + (𝑘 · 𝑇)) + 𝑇) = (𝐴 + 𝑇))
1994recnd 10663 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝐵 ∈ ℂ)
2001recnd 10663 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝐴 ∈ ℂ)
201199, 200, 184subaddd 11009 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ((𝐵𝐴) = 𝑇 ↔ (𝐴 + 𝑇) = 𝐵))
20226, 201mpbid 234 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐴 + 𝑇) = 𝐵)
203202ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) ∧ (𝑥 + (𝑘 · 𝑇)) = 𝐴) → (𝐴 + 𝑇) = 𝐵)
204198, 203eqtrd 2856 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) ∧ (𝑥 + (𝑘 · 𝑇)) = 𝐴) → ((𝑥 + (𝑘 · 𝑇)) + 𝑇) = 𝐵)
205189, 196, 2043eqtrd 2860 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) ∧ (𝑥 + (𝑘 · 𝑇)) = 𝐴) → (𝑥 + ((𝑘 + 1) · 𝑇)) = 𝐵)
20698, 182, 2053eqtrd 2860 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) ∧ (𝑥 + (𝑘 · 𝑇)) = 𝐴) → (𝐸𝑥) = 𝐵)
207 fourierdlem51.bc . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐵𝐶)
208207ad3antrrr 728 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) ∧ (𝑥 + (𝑘 · 𝑇)) = 𝐴) → 𝐵𝐶)
209206, 208eqeltrd 2913 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) ∧ (𝑥 + (𝑘 · 𝑇)) = 𝐴) → (𝐸𝑥) ∈ 𝐶)
2102093adantl3 1164 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ ∧ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐶) ∧ (𝑥 + (𝑘 · 𝑇)) = 𝐴) → (𝐸𝑥) ∈ 𝐶)
211 simpl1 1187 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ ∧ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐶) ∧ ¬ (𝑥 + (𝑘 · 𝑇)) = 𝐴) → (𝜑𝑥 ∈ ℝ))
212 simpl2 1188 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ ∧ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐶) ∧ ¬ (𝑥 + (𝑘 · 𝑇)) = 𝐴) → 𝑘 ∈ ℤ)
213 fourierdlem51.css . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐶 ⊆ (𝐴[,]𝐵))
214213sselda 3966 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐶) → (𝑥 + (𝑘 · 𝑇)) ∈ (𝐴[,]𝐵))
215214adantlr 713 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐶) → (𝑥 + (𝑘 · 𝑇)) ∈ (𝐴[,]𝐵))
2162153adant2 1127 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ ∧ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐶) → (𝑥 + (𝑘 · 𝑇)) ∈ (𝐴[,]𝐵))
217216adantr 483 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ ∧ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐶) ∧ ¬ (𝑥 + (𝑘 · 𝑇)) = 𝐴) → (𝑥 + (𝑘 · 𝑇)) ∈ (𝐴[,]𝐵))
218 neqne 3024 . . . . . . . . . . . . . . . . . . . . . 22 (¬ (𝑥 + (𝑘 · 𝑇)) = 𝐴 → (𝑥 + (𝑘 · 𝑇)) ≠ 𝐴)
219218adantl 484 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ ∧ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐶) ∧ ¬ (𝑥 + (𝑘 · 𝑇)) = 𝐴) → (𝑥 + (𝑘 · 𝑇)) ≠ 𝐴)
2201adantr 483 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑥 ∈ ℝ) → 𝐴 ∈ ℝ)
221211, 220syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ ∧ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐶) ∧ ¬ (𝑥 + (𝑘 · 𝑇)) = 𝐴) → 𝐴 ∈ ℝ)
222211, 87syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ ∧ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐶) ∧ ¬ (𝑥 + (𝑘 · 𝑇)) = 𝐴) → 𝐵 ∈ ℝ)
223 simplr 767 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) → 𝑥 ∈ ℝ)
224223, 130readdcld 10664 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ ℝ)
225224rexrd 10685 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ ℝ*)
226211, 212, 225syl2anc 586 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ ∧ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐶) ∧ ¬ (𝑥 + (𝑘 · 𝑇)) = 𝐴) → (𝑥 + (𝑘 · 𝑇)) ∈ ℝ*)
227221, 222, 226eliccelioc 41790 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ ∧ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐶) ∧ ¬ (𝑥 + (𝑘 · 𝑇)) = 𝐴) → ((𝑥 + (𝑘 · 𝑇)) ∈ (𝐴(,]𝐵) ↔ ((𝑥 + (𝑘 · 𝑇)) ∈ (𝐴[,]𝐵) ∧ (𝑥 + (𝑘 · 𝑇)) ≠ 𝐴)))
228217, 219, 227mpbir2and 711 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ ∧ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐶) ∧ ¬ (𝑥 + (𝑘 · 𝑇)) = 𝐴) → (𝑥 + (𝑘 · 𝑇)) ∈ (𝐴(,]𝐵))
22997ad2antrr 724 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) ∧ (𝑥 + (𝑘 · 𝑇)) ∈ (𝐴(,]𝐵)) → (𝐸𝑥) = (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
2301ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) ∧ (𝑥 + (𝑘 · 𝑇)) ∈ (𝐴(,]𝐵)) → 𝐴 ∈ ℝ)
2314ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) ∧ (𝑥 + (𝑘 · 𝑇)) ∈ (𝐴(,]𝐵)) → 𝐵 ∈ ℝ)
23222ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) ∧ (𝑥 + (𝑘 · 𝑇)) ∈ (𝐴(,]𝐵)) → 𝐴 < 𝐵)
233 simpllr 774 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) ∧ (𝑥 + (𝑘 · 𝑇)) ∈ (𝐴(,]𝐵)) → 𝑥 ∈ ℝ)
23492ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) ∧ (𝑥 + (𝑘 · 𝑇)) ∈ (𝐴(,]𝐵)) → (⌊‘((𝐵𝑥) / 𝑇)) ∈ ℤ)
235 simplr 767 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) ∧ (𝑥 + (𝑘 · 𝑇)) ∈ (𝐴(,]𝐵)) → 𝑘 ∈ ℤ)
23697, 113eqeltrrd 2914 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑥 ∈ ℝ) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∈ (𝐴(,]𝐵))
237236ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) ∧ (𝑥 + (𝑘 · 𝑇)) ∈ (𝐴(,]𝐵)) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∈ (𝐴(,]𝐵))
238 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) ∧ (𝑥 + (𝑘 · 𝑇)) ∈ (𝐴(,]𝐵)) → (𝑥 + (𝑘 · 𝑇)) ∈ (𝐴(,]𝐵))
239230, 231, 232, 19, 233, 234, 235, 237, 238fourierdlem35 42421 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) ∧ (𝑥 + (𝑘 · 𝑇)) ∈ (𝐴(,]𝐵)) → (⌊‘((𝐵𝑥) / 𝑇)) = 𝑘)
240239oveq1d 7165 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) ∧ (𝑥 + (𝑘 · 𝑇)) ∈ (𝐴(,]𝐵)) → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = (𝑘 · 𝑇))
241240oveq2d 7166 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) ∧ (𝑥 + (𝑘 · 𝑇)) ∈ (𝐴(,]𝐵)) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑥 + (𝑘 · 𝑇)))
242229, 241eqtrd 2856 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ) ∧ (𝑥 + (𝑘 · 𝑇)) ∈ (𝐴(,]𝐵)) → (𝐸𝑥) = (𝑥 + (𝑘 · 𝑇)))
243211, 212, 228, 242syl21anc 835 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ ∧ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐶) ∧ ¬ (𝑥 + (𝑘 · 𝑇)) = 𝐴) → (𝐸𝑥) = (𝑥 + (𝑘 · 𝑇)))
244 simpl3 1189 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ ∧ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐶) ∧ ¬ (𝑥 + (𝑘 · 𝑇)) = 𝐴) → (𝑥 + (𝑘 · 𝑇)) ∈ 𝐶)
245243, 244eqeltrd 2913 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ ∧ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐶) ∧ ¬ (𝑥 + (𝑘 · 𝑇)) = 𝐴) → (𝐸𝑥) ∈ 𝐶)
246210, 245pm2.61dan 811 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℤ ∧ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐶) → (𝐸𝑥) ∈ 𝐶)
2472463exp 1115 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ) → (𝑘 ∈ ℤ → ((𝑥 + (𝑘 · 𝑇)) ∈ 𝐶 → (𝐸𝑥) ∈ 𝐶)))
24878, 85, 247syl2anc 586 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}) → (𝑘 ∈ ℤ → ((𝑥 + (𝑘 · 𝑇)) ∈ 𝐶 → (𝐸𝑥) ∈ 𝐶)))
24976, 77, 248rexlimd 3317 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}) → (∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐶 → (𝐸𝑥) ∈ 𝐶))
25070, 249mpd 15 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}) → (𝐸𝑥) ∈ 𝐶)
25164, 250eqeltrd 2913 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}) → ((𝐸 ↾ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶})‘𝑥) ∈ 𝐶)
252 eqid 2821 . . . . . . . . . . . 12 (𝑥 ∈ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶} ↦ ((𝐸 ↾ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶})‘𝑥)) = (𝑥 ∈ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶} ↦ ((𝐸 ↾ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶})‘𝑥))
253251, 252fmptd 6872 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶} ↦ ((𝐸 ↾ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶})‘𝑥)):{𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}⟶𝐶)
254 iocssre 12810 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴(,]𝐵) ⊆ ℝ)
255102, 4, 254syl2anc 586 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴(,]𝐵) ⊆ ℝ)
256112, 255fssd 6522 . . . . . . . . . . . . . 14 (𝜑𝐸:ℝ⟶ℝ)
257 ssrab2 4055 . . . . . . . . . . . . . . 15 {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶} ⊆ ((𝐴 + 𝑋)(,](𝐵 + 𝑋))
258257, 81sstrid 3977 . . . . . . . . . . . . . 14 (𝜑 → {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶} ⊆ ℝ)
259256, 258fssresd 6539 . . . . . . . . . . . . 13 (𝜑 → (𝐸 ↾ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}):{𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}⟶ℝ)
260259feqmptd 6727 . . . . . . . . . . . 12 (𝜑 → (𝐸 ↾ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}) = (𝑥 ∈ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶} ↦ ((𝐸 ↾ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶})‘𝑥)))
261260feq1d 6493 . . . . . . . . . . 11 (𝜑 → ((𝐸 ↾ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}):{𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}⟶𝐶 ↔ (𝑥 ∈ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶} ↦ ((𝐸 ↾ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶})‘𝑥)):{𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}⟶𝐶))
262253, 261mpbird 259 . . . . . . . . . 10 (𝜑 → (𝐸 ↾ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}):{𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}⟶𝐶)
263 simplll 773 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}) ∧ 𝑧 ∈ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}) ∧ ((𝐸 ↾ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶})‘𝑤) = ((𝐸 ↾ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶})‘𝑧)) → 𝜑)
264 id 22 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶} → 𝑤 ∈ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶})
265 fourierdlem51.h . . . . . . . . . . . . . . . . 17 𝐻 = {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}
266264, 265eleqtrrdi 2924 . . . . . . . . . . . . . . . 16 (𝑤 ∈ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶} → 𝑤𝐻)
267266ad3antlr 729 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}) ∧ 𝑧 ∈ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}) ∧ ((𝐸 ↾ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶})‘𝑤) = ((𝐸 ↾ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶})‘𝑧)) → 𝑤𝐻)
268263, 267jca 514 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}) ∧ 𝑧 ∈ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}) ∧ ((𝐸 ↾ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶})‘𝑤) = ((𝐸 ↾ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶})‘𝑧)) → (𝜑𝑤𝐻))
269 id 22 . . . . . . . . . . . . . . . 16 (𝑧 ∈ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶} → 𝑧 ∈ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶})
270269, 265eleqtrrdi 2924 . . . . . . . . . . . . . . 15 (𝑧 ∈ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶} → 𝑧𝐻)
271270ad2antlr 725 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}) ∧ 𝑧 ∈ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}) ∧ ((𝐸 ↾ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶})‘𝑤) = ((𝐸 ↾ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶})‘𝑧)) → 𝑧𝐻)
272 fvres 6683 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶} → ((𝐸 ↾ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶})‘𝑧) = (𝐸𝑧))
273272eqcomd 2827 . . . . . . . . . . . . . . . 16 (𝑧 ∈ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶} → (𝐸𝑧) = ((𝐸 ↾ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶})‘𝑧))
274273ad2antlr 725 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}) ∧ 𝑧 ∈ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}) ∧ ((𝐸 ↾ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶})‘𝑤) = ((𝐸 ↾ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶})‘𝑧)) → (𝐸𝑧) = ((𝐸 ↾ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶})‘𝑧))
275 id 22 . . . . . . . . . . . . . . . . 17 (((𝐸 ↾ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶})‘𝑤) = ((𝐸 ↾ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶})‘𝑧) → ((𝐸 ↾ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶})‘𝑤) = ((𝐸 ↾ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶})‘𝑧))
276275eqcomd 2827 . . . . . . . . . . . . . . . 16 (((𝐸 ↾ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶})‘𝑤) = ((𝐸 ↾ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶})‘𝑧) → ((𝐸 ↾ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶})‘𝑧) = ((𝐸 ↾ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶})‘𝑤))
277276adantl 484 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}) ∧ 𝑧 ∈ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}) ∧ ((𝐸 ↾ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶})‘𝑤) = ((𝐸 ↾ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶})‘𝑧)) → ((𝐸 ↾ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶})‘𝑧) = ((𝐸 ↾ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶})‘𝑤))
278 fvres 6683 . . . . . . . . . . . . . . . 16 (𝑤 ∈ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶} → ((𝐸 ↾ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶})‘𝑤) = (𝐸𝑤))
279278ad3antlr 729 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}) ∧ 𝑧 ∈ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}) ∧ ((𝐸 ↾ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶})‘𝑤) = ((𝐸 ↾ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶})‘𝑧)) → ((𝐸 ↾ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶})‘𝑤) = (𝐸𝑤))
280274, 277, 2793eqtrd 2860 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}) ∧ 𝑧 ∈ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}) ∧ ((𝐸 ↾ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶})‘𝑤) = ((𝐸 ↾ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶})‘𝑧)) → (𝐸𝑧) = (𝐸𝑤))
2811ad3antrrr 728 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤𝐻) ∧ 𝑧𝐻) ∧ (𝐸𝑧) = (𝐸𝑤)) → 𝐴 ∈ ℝ)
2824ad3antrrr 728 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤𝐻) ∧ 𝑧𝐻) ∧ (𝐸𝑧) = (𝐸𝑤)) → 𝐵 ∈ ℝ)
28322ad3antrrr 728 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤𝐻) ∧ 𝑧𝐻) ∧ (𝐸𝑧) = (𝐸𝑤)) → 𝐴 < 𝐵)
2842ad3antrrr 728 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤𝐻) ∧ 𝑧𝐻) ∧ (𝐸𝑧) = (𝐸𝑤)) → 𝑋 ∈ ℝ)
285 simpllr 774 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤𝐻) ∧ 𝑧𝐻) ∧ (𝐸𝑧) = (𝐸𝑤)) → 𝑤𝐻)
286 simplr 767 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤𝐻) ∧ 𝑧𝐻) ∧ (𝐸𝑧) = (𝐸𝑤)) → 𝑧𝐻)
287 simpr 487 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤𝐻) ∧ 𝑧𝐻) ∧ (𝐸𝑧) = (𝐸𝑤)) → (𝐸𝑧) = (𝐸𝑤))
288281, 282, 283, 284, 265, 19, 31, 285, 286, 287fourierdlem19 42405 . . . . . . . . . . . . . . 15 ((((𝜑𝑤𝐻) ∧ 𝑧𝐻) ∧ (𝐸𝑧) = (𝐸𝑤)) → ¬ 𝑤 < 𝑧)
289287eqcomd 2827 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤𝐻) ∧ 𝑧𝐻) ∧ (𝐸𝑧) = (𝐸𝑤)) → (𝐸𝑤) = (𝐸𝑧))
290281, 282, 283, 284, 265, 19, 31, 286, 285, 289fourierdlem19 42405 . . . . . . . . . . . . . . 15 ((((𝜑𝑤𝐻) ∧ 𝑧𝐻) ∧ (𝐸𝑧) = (𝐸𝑤)) → ¬ 𝑧 < 𝑤)
291265, 258eqsstrid 4014 . . . . . . . . . . . . . . . . . 18 (𝜑𝐻 ⊆ ℝ)
292291sselda 3966 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤𝐻) → 𝑤 ∈ ℝ)
293292ad2antrr 724 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤𝐻) ∧ 𝑧𝐻) ∧ (𝐸𝑧) = (𝐸𝑤)) → 𝑤 ∈ ℝ)
294291adantr 483 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤𝐻) → 𝐻 ⊆ ℝ)
295294sselda 3966 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤𝐻) ∧ 𝑧𝐻) → 𝑧 ∈ ℝ)
296295adantr 483 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤𝐻) ∧ 𝑧𝐻) ∧ (𝐸𝑧) = (𝐸𝑤)) → 𝑧 ∈ ℝ)
297293, 296lttri3d 10774 . . . . . . . . . . . . . . 15 ((((𝜑𝑤𝐻) ∧ 𝑧𝐻) ∧ (𝐸𝑧) = (𝐸𝑤)) → (𝑤 = 𝑧 ↔ (¬ 𝑤 < 𝑧 ∧ ¬ 𝑧 < 𝑤)))
298288, 290, 297mpbir2and 711 . . . . . . . . . . . . . 14 ((((𝜑𝑤𝐻) ∧ 𝑧𝐻) ∧ (𝐸𝑧) = (𝐸𝑤)) → 𝑤 = 𝑧)
299268, 271, 280, 298syl21anc 835 . . . . . . . . . . . . 13 ((((𝜑𝑤 ∈ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}) ∧ 𝑧 ∈ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}) ∧ ((𝐸 ↾ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶})‘𝑤) = ((𝐸 ↾ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶})‘𝑧)) → 𝑤 = 𝑧)
300299ex 415 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}) ∧ 𝑧 ∈ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}) → (((𝐸 ↾ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶})‘𝑤) = ((𝐸 ↾ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶})‘𝑧) → 𝑤 = 𝑧))
301300ralrimiva 3182 . . . . . . . . . . 11 ((𝜑𝑤 ∈ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}) → ∀𝑧 ∈ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶} (((𝐸 ↾ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶})‘𝑤) = ((𝐸 ↾ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶})‘𝑧) → 𝑤 = 𝑧))
302301ralrimiva 3182 . . . . . . . . . 10 (𝜑 → ∀𝑤 ∈ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}∀𝑧 ∈ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶} (((𝐸 ↾ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶})‘𝑤) = ((𝐸 ↾ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶})‘𝑧) → 𝑤 = 𝑧))
303 dff13 7007 . . . . . . . . . 10 ((𝐸 ↾ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}):{𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}–1-1𝐶 ↔ ((𝐸 ↾ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}):{𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}⟶𝐶 ∧ ∀𝑤 ∈ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}∀𝑧 ∈ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶} (((𝐸 ↾ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶})‘𝑤) = ((𝐸 ↾ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶})‘𝑧) → 𝑤 = 𝑧)))
304262, 302, 303sylanbrc 585 . . . . . . . . 9 (𝜑 → (𝐸 ↾ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}):{𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}–1-1𝐶)
305 f1fi 8805 . . . . . . . . 9 ((𝐶 ∈ Fin ∧ (𝐸 ↾ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}):{𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}–1-1𝐶) → {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶} ∈ Fin)
30662, 304, 305syl2anc 586 . . . . . . . 8 (𝜑 → {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶} ∈ Fin)
307 unfi 8779 . . . . . . . 8 (({(𝐴 + 𝑋)} ∈ Fin ∧ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶} ∈ Fin) → ({(𝐴 + 𝑋)} ∪ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}) ∈ Fin)
30861, 306, 307sylancr 589 . . . . . . 7 (𝜑 → ({(𝐴 + 𝑋)} ∪ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}) ∈ Fin)
309 simpl 485 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑦 ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}) → 𝜑)
310 elrabi 3674 . . . . . . . . . . 11 (𝑥 ∈ {𝑦 ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶} → 𝑥 ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋)))
311310adantl 484 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑦 ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}) → 𝑥 ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋)))
31267elrab 3679 . . . . . . . . . . . 12 (𝑥 ∈ {𝑦 ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶} ↔ (𝑥 ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋)) ∧ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐶))
313312simprbi 499 . . . . . . . . . . 11 (𝑥 ∈ {𝑦 ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶} → ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐶)
314313adantl 484 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑦 ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}) → ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐶)
315 velsn 4576 . . . . . . . . . . . . 13 (𝑥 ∈ {(𝐴 + 𝑋)} ↔ 𝑥 = (𝐴 + 𝑋))
316 elun1 4151 . . . . . . . . . . . . 13 (𝑥 ∈ {(𝐴 + 𝑋)} → 𝑥 ∈ ({(𝐴 + 𝑋)} ∪ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}))
317315, 316sylbir 237 . . . . . . . . . . . 12 (𝑥 = (𝐴 + 𝑋) → 𝑥 ∈ ({(𝐴 + 𝑋)} ∪ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}))
318317adantl 484 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋))) ∧ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐶) ∧ 𝑥 = (𝐴 + 𝑋)) → 𝑥 ∈ ({(𝐴 + 𝑋)} ∪ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}))
31979ad2antrr 724 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋))) ∧ ¬ 𝑥 = (𝐴 + 𝑋)) → (𝐴 + 𝑋) ∈ ℝ*)
3205rexrd 10685 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐵 + 𝑋) ∈ ℝ*)
321320ad2antrr 724 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋))) ∧ ¬ 𝑥 = (𝐴 + 𝑋)) → (𝐵 + 𝑋) ∈ ℝ*)
3223, 5iccssred 41773 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐴 + 𝑋)[,](𝐵 + 𝑋)) ⊆ ℝ)
323322sselda 3966 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋))) → 𝑥 ∈ ℝ)
324323rexrd 10685 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋))) → 𝑥 ∈ ℝ*)
325324adantr 483 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋))) ∧ ¬ 𝑥 = (𝐴 + 𝑋)) → 𝑥 ∈ ℝ*)
3263ad2antrr 724 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋))) ∧ ¬ 𝑥 = (𝐴 + 𝑋)) → (𝐴 + 𝑋) ∈ ℝ)
327323adantr 483 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋))) ∧ ¬ 𝑥 = (𝐴 + 𝑋)) → 𝑥 ∈ ℝ)
32879adantr 483 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋))) → (𝐴 + 𝑋) ∈ ℝ*)
329320adantr 483 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋))) → (𝐵 + 𝑋) ∈ ℝ*)
330 simpr 487 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋))) → 𝑥 ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋)))
331 iccgelb 12787 . . . . . . . . . . . . . . . . . 18 (((𝐴 + 𝑋) ∈ ℝ* ∧ (𝐵 + 𝑋) ∈ ℝ*𝑥 ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋))) → (𝐴 + 𝑋) ≤ 𝑥)
332328, 329, 330, 331syl3anc 1367 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋))) → (𝐴 + 𝑋) ≤ 𝑥)
333332adantr 483 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋))) ∧ ¬ 𝑥 = (𝐴 + 𝑋)) → (𝐴 + 𝑋) ≤ 𝑥)
334 neqne 3024 . . . . . . . . . . . . . . . . 17 𝑥 = (𝐴 + 𝑋) → 𝑥 ≠ (𝐴 + 𝑋))
335334adantl 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋))) ∧ ¬ 𝑥 = (𝐴 + 𝑋)) → 𝑥 ≠ (𝐴 + 𝑋))
336326, 327, 333, 335leneltd 10788 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋))) ∧ ¬ 𝑥 = (𝐴 + 𝑋)) → (𝐴 + 𝑋) < 𝑥)
337 iccleub 12786 . . . . . . . . . . . . . . . . 17 (((𝐴 + 𝑋) ∈ ℝ* ∧ (𝐵 + 𝑋) ∈ ℝ*𝑥 ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋))) → 𝑥 ≤ (𝐵 + 𝑋))
338328, 329, 330, 337syl3anc 1367 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋))) → 𝑥 ≤ (𝐵 + 𝑋))
339338adantr 483 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋))) ∧ ¬ 𝑥 = (𝐴 + 𝑋)) → 𝑥 ≤ (𝐵 + 𝑋))
340319, 321, 325, 336, 339eliocd 41776 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋))) ∧ ¬ 𝑥 = (𝐴 + 𝑋)) → 𝑥 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)))
341340adantlr 713 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋))) ∧ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐶) ∧ ¬ 𝑥 = (𝐴 + 𝑋)) → 𝑥 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)))
342 simplr 767 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋))) ∧ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐶) ∧ ¬ 𝑥 = (𝐴 + 𝑋)) → ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐶)
343341, 342, 68sylanbrc 585 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋))) ∧ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐶) ∧ ¬ 𝑥 = (𝐴 + 𝑋)) → 𝑥 ∈ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶})
344 elun2 4152 . . . . . . . . . . . 12 (𝑥 ∈ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶} → 𝑥 ∈ ({(𝐴 + 𝑋)} ∪ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}))
345343, 344syl 17 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋))) ∧ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐶) ∧ ¬ 𝑥 = (𝐴 + 𝑋)) → 𝑥 ∈ ({(𝐴 + 𝑋)} ∪ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}))
346318, 345pm2.61dan 811 . . . . . . . . . 10 (((𝜑𝑥 ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋))) ∧ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐶) → 𝑥 ∈ ({(𝐴 + 𝑋)} ∪ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}))
347309, 311, 314, 346syl21anc 835 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑦 ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}) → 𝑥 ∈ ({(𝐴 + 𝑋)} ∪ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}))
348347ralrimiva 3182 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ {𝑦 ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}𝑥 ∈ ({(𝐴 + 𝑋)} ∪ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}))
349 dfss3 3955 . . . . . . . 8 ({𝑦 ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶} ⊆ ({(𝐴 + 𝑋)} ∪ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}) ↔ ∀𝑥 ∈ {𝑦 ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}𝑥 ∈ ({(𝐴 + 𝑋)} ∪ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}))
350348, 349sylibr 236 . . . . . . 7 (𝜑 → {𝑦 ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶} ⊆ ({(𝐴 + 𝑋)} ∪ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}))
351 ssfi 8732 . . . . . . 7 ((({(𝐴 + 𝑋)} ∪ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}) ∈ Fin ∧ {𝑦 ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶} ⊆ ({(𝐴 + 𝑋)} ∪ {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶})) → {𝑦 ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶} ∈ Fin)
352308, 350, 351syl2anc 586 . . . . . 6 (𝜑 → {𝑦 ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶} ∈ Fin)
353 unfi 8779 . . . . . 6 (({(𝐴 + 𝑋), (𝐵 + 𝑋)} ∈ Fin ∧ {𝑦 ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶} ∈ Fin) → ({(𝐴 + 𝑋), (𝐵 + 𝑋)} ∪ {𝑦 ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}) ∈ Fin)
35460, 352, 353sylancr 589 . . . . 5 (𝜑 → ({(𝐴 + 𝑋), (𝐵 + 𝑋)} ∪ {𝑦 ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}) ∈ Fin)
35558, 354eqeltrid 2917 . . . 4 (𝜑𝐷 ∈ Fin)
356 prssi 4747 . . . . . . 7 (((𝐴 + 𝑋) ∈ ℝ ∧ (𝐵 + 𝑋) ∈ ℝ) → {(𝐴 + 𝑋), (𝐵 + 𝑋)} ⊆ ℝ)
3573, 5, 356syl2anc 586 . . . . . 6 (𝜑 → {(𝐴 + 𝑋), (𝐵 + 𝑋)} ⊆ ℝ)
358 ssrab2 4055 . . . . . . 7 {𝑦 ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶} ⊆ ((𝐴 + 𝑋)[,](𝐵 + 𝑋))
359358, 322sstrid 3977 . . . . . 6 (𝜑 → {𝑦 ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶} ⊆ ℝ)
360357, 359unssd 4161 . . . . 5 (𝜑 → ({(𝐴 + 𝑋), (𝐵 + 𝑋)} ∪ {𝑦 ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}) ⊆ ℝ)
36158, 360eqsstrid 4014 . . . 4 (𝜑𝐷 ⊆ ℝ)
362 fourierdlem51.f . . . 4 𝐹 = (℩𝑓𝑓 Isom < , < ((0...((♯‘𝐷) − 1)), 𝐷))
363 eqid 2821 . . . 4 ((♯‘𝐷) − 1) = ((♯‘𝐷) − 1)
364355, 361, 362, 363fourierdlem36 42422 . . 3 (𝜑𝐹 Isom < , < ((0...((♯‘𝐷) − 1)), 𝐷))
365 isof1o 7070 . . . 4 (𝐹 Isom < , < ((0...((♯‘𝐷) − 1)), 𝐷) → 𝐹:(0...((♯‘𝐷) − 1))–1-1-onto𝐷)
366 f1ofo 6616 . . . 4 (𝐹:(0...((♯‘𝐷) − 1))–1-1-onto𝐷𝐹:(0...((♯‘𝐷) − 1))–onto𝐷)
367365, 366syl 17 . . 3 (𝐹 Isom < , < ((0...((♯‘𝐷) − 1)), 𝐷) → 𝐹:(0...((♯‘𝐷) − 1))–onto𝐷)
368 forn 6587 . . 3 (𝐹:(0...((♯‘𝐷) − 1))–onto𝐷 → ran 𝐹 = 𝐷)
369364, 367, 3683syl 18 . 2 (𝜑 → ran 𝐹 = 𝐷)
37059, 369eleqtrrd 2916 1 (𝜑𝑋 ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wral 3138  wrex 3139  {crab 3142  cun 3933  wss 3935  {csn 4560  {cpr 4562   class class class wbr 5058  cmpt 5138  ran crn 5550  cres 5551  cio 6306  wf 6345  1-1wf1 6346  ontowfo 6347  1-1-ontowf1o 6348  cfv 6349   Isom wiso 6350  (class class class)co 7150  Fincfn 8503  cc 10529  cr 10530  0cc0 10531  1c1 10532   + caddc 10534   · cmul 10536  *cxr 10668   < clt 10669  cle 10670  cmin 10864   / cdiv 11291  cz 11975  +crp 12383  (,]cioc 12733  [,]cicc 12735  ...cfz 12886  cfl 13154  chash 13684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-inf 8901  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-ioc 12737  df-icc 12739  df-fz 12887  df-fl 13156  df-hash 13685
This theorem is referenced by:  fourierdlem113  42498
  Copyright terms: Public domain W3C validator