Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem-cly Structured version   Visualization version   GIF version

Theorem dalem-cly 39665
Description: Lemma for dalem9 39666. Center of perspectivity 𝐶 is not in plane 𝑌 (when 𝑌 and 𝑍 are different planes). (Contributed by NM, 13-Aug-2012.)
Hypotheses
Ref Expression
dalema.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalemc.l = (le‘𝐾)
dalemc.j = (join‘𝐾)
dalemc.a 𝐴 = (Atoms‘𝐾)
dalem-cly.o 𝑂 = (LPlanes‘𝐾)
dalem-cly.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem-cly.z 𝑍 = ((𝑆 𝑇) 𝑈)
Assertion
Ref Expression
dalem-cly ((𝜑𝑌𝑍) → ¬ 𝐶 𝑌)

Proof of Theorem dalem-cly
StepHypRef Expression
1 dalema.ph . . . . . . 7 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
21dalemkelat 39618 . . . . . 6 (𝜑𝐾 ∈ Lat)
3 dalemc.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
41, 3dalemceb 39632 . . . . . 6 (𝜑𝐶 ∈ (Base‘𝐾))
5 dalem-cly.o . . . . . . 7 𝑂 = (LPlanes‘𝐾)
61, 5dalemyeb 39643 . . . . . 6 (𝜑𝑌 ∈ (Base‘𝐾))
7 eqid 2729 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
8 dalemc.l . . . . . . 7 = (le‘𝐾)
9 dalemc.j . . . . . . 7 = (join‘𝐾)
107, 8, 9latleeqj1 18410 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝐶 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝐶 𝑌 ↔ (𝐶 𝑌) = 𝑌))
112, 4, 6, 10syl3anc 1373 . . . . 5 (𝜑 → (𝐶 𝑌 ↔ (𝐶 𝑌) = 𝑌))
121dalemclpjs 39628 . . . . . . . . . . . . 13 (𝜑𝐶 (𝑃 𝑆))
131dalemkehl 39617 . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ HL)
14 dalem-cly.y . . . . . . . . . . . . . . 15 𝑌 = ((𝑃 𝑄) 𝑅)
151, 8, 9, 3, 5, 14dalemcea 39654 . . . . . . . . . . . . . 14 (𝜑𝐶𝐴)
161dalemsea 39623 . . . . . . . . . . . . . 14 (𝜑𝑆𝐴)
171dalempea 39620 . . . . . . . . . . . . . 14 (𝜑𝑃𝐴)
181dalemqea 39621 . . . . . . . . . . . . . . 15 (𝜑𝑄𝐴)
191dalem-clpjq 39631 . . . . . . . . . . . . . . 15 (𝜑 → ¬ 𝐶 (𝑃 𝑄))
208, 9, 3atnlej1 39373 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝐶𝐴𝑃𝐴𝑄𝐴) ∧ ¬ 𝐶 (𝑃 𝑄)) → 𝐶𝑃)
2113, 15, 17, 18, 19, 20syl131anc 1385 . . . . . . . . . . . . . 14 (𝜑𝐶𝑃)
228, 9, 3hlatexch1 39389 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝐶𝐴𝑆𝐴𝑃𝐴) ∧ 𝐶𝑃) → (𝐶 (𝑃 𝑆) → 𝑆 (𝑃 𝐶)))
2313, 15, 16, 17, 21, 22syl131anc 1385 . . . . . . . . . . . . 13 (𝜑 → (𝐶 (𝑃 𝑆) → 𝑆 (𝑃 𝐶)))
2412, 23mpd 15 . . . . . . . . . . . 12 (𝜑𝑆 (𝑃 𝐶))
259, 3hlatjcom 39361 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝐶𝐴𝑃𝐴) → (𝐶 𝑃) = (𝑃 𝐶))
2613, 15, 17, 25syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → (𝐶 𝑃) = (𝑃 𝐶))
2724, 26breqtrrd 5135 . . . . . . . . . . 11 (𝜑𝑆 (𝐶 𝑃))
281dalemclqjt 39629 . . . . . . . . . . . . 13 (𝜑𝐶 (𝑄 𝑇))
291dalemtea 39624 . . . . . . . . . . . . . 14 (𝜑𝑇𝐴)
301dalemrea 39622 . . . . . . . . . . . . . . 15 (𝜑𝑅𝐴)
31 simp312 1322 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))) → ¬ 𝐶 (𝑄 𝑅))
321, 31sylbi 217 . . . . . . . . . . . . . . 15 (𝜑 → ¬ 𝐶 (𝑄 𝑅))
338, 9, 3atnlej1 39373 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝐶𝐴𝑄𝐴𝑅𝐴) ∧ ¬ 𝐶 (𝑄 𝑅)) → 𝐶𝑄)
3413, 15, 18, 30, 32, 33syl131anc 1385 . . . . . . . . . . . . . 14 (𝜑𝐶𝑄)
358, 9, 3hlatexch1 39389 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝐶𝐴𝑇𝐴𝑄𝐴) ∧ 𝐶𝑄) → (𝐶 (𝑄 𝑇) → 𝑇 (𝑄 𝐶)))
3613, 15, 29, 18, 34, 35syl131anc 1385 . . . . . . . . . . . . 13 (𝜑 → (𝐶 (𝑄 𝑇) → 𝑇 (𝑄 𝐶)))
3728, 36mpd 15 . . . . . . . . . . . 12 (𝜑𝑇 (𝑄 𝐶))
389, 3hlatjcom 39361 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝐶𝐴𝑄𝐴) → (𝐶 𝑄) = (𝑄 𝐶))
3913, 15, 18, 38syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → (𝐶 𝑄) = (𝑄 𝐶))
4037, 39breqtrrd 5135 . . . . . . . . . . 11 (𝜑𝑇 (𝐶 𝑄))
411, 3dalemseb 39636 . . . . . . . . . . . 12 (𝜑𝑆 ∈ (Base‘𝐾))
427, 9, 3hlatjcl 39360 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝐶𝐴𝑃𝐴) → (𝐶 𝑃) ∈ (Base‘𝐾))
4313, 15, 17, 42syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → (𝐶 𝑃) ∈ (Base‘𝐾))
441, 3dalemteb 39637 . . . . . . . . . . . 12 (𝜑𝑇 ∈ (Base‘𝐾))
457, 9, 3hlatjcl 39360 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝐶𝐴𝑄𝐴) → (𝐶 𝑄) ∈ (Base‘𝐾))
4613, 15, 18, 45syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → (𝐶 𝑄) ∈ (Base‘𝐾))
477, 8, 9latjlej12 18414 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ (𝐶 𝑃) ∈ (Base‘𝐾)) ∧ (𝑇 ∈ (Base‘𝐾) ∧ (𝐶 𝑄) ∈ (Base‘𝐾))) → ((𝑆 (𝐶 𝑃) ∧ 𝑇 (𝐶 𝑄)) → (𝑆 𝑇) ((𝐶 𝑃) (𝐶 𝑄))))
482, 41, 43, 44, 46, 47syl122anc 1381 . . . . . . . . . . 11 (𝜑 → ((𝑆 (𝐶 𝑃) ∧ 𝑇 (𝐶 𝑄)) → (𝑆 𝑇) ((𝐶 𝑃) (𝐶 𝑄))))
4927, 40, 48mp2and 699 . . . . . . . . . 10 (𝜑 → (𝑆 𝑇) ((𝐶 𝑃) (𝐶 𝑄)))
501, 3dalempeb 39633 . . . . . . . . . . 11 (𝜑𝑃 ∈ (Base‘𝐾))
511, 3dalemqeb 39634 . . . . . . . . . . 11 (𝜑𝑄 ∈ (Base‘𝐾))
527, 9latjjdi 18450 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝐶 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾))) → (𝐶 (𝑃 𝑄)) = ((𝐶 𝑃) (𝐶 𝑄)))
532, 4, 50, 51, 52syl13anc 1374 . . . . . . . . . 10 (𝜑 → (𝐶 (𝑃 𝑄)) = ((𝐶 𝑃) (𝐶 𝑄)))
5449, 53breqtrrd 5135 . . . . . . . . 9 (𝜑 → (𝑆 𝑇) (𝐶 (𝑃 𝑄)))
551dalemclrju 39630 . . . . . . . . . . 11 (𝜑𝐶 (𝑅 𝑈))
561dalemuea 39625 . . . . . . . . . . . 12 (𝜑𝑈𝐴)
57 simp313 1323 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))) → ¬ 𝐶 (𝑅 𝑃))
581, 57sylbi 217 . . . . . . . . . . . . 13 (𝜑 → ¬ 𝐶 (𝑅 𝑃))
598, 9, 3atnlej1 39373 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝐶𝐴𝑅𝐴𝑃𝐴) ∧ ¬ 𝐶 (𝑅 𝑃)) → 𝐶𝑅)
6013, 15, 30, 17, 58, 59syl131anc 1385 . . . . . . . . . . . 12 (𝜑𝐶𝑅)
618, 9, 3hlatexch1 39389 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝐶𝐴𝑈𝐴𝑅𝐴) ∧ 𝐶𝑅) → (𝐶 (𝑅 𝑈) → 𝑈 (𝑅 𝐶)))
6213, 15, 56, 30, 60, 61syl131anc 1385 . . . . . . . . . . 11 (𝜑 → (𝐶 (𝑅 𝑈) → 𝑈 (𝑅 𝐶)))
6355, 62mpd 15 . . . . . . . . . 10 (𝜑𝑈 (𝑅 𝐶))
649, 3hlatjcom 39361 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝐶𝐴𝑅𝐴) → (𝐶 𝑅) = (𝑅 𝐶))
6513, 15, 30, 64syl3anc 1373 . . . . . . . . . 10 (𝜑 → (𝐶 𝑅) = (𝑅 𝐶))
6663, 65breqtrrd 5135 . . . . . . . . 9 (𝜑𝑈 (𝐶 𝑅))
671, 9, 3dalemsjteb 39640 . . . . . . . . . 10 (𝜑 → (𝑆 𝑇) ∈ (Base‘𝐾))
681, 9, 3dalempjqeb 39639 . . . . . . . . . . 11 (𝜑 → (𝑃 𝑄) ∈ (Base‘𝐾))
697, 9latjcl 18398 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝐶 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → (𝐶 (𝑃 𝑄)) ∈ (Base‘𝐾))
702, 4, 68, 69syl3anc 1373 . . . . . . . . . 10 (𝜑 → (𝐶 (𝑃 𝑄)) ∈ (Base‘𝐾))
711, 3dalemueb 39638 . . . . . . . . . 10 (𝜑𝑈 ∈ (Base‘𝐾))
727, 9, 3hlatjcl 39360 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝐶𝐴𝑅𝐴) → (𝐶 𝑅) ∈ (Base‘𝐾))
7313, 15, 30, 72syl3anc 1373 . . . . . . . . . 10 (𝜑 → (𝐶 𝑅) ∈ (Base‘𝐾))
747, 8, 9latjlej12 18414 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ ((𝑆 𝑇) ∈ (Base‘𝐾) ∧ (𝐶 (𝑃 𝑄)) ∈ (Base‘𝐾)) ∧ (𝑈 ∈ (Base‘𝐾) ∧ (𝐶 𝑅) ∈ (Base‘𝐾))) → (((𝑆 𝑇) (𝐶 (𝑃 𝑄)) ∧ 𝑈 (𝐶 𝑅)) → ((𝑆 𝑇) 𝑈) ((𝐶 (𝑃 𝑄)) (𝐶 𝑅))))
752, 67, 70, 71, 73, 74syl122anc 1381 . . . . . . . . 9 (𝜑 → (((𝑆 𝑇) (𝐶 (𝑃 𝑄)) ∧ 𝑈 (𝐶 𝑅)) → ((𝑆 𝑇) 𝑈) ((𝐶 (𝑃 𝑄)) (𝐶 𝑅))))
7654, 66, 75mp2and 699 . . . . . . . 8 (𝜑 → ((𝑆 𝑇) 𝑈) ((𝐶 (𝑃 𝑄)) (𝐶 𝑅)))
771, 3dalemreb 39635 . . . . . . . . 9 (𝜑𝑅 ∈ (Base‘𝐾))
787, 9latjjdi 18450 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝐶 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾))) → (𝐶 ((𝑃 𝑄) 𝑅)) = ((𝐶 (𝑃 𝑄)) (𝐶 𝑅)))
792, 4, 68, 77, 78syl13anc 1374 . . . . . . . 8 (𝜑 → (𝐶 ((𝑃 𝑄) 𝑅)) = ((𝐶 (𝑃 𝑄)) (𝐶 𝑅)))
8076, 79breqtrrd 5135 . . . . . . 7 (𝜑 → ((𝑆 𝑇) 𝑈) (𝐶 ((𝑃 𝑄) 𝑅)))
81 dalem-cly.z . . . . . . 7 𝑍 = ((𝑆 𝑇) 𝑈)
8214oveq2i 7398 . . . . . . 7 (𝐶 𝑌) = (𝐶 ((𝑃 𝑄) 𝑅))
8380, 81, 823brtr4g 5141 . . . . . 6 (𝜑𝑍 (𝐶 𝑌))
84 breq2 5111 . . . . . 6 ((𝐶 𝑌) = 𝑌 → (𝑍 (𝐶 𝑌) ↔ 𝑍 𝑌))
8583, 84syl5ibcom 245 . . . . 5 (𝜑 → ((𝐶 𝑌) = 𝑌𝑍 𝑌))
8611, 85sylbid 240 . . . 4 (𝜑 → (𝐶 𝑌𝑍 𝑌))
871dalemzeo 39627 . . . . . 6 (𝜑𝑍𝑂)
881dalemyeo 39626 . . . . . 6 (𝜑𝑌𝑂)
898, 5lplncmp 39556 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑍𝑂𝑌𝑂) → (𝑍 𝑌𝑍 = 𝑌))
9013, 87, 88, 89syl3anc 1373 . . . . 5 (𝜑 → (𝑍 𝑌𝑍 = 𝑌))
91 eqcom 2736 . . . . 5 (𝑍 = 𝑌𝑌 = 𝑍)
9290, 91bitrdi 287 . . . 4 (𝜑 → (𝑍 𝑌𝑌 = 𝑍))
9386, 92sylibd 239 . . 3 (𝜑 → (𝐶 𝑌𝑌 = 𝑍))
9493necon3ad 2938 . 2 (𝜑 → (𝑌𝑍 → ¬ 𝐶 𝑌))
9594imp 406 1 ((𝜑𝑌𝑍) → ¬ 𝐶 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  lecple 17227  joincjn 18272  Latclat 18390  Atomscatm 39256  HLchlt 39343  LPlanesclpl 39486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-lat 18391  df-clat 18458  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-llines 39492  df-lplanes 39493
This theorem is referenced by:  dalem9  39666
  Copyright terms: Public domain W3C validator