Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem-cly Structured version   Visualization version   GIF version

Theorem dalem-cly 39690
Description: Lemma for dalem9 39691. Center of perspectivity 𝐶 is not in plane 𝑌 (when 𝑌 and 𝑍 are different planes). (Contributed by NM, 13-Aug-2012.)
Hypotheses
Ref Expression
dalema.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalemc.l = (le‘𝐾)
dalemc.j = (join‘𝐾)
dalemc.a 𝐴 = (Atoms‘𝐾)
dalem-cly.o 𝑂 = (LPlanes‘𝐾)
dalem-cly.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem-cly.z 𝑍 = ((𝑆 𝑇) 𝑈)
Assertion
Ref Expression
dalem-cly ((𝜑𝑌𝑍) → ¬ 𝐶 𝑌)

Proof of Theorem dalem-cly
StepHypRef Expression
1 dalema.ph . . . . . . 7 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
21dalemkelat 39643 . . . . . 6 (𝜑𝐾 ∈ Lat)
3 dalemc.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
41, 3dalemceb 39657 . . . . . 6 (𝜑𝐶 ∈ (Base‘𝐾))
5 dalem-cly.o . . . . . . 7 𝑂 = (LPlanes‘𝐾)
61, 5dalemyeb 39668 . . . . . 6 (𝜑𝑌 ∈ (Base‘𝐾))
7 eqid 2735 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
8 dalemc.l . . . . . . 7 = (le‘𝐾)
9 dalemc.j . . . . . . 7 = (join‘𝐾)
107, 8, 9latleeqj1 18461 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝐶 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝐶 𝑌 ↔ (𝐶 𝑌) = 𝑌))
112, 4, 6, 10syl3anc 1373 . . . . 5 (𝜑 → (𝐶 𝑌 ↔ (𝐶 𝑌) = 𝑌))
121dalemclpjs 39653 . . . . . . . . . . . . 13 (𝜑𝐶 (𝑃 𝑆))
131dalemkehl 39642 . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ HL)
14 dalem-cly.y . . . . . . . . . . . . . . 15 𝑌 = ((𝑃 𝑄) 𝑅)
151, 8, 9, 3, 5, 14dalemcea 39679 . . . . . . . . . . . . . 14 (𝜑𝐶𝐴)
161dalemsea 39648 . . . . . . . . . . . . . 14 (𝜑𝑆𝐴)
171dalempea 39645 . . . . . . . . . . . . . 14 (𝜑𝑃𝐴)
181dalemqea 39646 . . . . . . . . . . . . . . 15 (𝜑𝑄𝐴)
191dalem-clpjq 39656 . . . . . . . . . . . . . . 15 (𝜑 → ¬ 𝐶 (𝑃 𝑄))
208, 9, 3atnlej1 39398 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝐶𝐴𝑃𝐴𝑄𝐴) ∧ ¬ 𝐶 (𝑃 𝑄)) → 𝐶𝑃)
2113, 15, 17, 18, 19, 20syl131anc 1385 . . . . . . . . . . . . . 14 (𝜑𝐶𝑃)
228, 9, 3hlatexch1 39414 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝐶𝐴𝑆𝐴𝑃𝐴) ∧ 𝐶𝑃) → (𝐶 (𝑃 𝑆) → 𝑆 (𝑃 𝐶)))
2313, 15, 16, 17, 21, 22syl131anc 1385 . . . . . . . . . . . . 13 (𝜑 → (𝐶 (𝑃 𝑆) → 𝑆 (𝑃 𝐶)))
2412, 23mpd 15 . . . . . . . . . . . 12 (𝜑𝑆 (𝑃 𝐶))
259, 3hlatjcom 39386 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝐶𝐴𝑃𝐴) → (𝐶 𝑃) = (𝑃 𝐶))
2613, 15, 17, 25syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → (𝐶 𝑃) = (𝑃 𝐶))
2724, 26breqtrrd 5147 . . . . . . . . . . 11 (𝜑𝑆 (𝐶 𝑃))
281dalemclqjt 39654 . . . . . . . . . . . . 13 (𝜑𝐶 (𝑄 𝑇))
291dalemtea 39649 . . . . . . . . . . . . . 14 (𝜑𝑇𝐴)
301dalemrea 39647 . . . . . . . . . . . . . . 15 (𝜑𝑅𝐴)
31 simp312 1322 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))) → ¬ 𝐶 (𝑄 𝑅))
321, 31sylbi 217 . . . . . . . . . . . . . . 15 (𝜑 → ¬ 𝐶 (𝑄 𝑅))
338, 9, 3atnlej1 39398 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝐶𝐴𝑄𝐴𝑅𝐴) ∧ ¬ 𝐶 (𝑄 𝑅)) → 𝐶𝑄)
3413, 15, 18, 30, 32, 33syl131anc 1385 . . . . . . . . . . . . . 14 (𝜑𝐶𝑄)
358, 9, 3hlatexch1 39414 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝐶𝐴𝑇𝐴𝑄𝐴) ∧ 𝐶𝑄) → (𝐶 (𝑄 𝑇) → 𝑇 (𝑄 𝐶)))
3613, 15, 29, 18, 34, 35syl131anc 1385 . . . . . . . . . . . . 13 (𝜑 → (𝐶 (𝑄 𝑇) → 𝑇 (𝑄 𝐶)))
3728, 36mpd 15 . . . . . . . . . . . 12 (𝜑𝑇 (𝑄 𝐶))
389, 3hlatjcom 39386 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝐶𝐴𝑄𝐴) → (𝐶 𝑄) = (𝑄 𝐶))
3913, 15, 18, 38syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → (𝐶 𝑄) = (𝑄 𝐶))
4037, 39breqtrrd 5147 . . . . . . . . . . 11 (𝜑𝑇 (𝐶 𝑄))
411, 3dalemseb 39661 . . . . . . . . . . . 12 (𝜑𝑆 ∈ (Base‘𝐾))
427, 9, 3hlatjcl 39385 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝐶𝐴𝑃𝐴) → (𝐶 𝑃) ∈ (Base‘𝐾))
4313, 15, 17, 42syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → (𝐶 𝑃) ∈ (Base‘𝐾))
441, 3dalemteb 39662 . . . . . . . . . . . 12 (𝜑𝑇 ∈ (Base‘𝐾))
457, 9, 3hlatjcl 39385 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝐶𝐴𝑄𝐴) → (𝐶 𝑄) ∈ (Base‘𝐾))
4613, 15, 18, 45syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → (𝐶 𝑄) ∈ (Base‘𝐾))
477, 8, 9latjlej12 18465 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ (𝐶 𝑃) ∈ (Base‘𝐾)) ∧ (𝑇 ∈ (Base‘𝐾) ∧ (𝐶 𝑄) ∈ (Base‘𝐾))) → ((𝑆 (𝐶 𝑃) ∧ 𝑇 (𝐶 𝑄)) → (𝑆 𝑇) ((𝐶 𝑃) (𝐶 𝑄))))
482, 41, 43, 44, 46, 47syl122anc 1381 . . . . . . . . . . 11 (𝜑 → ((𝑆 (𝐶 𝑃) ∧ 𝑇 (𝐶 𝑄)) → (𝑆 𝑇) ((𝐶 𝑃) (𝐶 𝑄))))
4927, 40, 48mp2and 699 . . . . . . . . . 10 (𝜑 → (𝑆 𝑇) ((𝐶 𝑃) (𝐶 𝑄)))
501, 3dalempeb 39658 . . . . . . . . . . 11 (𝜑𝑃 ∈ (Base‘𝐾))
511, 3dalemqeb 39659 . . . . . . . . . . 11 (𝜑𝑄 ∈ (Base‘𝐾))
527, 9latjjdi 18501 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝐶 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾))) → (𝐶 (𝑃 𝑄)) = ((𝐶 𝑃) (𝐶 𝑄)))
532, 4, 50, 51, 52syl13anc 1374 . . . . . . . . . 10 (𝜑 → (𝐶 (𝑃 𝑄)) = ((𝐶 𝑃) (𝐶 𝑄)))
5449, 53breqtrrd 5147 . . . . . . . . 9 (𝜑 → (𝑆 𝑇) (𝐶 (𝑃 𝑄)))
551dalemclrju 39655 . . . . . . . . . . 11 (𝜑𝐶 (𝑅 𝑈))
561dalemuea 39650 . . . . . . . . . . . 12 (𝜑𝑈𝐴)
57 simp313 1323 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))) → ¬ 𝐶 (𝑅 𝑃))
581, 57sylbi 217 . . . . . . . . . . . . 13 (𝜑 → ¬ 𝐶 (𝑅 𝑃))
598, 9, 3atnlej1 39398 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝐶𝐴𝑅𝐴𝑃𝐴) ∧ ¬ 𝐶 (𝑅 𝑃)) → 𝐶𝑅)
6013, 15, 30, 17, 58, 59syl131anc 1385 . . . . . . . . . . . 12 (𝜑𝐶𝑅)
618, 9, 3hlatexch1 39414 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝐶𝐴𝑈𝐴𝑅𝐴) ∧ 𝐶𝑅) → (𝐶 (𝑅 𝑈) → 𝑈 (𝑅 𝐶)))
6213, 15, 56, 30, 60, 61syl131anc 1385 . . . . . . . . . . 11 (𝜑 → (𝐶 (𝑅 𝑈) → 𝑈 (𝑅 𝐶)))
6355, 62mpd 15 . . . . . . . . . 10 (𝜑𝑈 (𝑅 𝐶))
649, 3hlatjcom 39386 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝐶𝐴𝑅𝐴) → (𝐶 𝑅) = (𝑅 𝐶))
6513, 15, 30, 64syl3anc 1373 . . . . . . . . . 10 (𝜑 → (𝐶 𝑅) = (𝑅 𝐶))
6663, 65breqtrrd 5147 . . . . . . . . 9 (𝜑𝑈 (𝐶 𝑅))
671, 9, 3dalemsjteb 39665 . . . . . . . . . 10 (𝜑 → (𝑆 𝑇) ∈ (Base‘𝐾))
681, 9, 3dalempjqeb 39664 . . . . . . . . . . 11 (𝜑 → (𝑃 𝑄) ∈ (Base‘𝐾))
697, 9latjcl 18449 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝐶 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → (𝐶 (𝑃 𝑄)) ∈ (Base‘𝐾))
702, 4, 68, 69syl3anc 1373 . . . . . . . . . 10 (𝜑 → (𝐶 (𝑃 𝑄)) ∈ (Base‘𝐾))
711, 3dalemueb 39663 . . . . . . . . . 10 (𝜑𝑈 ∈ (Base‘𝐾))
727, 9, 3hlatjcl 39385 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝐶𝐴𝑅𝐴) → (𝐶 𝑅) ∈ (Base‘𝐾))
7313, 15, 30, 72syl3anc 1373 . . . . . . . . . 10 (𝜑 → (𝐶 𝑅) ∈ (Base‘𝐾))
747, 8, 9latjlej12 18465 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ ((𝑆 𝑇) ∈ (Base‘𝐾) ∧ (𝐶 (𝑃 𝑄)) ∈ (Base‘𝐾)) ∧ (𝑈 ∈ (Base‘𝐾) ∧ (𝐶 𝑅) ∈ (Base‘𝐾))) → (((𝑆 𝑇) (𝐶 (𝑃 𝑄)) ∧ 𝑈 (𝐶 𝑅)) → ((𝑆 𝑇) 𝑈) ((𝐶 (𝑃 𝑄)) (𝐶 𝑅))))
752, 67, 70, 71, 73, 74syl122anc 1381 . . . . . . . . 9 (𝜑 → (((𝑆 𝑇) (𝐶 (𝑃 𝑄)) ∧ 𝑈 (𝐶 𝑅)) → ((𝑆 𝑇) 𝑈) ((𝐶 (𝑃 𝑄)) (𝐶 𝑅))))
7654, 66, 75mp2and 699 . . . . . . . 8 (𝜑 → ((𝑆 𝑇) 𝑈) ((𝐶 (𝑃 𝑄)) (𝐶 𝑅)))
771, 3dalemreb 39660 . . . . . . . . 9 (𝜑𝑅 ∈ (Base‘𝐾))
787, 9latjjdi 18501 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝐶 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾))) → (𝐶 ((𝑃 𝑄) 𝑅)) = ((𝐶 (𝑃 𝑄)) (𝐶 𝑅)))
792, 4, 68, 77, 78syl13anc 1374 . . . . . . . 8 (𝜑 → (𝐶 ((𝑃 𝑄) 𝑅)) = ((𝐶 (𝑃 𝑄)) (𝐶 𝑅)))
8076, 79breqtrrd 5147 . . . . . . 7 (𝜑 → ((𝑆 𝑇) 𝑈) (𝐶 ((𝑃 𝑄) 𝑅)))
81 dalem-cly.z . . . . . . 7 𝑍 = ((𝑆 𝑇) 𝑈)
8214oveq2i 7416 . . . . . . 7 (𝐶 𝑌) = (𝐶 ((𝑃 𝑄) 𝑅))
8380, 81, 823brtr4g 5153 . . . . . 6 (𝜑𝑍 (𝐶 𝑌))
84 breq2 5123 . . . . . 6 ((𝐶 𝑌) = 𝑌 → (𝑍 (𝐶 𝑌) ↔ 𝑍 𝑌))
8583, 84syl5ibcom 245 . . . . 5 (𝜑 → ((𝐶 𝑌) = 𝑌𝑍 𝑌))
8611, 85sylbid 240 . . . 4 (𝜑 → (𝐶 𝑌𝑍 𝑌))
871dalemzeo 39652 . . . . . 6 (𝜑𝑍𝑂)
881dalemyeo 39651 . . . . . 6 (𝜑𝑌𝑂)
898, 5lplncmp 39581 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑍𝑂𝑌𝑂) → (𝑍 𝑌𝑍 = 𝑌))
9013, 87, 88, 89syl3anc 1373 . . . . 5 (𝜑 → (𝑍 𝑌𝑍 = 𝑌))
91 eqcom 2742 . . . . 5 (𝑍 = 𝑌𝑌 = 𝑍)
9290, 91bitrdi 287 . . . 4 (𝜑 → (𝑍 𝑌𝑌 = 𝑍))
9386, 92sylibd 239 . . 3 (𝜑 → (𝐶 𝑌𝑌 = 𝑍))
9493necon3ad 2945 . 2 (𝜑 → (𝑌𝑍 → ¬ 𝐶 𝑌))
9594imp 406 1 ((𝜑𝑌𝑍) → ¬ 𝐶 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932   class class class wbr 5119  cfv 6531  (class class class)co 7405  Basecbs 17228  lecple 17278  joincjn 18323  Latclat 18441  Atomscatm 39281  HLchlt 39368  LPlanesclpl 39511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-proset 18306  df-poset 18325  df-plt 18340  df-lub 18356  df-glb 18357  df-join 18358  df-meet 18359  df-p0 18435  df-lat 18442  df-clat 18509  df-oposet 39194  df-ol 39196  df-oml 39197  df-covers 39284  df-ats 39285  df-atl 39316  df-cvlat 39340  df-hlat 39369  df-llines 39517  df-lplanes 39518
This theorem is referenced by:  dalem9  39691
  Copyright terms: Public domain W3C validator