Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem-cly Structured version   Visualization version   GIF version

Theorem dalem-cly 37371
Description: Lemma for dalem9 37372. Center of perspectivity 𝐶 is not in plane 𝑌 (when 𝑌 and 𝑍 are different planes). (Contributed by NM, 13-Aug-2012.)
Hypotheses
Ref Expression
dalema.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalemc.l = (le‘𝐾)
dalemc.j = (join‘𝐾)
dalemc.a 𝐴 = (Atoms‘𝐾)
dalem-cly.o 𝑂 = (LPlanes‘𝐾)
dalem-cly.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem-cly.z 𝑍 = ((𝑆 𝑇) 𝑈)
Assertion
Ref Expression
dalem-cly ((𝜑𝑌𝑍) → ¬ 𝐶 𝑌)

Proof of Theorem dalem-cly
StepHypRef Expression
1 dalema.ph . . . . . . 7 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
21dalemkelat 37324 . . . . . 6 (𝜑𝐾 ∈ Lat)
3 dalemc.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
41, 3dalemceb 37338 . . . . . 6 (𝜑𝐶 ∈ (Base‘𝐾))
5 dalem-cly.o . . . . . . 7 𝑂 = (LPlanes‘𝐾)
61, 5dalemyeb 37349 . . . . . 6 (𝜑𝑌 ∈ (Base‘𝐾))
7 eqid 2736 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
8 dalemc.l . . . . . . 7 = (le‘𝐾)
9 dalemc.j . . . . . . 7 = (join‘𝐾)
107, 8, 9latleeqj1 17911 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝐶 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝐶 𝑌 ↔ (𝐶 𝑌) = 𝑌))
112, 4, 6, 10syl3anc 1373 . . . . 5 (𝜑 → (𝐶 𝑌 ↔ (𝐶 𝑌) = 𝑌))
121dalemclpjs 37334 . . . . . . . . . . . . 13 (𝜑𝐶 (𝑃 𝑆))
131dalemkehl 37323 . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ HL)
14 dalem-cly.y . . . . . . . . . . . . . . 15 𝑌 = ((𝑃 𝑄) 𝑅)
151, 8, 9, 3, 5, 14dalemcea 37360 . . . . . . . . . . . . . 14 (𝜑𝐶𝐴)
161dalemsea 37329 . . . . . . . . . . . . . 14 (𝜑𝑆𝐴)
171dalempea 37326 . . . . . . . . . . . . . 14 (𝜑𝑃𝐴)
181dalemqea 37327 . . . . . . . . . . . . . . 15 (𝜑𝑄𝐴)
191dalem-clpjq 37337 . . . . . . . . . . . . . . 15 (𝜑 → ¬ 𝐶 (𝑃 𝑄))
208, 9, 3atnlej1 37079 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝐶𝐴𝑃𝐴𝑄𝐴) ∧ ¬ 𝐶 (𝑃 𝑄)) → 𝐶𝑃)
2113, 15, 17, 18, 19, 20syl131anc 1385 . . . . . . . . . . . . . 14 (𝜑𝐶𝑃)
228, 9, 3hlatexch1 37095 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝐶𝐴𝑆𝐴𝑃𝐴) ∧ 𝐶𝑃) → (𝐶 (𝑃 𝑆) → 𝑆 (𝑃 𝐶)))
2313, 15, 16, 17, 21, 22syl131anc 1385 . . . . . . . . . . . . 13 (𝜑 → (𝐶 (𝑃 𝑆) → 𝑆 (𝑃 𝐶)))
2412, 23mpd 15 . . . . . . . . . . . 12 (𝜑𝑆 (𝑃 𝐶))
259, 3hlatjcom 37068 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝐶𝐴𝑃𝐴) → (𝐶 𝑃) = (𝑃 𝐶))
2613, 15, 17, 25syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → (𝐶 𝑃) = (𝑃 𝐶))
2724, 26breqtrrd 5067 . . . . . . . . . . 11 (𝜑𝑆 (𝐶 𝑃))
281dalemclqjt 37335 . . . . . . . . . . . . 13 (𝜑𝐶 (𝑄 𝑇))
291dalemtea 37330 . . . . . . . . . . . . . 14 (𝜑𝑇𝐴)
301dalemrea 37328 . . . . . . . . . . . . . . 15 (𝜑𝑅𝐴)
31 simp312 1323 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))) → ¬ 𝐶 (𝑄 𝑅))
321, 31sylbi 220 . . . . . . . . . . . . . . 15 (𝜑 → ¬ 𝐶 (𝑄 𝑅))
338, 9, 3atnlej1 37079 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝐶𝐴𝑄𝐴𝑅𝐴) ∧ ¬ 𝐶 (𝑄 𝑅)) → 𝐶𝑄)
3413, 15, 18, 30, 32, 33syl131anc 1385 . . . . . . . . . . . . . 14 (𝜑𝐶𝑄)
358, 9, 3hlatexch1 37095 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝐶𝐴𝑇𝐴𝑄𝐴) ∧ 𝐶𝑄) → (𝐶 (𝑄 𝑇) → 𝑇 (𝑄 𝐶)))
3613, 15, 29, 18, 34, 35syl131anc 1385 . . . . . . . . . . . . 13 (𝜑 → (𝐶 (𝑄 𝑇) → 𝑇 (𝑄 𝐶)))
3728, 36mpd 15 . . . . . . . . . . . 12 (𝜑𝑇 (𝑄 𝐶))
389, 3hlatjcom 37068 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝐶𝐴𝑄𝐴) → (𝐶 𝑄) = (𝑄 𝐶))
3913, 15, 18, 38syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → (𝐶 𝑄) = (𝑄 𝐶))
4037, 39breqtrrd 5067 . . . . . . . . . . 11 (𝜑𝑇 (𝐶 𝑄))
411, 3dalemseb 37342 . . . . . . . . . . . 12 (𝜑𝑆 ∈ (Base‘𝐾))
427, 9, 3hlatjcl 37067 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝐶𝐴𝑃𝐴) → (𝐶 𝑃) ∈ (Base‘𝐾))
4313, 15, 17, 42syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → (𝐶 𝑃) ∈ (Base‘𝐾))
441, 3dalemteb 37343 . . . . . . . . . . . 12 (𝜑𝑇 ∈ (Base‘𝐾))
457, 9, 3hlatjcl 37067 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝐶𝐴𝑄𝐴) → (𝐶 𝑄) ∈ (Base‘𝐾))
4613, 15, 18, 45syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → (𝐶 𝑄) ∈ (Base‘𝐾))
477, 8, 9latjlej12 17915 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ (𝐶 𝑃) ∈ (Base‘𝐾)) ∧ (𝑇 ∈ (Base‘𝐾) ∧ (𝐶 𝑄) ∈ (Base‘𝐾))) → ((𝑆 (𝐶 𝑃) ∧ 𝑇 (𝐶 𝑄)) → (𝑆 𝑇) ((𝐶 𝑃) (𝐶 𝑄))))
482, 41, 43, 44, 46, 47syl122anc 1381 . . . . . . . . . . 11 (𝜑 → ((𝑆 (𝐶 𝑃) ∧ 𝑇 (𝐶 𝑄)) → (𝑆 𝑇) ((𝐶 𝑃) (𝐶 𝑄))))
4927, 40, 48mp2and 699 . . . . . . . . . 10 (𝜑 → (𝑆 𝑇) ((𝐶 𝑃) (𝐶 𝑄)))
501, 3dalempeb 37339 . . . . . . . . . . 11 (𝜑𝑃 ∈ (Base‘𝐾))
511, 3dalemqeb 37340 . . . . . . . . . . 11 (𝜑𝑄 ∈ (Base‘𝐾))
527, 9latjjdi 17951 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝐶 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾))) → (𝐶 (𝑃 𝑄)) = ((𝐶 𝑃) (𝐶 𝑄)))
532, 4, 50, 51, 52syl13anc 1374 . . . . . . . . . 10 (𝜑 → (𝐶 (𝑃 𝑄)) = ((𝐶 𝑃) (𝐶 𝑄)))
5449, 53breqtrrd 5067 . . . . . . . . 9 (𝜑 → (𝑆 𝑇) (𝐶 (𝑃 𝑄)))
551dalemclrju 37336 . . . . . . . . . . 11 (𝜑𝐶 (𝑅 𝑈))
561dalemuea 37331 . . . . . . . . . . . 12 (𝜑𝑈𝐴)
57 simp313 1324 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))) → ¬ 𝐶 (𝑅 𝑃))
581, 57sylbi 220 . . . . . . . . . . . . 13 (𝜑 → ¬ 𝐶 (𝑅 𝑃))
598, 9, 3atnlej1 37079 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝐶𝐴𝑅𝐴𝑃𝐴) ∧ ¬ 𝐶 (𝑅 𝑃)) → 𝐶𝑅)
6013, 15, 30, 17, 58, 59syl131anc 1385 . . . . . . . . . . . 12 (𝜑𝐶𝑅)
618, 9, 3hlatexch1 37095 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝐶𝐴𝑈𝐴𝑅𝐴) ∧ 𝐶𝑅) → (𝐶 (𝑅 𝑈) → 𝑈 (𝑅 𝐶)))
6213, 15, 56, 30, 60, 61syl131anc 1385 . . . . . . . . . . 11 (𝜑 → (𝐶 (𝑅 𝑈) → 𝑈 (𝑅 𝐶)))
6355, 62mpd 15 . . . . . . . . . 10 (𝜑𝑈 (𝑅 𝐶))
649, 3hlatjcom 37068 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝐶𝐴𝑅𝐴) → (𝐶 𝑅) = (𝑅 𝐶))
6513, 15, 30, 64syl3anc 1373 . . . . . . . . . 10 (𝜑 → (𝐶 𝑅) = (𝑅 𝐶))
6663, 65breqtrrd 5067 . . . . . . . . 9 (𝜑𝑈 (𝐶 𝑅))
671, 9, 3dalemsjteb 37346 . . . . . . . . . 10 (𝜑 → (𝑆 𝑇) ∈ (Base‘𝐾))
681, 9, 3dalempjqeb 37345 . . . . . . . . . . 11 (𝜑 → (𝑃 𝑄) ∈ (Base‘𝐾))
697, 9latjcl 17899 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝐶 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → (𝐶 (𝑃 𝑄)) ∈ (Base‘𝐾))
702, 4, 68, 69syl3anc 1373 . . . . . . . . . 10 (𝜑 → (𝐶 (𝑃 𝑄)) ∈ (Base‘𝐾))
711, 3dalemueb 37344 . . . . . . . . . 10 (𝜑𝑈 ∈ (Base‘𝐾))
727, 9, 3hlatjcl 37067 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝐶𝐴𝑅𝐴) → (𝐶 𝑅) ∈ (Base‘𝐾))
7313, 15, 30, 72syl3anc 1373 . . . . . . . . . 10 (𝜑 → (𝐶 𝑅) ∈ (Base‘𝐾))
747, 8, 9latjlej12 17915 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ ((𝑆 𝑇) ∈ (Base‘𝐾) ∧ (𝐶 (𝑃 𝑄)) ∈ (Base‘𝐾)) ∧ (𝑈 ∈ (Base‘𝐾) ∧ (𝐶 𝑅) ∈ (Base‘𝐾))) → (((𝑆 𝑇) (𝐶 (𝑃 𝑄)) ∧ 𝑈 (𝐶 𝑅)) → ((𝑆 𝑇) 𝑈) ((𝐶 (𝑃 𝑄)) (𝐶 𝑅))))
752, 67, 70, 71, 73, 74syl122anc 1381 . . . . . . . . 9 (𝜑 → (((𝑆 𝑇) (𝐶 (𝑃 𝑄)) ∧ 𝑈 (𝐶 𝑅)) → ((𝑆 𝑇) 𝑈) ((𝐶 (𝑃 𝑄)) (𝐶 𝑅))))
7654, 66, 75mp2and 699 . . . . . . . 8 (𝜑 → ((𝑆 𝑇) 𝑈) ((𝐶 (𝑃 𝑄)) (𝐶 𝑅)))
771, 3dalemreb 37341 . . . . . . . . 9 (𝜑𝑅 ∈ (Base‘𝐾))
787, 9latjjdi 17951 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝐶 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾))) → (𝐶 ((𝑃 𝑄) 𝑅)) = ((𝐶 (𝑃 𝑄)) (𝐶 𝑅)))
792, 4, 68, 77, 78syl13anc 1374 . . . . . . . 8 (𝜑 → (𝐶 ((𝑃 𝑄) 𝑅)) = ((𝐶 (𝑃 𝑄)) (𝐶 𝑅)))
8076, 79breqtrrd 5067 . . . . . . 7 (𝜑 → ((𝑆 𝑇) 𝑈) (𝐶 ((𝑃 𝑄) 𝑅)))
81 dalem-cly.z . . . . . . 7 𝑍 = ((𝑆 𝑇) 𝑈)
8214oveq2i 7202 . . . . . . 7 (𝐶 𝑌) = (𝐶 ((𝑃 𝑄) 𝑅))
8380, 81, 823brtr4g 5073 . . . . . 6 (𝜑𝑍 (𝐶 𝑌))
84 breq2 5043 . . . . . 6 ((𝐶 𝑌) = 𝑌 → (𝑍 (𝐶 𝑌) ↔ 𝑍 𝑌))
8583, 84syl5ibcom 248 . . . . 5 (𝜑 → ((𝐶 𝑌) = 𝑌𝑍 𝑌))
8611, 85sylbid 243 . . . 4 (𝜑 → (𝐶 𝑌𝑍 𝑌))
871dalemzeo 37333 . . . . . 6 (𝜑𝑍𝑂)
881dalemyeo 37332 . . . . . 6 (𝜑𝑌𝑂)
898, 5lplncmp 37262 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑍𝑂𝑌𝑂) → (𝑍 𝑌𝑍 = 𝑌))
9013, 87, 88, 89syl3anc 1373 . . . . 5 (𝜑 → (𝑍 𝑌𝑍 = 𝑌))
91 eqcom 2743 . . . . 5 (𝑍 = 𝑌𝑌 = 𝑍)
9290, 91bitrdi 290 . . . 4 (𝜑 → (𝑍 𝑌𝑌 = 𝑍))
9386, 92sylibd 242 . . 3 (𝜑 → (𝐶 𝑌𝑌 = 𝑍))
9493necon3ad 2945 . 2 (𝜑 → (𝑌𝑍 → ¬ 𝐶 𝑌))
9594imp 410 1 ((𝜑𝑌𝑍) → ¬ 𝐶 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2112  wne 2932   class class class wbr 5039  cfv 6358  (class class class)co 7191  Basecbs 16666  lecple 16756  joincjn 17772  Latclat 17891  Atomscatm 36963  HLchlt 37050  LPlanesclpl 37192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-proset 17756  df-poset 17774  df-plt 17790  df-lub 17806  df-glb 17807  df-join 17808  df-meet 17809  df-p0 17885  df-lat 17892  df-clat 17959  df-oposet 36876  df-ol 36878  df-oml 36879  df-covers 36966  df-ats 36967  df-atl 36998  df-cvlat 37022  df-hlat 37051  df-llines 37198  df-lplanes 37199
This theorem is referenced by:  dalem9  37372
  Copyright terms: Public domain W3C validator