Proof of Theorem dalem-cly
Step | Hyp | Ref
| Expression |
1 | | dalema.ph |
. . . . . . 7
⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) |
2 | 1 | dalemkelat 37638 |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ Lat) |
3 | | dalemc.a |
. . . . . . 7
⊢ 𝐴 = (Atoms‘𝐾) |
4 | 1, 3 | dalemceb 37652 |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ (Base‘𝐾)) |
5 | | dalem-cly.o |
. . . . . . 7
⊢ 𝑂 = (LPlanes‘𝐾) |
6 | 1, 5 | dalemyeb 37663 |
. . . . . 6
⊢ (𝜑 → 𝑌 ∈ (Base‘𝐾)) |
7 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘𝐾) =
(Base‘𝐾) |
8 | | dalemc.l |
. . . . . . 7
⊢ ≤ =
(le‘𝐾) |
9 | | dalemc.j |
. . . . . . 7
⊢ ∨ =
(join‘𝐾) |
10 | 7, 8, 9 | latleeqj1 18169 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ 𝐶 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝐶 ≤ 𝑌 ↔ (𝐶 ∨ 𝑌) = 𝑌)) |
11 | 2, 4, 6, 10 | syl3anc 1370 |
. . . . 5
⊢ (𝜑 → (𝐶 ≤ 𝑌 ↔ (𝐶 ∨ 𝑌) = 𝑌)) |
12 | 1 | dalemclpjs 37648 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐶 ≤ (𝑃 ∨ 𝑆)) |
13 | 1 | dalemkehl 37637 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐾 ∈ HL) |
14 | | dalem-cly.y |
. . . . . . . . . . . . . . 15
⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) |
15 | 1, 8, 9, 3, 5, 14 | dalemcea 37674 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐶 ∈ 𝐴) |
16 | 1 | dalemsea 37643 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑆 ∈ 𝐴) |
17 | 1 | dalempea 37640 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑃 ∈ 𝐴) |
18 | 1 | dalemqea 37641 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑄 ∈ 𝐴) |
19 | 1 | dalem-clpjq 37651 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ¬ 𝐶 ≤ (𝑃 ∨ 𝑄)) |
20 | 8, 9, 3 | atnlej1 37393 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ HL ∧ (𝐶 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝐶 ≤ (𝑃 ∨ 𝑄)) → 𝐶 ≠ 𝑃) |
21 | 13, 15, 17, 18, 19, 20 | syl131anc 1382 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐶 ≠ 𝑃) |
22 | 8, 9, 3 | hlatexch1 37409 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ HL ∧ (𝐶 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ 𝐶 ≠ 𝑃) → (𝐶 ≤ (𝑃 ∨ 𝑆) → 𝑆 ≤ (𝑃 ∨ 𝐶))) |
23 | 13, 15, 16, 17, 21, 22 | syl131anc 1382 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐶 ≤ (𝑃 ∨ 𝑆) → 𝑆 ≤ (𝑃 ∨ 𝐶))) |
24 | 12, 23 | mpd 15 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑆 ≤ (𝑃 ∨ 𝐶)) |
25 | 9, 3 | hlatjcom 37382 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ HL ∧ 𝐶 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) → (𝐶 ∨ 𝑃) = (𝑃 ∨ 𝐶)) |
26 | 13, 15, 17, 25 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐶 ∨ 𝑃) = (𝑃 ∨ 𝐶)) |
27 | 24, 26 | breqtrrd 5102 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑆 ≤ (𝐶 ∨ 𝑃)) |
28 | 1 | dalemclqjt 37649 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐶 ≤ (𝑄 ∨ 𝑇)) |
29 | 1 | dalemtea 37644 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑇 ∈ 𝐴) |
30 | 1 | dalemrea 37642 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑅 ∈ 𝐴) |
31 | | simp312 1320 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈)))) → ¬ 𝐶 ≤ (𝑄 ∨ 𝑅)) |
32 | 1, 31 | sylbi 216 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ¬ 𝐶 ≤ (𝑄 ∨ 𝑅)) |
33 | 8, 9, 3 | atnlej1 37393 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ HL ∧ (𝐶 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅)) → 𝐶 ≠ 𝑄) |
34 | 13, 15, 18, 30, 32, 33 | syl131anc 1382 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐶 ≠ 𝑄) |
35 | 8, 9, 3 | hlatexch1 37409 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ HL ∧ (𝐶 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝐶 ≠ 𝑄) → (𝐶 ≤ (𝑄 ∨ 𝑇) → 𝑇 ≤ (𝑄 ∨ 𝐶))) |
36 | 13, 15, 29, 18, 34, 35 | syl131anc 1382 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐶 ≤ (𝑄 ∨ 𝑇) → 𝑇 ≤ (𝑄 ∨ 𝐶))) |
37 | 28, 36 | mpd 15 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑇 ≤ (𝑄 ∨ 𝐶)) |
38 | 9, 3 | hlatjcom 37382 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ HL ∧ 𝐶 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝐶 ∨ 𝑄) = (𝑄 ∨ 𝐶)) |
39 | 13, 15, 18, 38 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐶 ∨ 𝑄) = (𝑄 ∨ 𝐶)) |
40 | 37, 39 | breqtrrd 5102 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑇 ≤ (𝐶 ∨ 𝑄)) |
41 | 1, 3 | dalemseb 37656 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑆 ∈ (Base‘𝐾)) |
42 | 7, 9, 3 | hlatjcl 37381 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ HL ∧ 𝐶 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) → (𝐶 ∨ 𝑃) ∈ (Base‘𝐾)) |
43 | 13, 15, 17, 42 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐶 ∨ 𝑃) ∈ (Base‘𝐾)) |
44 | 1, 3 | dalemteb 37657 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑇 ∈ (Base‘𝐾)) |
45 | 7, 9, 3 | hlatjcl 37381 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ HL ∧ 𝐶 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝐶 ∨ 𝑄) ∈ (Base‘𝐾)) |
46 | 13, 15, 18, 45 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐶 ∨ 𝑄) ∈ (Base‘𝐾)) |
47 | 7, 8, 9 | latjlej12 18173 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ (𝐶 ∨ 𝑃) ∈ (Base‘𝐾)) ∧ (𝑇 ∈ (Base‘𝐾) ∧ (𝐶 ∨ 𝑄) ∈ (Base‘𝐾))) → ((𝑆 ≤ (𝐶 ∨ 𝑃) ∧ 𝑇 ≤ (𝐶 ∨ 𝑄)) → (𝑆 ∨ 𝑇) ≤ ((𝐶 ∨ 𝑃) ∨ (𝐶 ∨ 𝑄)))) |
48 | 2, 41, 43, 44, 46, 47 | syl122anc 1378 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑆 ≤ (𝐶 ∨ 𝑃) ∧ 𝑇 ≤ (𝐶 ∨ 𝑄)) → (𝑆 ∨ 𝑇) ≤ ((𝐶 ∨ 𝑃) ∨ (𝐶 ∨ 𝑄)))) |
49 | 27, 40, 48 | mp2and 696 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑆 ∨ 𝑇) ≤ ((𝐶 ∨ 𝑃) ∨ (𝐶 ∨ 𝑄))) |
50 | 1, 3 | dalempeb 37653 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑃 ∈ (Base‘𝐾)) |
51 | 1, 3 | dalemqeb 37654 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑄 ∈ (Base‘𝐾)) |
52 | 7, 9 | latjjdi 18209 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ Lat ∧ (𝐶 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾))) → (𝐶 ∨ (𝑃 ∨ 𝑄)) = ((𝐶 ∨ 𝑃) ∨ (𝐶 ∨ 𝑄))) |
53 | 2, 4, 50, 51, 52 | syl13anc 1371 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐶 ∨ (𝑃 ∨ 𝑄)) = ((𝐶 ∨ 𝑃) ∨ (𝐶 ∨ 𝑄))) |
54 | 49, 53 | breqtrrd 5102 |
. . . . . . . . 9
⊢ (𝜑 → (𝑆 ∨ 𝑇) ≤ (𝐶 ∨ (𝑃 ∨ 𝑄))) |
55 | 1 | dalemclrju 37650 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐶 ≤ (𝑅 ∨ 𝑈)) |
56 | 1 | dalemuea 37645 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑈 ∈ 𝐴) |
57 | | simp313 1321 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈)))) → ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) |
58 | 1, 57 | sylbi 216 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) |
59 | 8, 9, 3 | atnlej1 37393 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ HL ∧ (𝐶 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) → 𝐶 ≠ 𝑅) |
60 | 13, 15, 30, 17, 58, 59 | syl131anc 1382 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐶 ≠ 𝑅) |
61 | 8, 9, 3 | hlatexch1 37409 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ (𝐶 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝐶 ≠ 𝑅) → (𝐶 ≤ (𝑅 ∨ 𝑈) → 𝑈 ≤ (𝑅 ∨ 𝐶))) |
62 | 13, 15, 56, 30, 60, 61 | syl131anc 1382 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐶 ≤ (𝑅 ∨ 𝑈) → 𝑈 ≤ (𝑅 ∨ 𝐶))) |
63 | 55, 62 | mpd 15 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑈 ≤ (𝑅 ∨ 𝐶)) |
64 | 9, 3 | hlatjcom 37382 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ 𝐶 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → (𝐶 ∨ 𝑅) = (𝑅 ∨ 𝐶)) |
65 | 13, 15, 30, 64 | syl3anc 1370 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐶 ∨ 𝑅) = (𝑅 ∨ 𝐶)) |
66 | 63, 65 | breqtrrd 5102 |
. . . . . . . . 9
⊢ (𝜑 → 𝑈 ≤ (𝐶 ∨ 𝑅)) |
67 | 1, 9, 3 | dalemsjteb 37660 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑆 ∨ 𝑇) ∈ (Base‘𝐾)) |
68 | 1, 9, 3 | dalempjqeb 37659 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
69 | 7, 9 | latjcl 18157 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ Lat ∧ 𝐶 ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) → (𝐶 ∨ (𝑃 ∨ 𝑄)) ∈ (Base‘𝐾)) |
70 | 2, 4, 68, 69 | syl3anc 1370 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐶 ∨ (𝑃 ∨ 𝑄)) ∈ (Base‘𝐾)) |
71 | 1, 3 | dalemueb 37658 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑈 ∈ (Base‘𝐾)) |
72 | 7, 9, 3 | hlatjcl 37381 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ 𝐶 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → (𝐶 ∨ 𝑅) ∈ (Base‘𝐾)) |
73 | 13, 15, 30, 72 | syl3anc 1370 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐶 ∨ 𝑅) ∈ (Base‘𝐾)) |
74 | 7, 8, 9 | latjlej12 18173 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ ((𝑆 ∨ 𝑇) ∈ (Base‘𝐾) ∧ (𝐶 ∨ (𝑃 ∨ 𝑄)) ∈ (Base‘𝐾)) ∧ (𝑈 ∈ (Base‘𝐾) ∧ (𝐶 ∨ 𝑅) ∈ (Base‘𝐾))) → (((𝑆 ∨ 𝑇) ≤ (𝐶 ∨ (𝑃 ∨ 𝑄)) ∧ 𝑈 ≤ (𝐶 ∨ 𝑅)) → ((𝑆 ∨ 𝑇) ∨ 𝑈) ≤ ((𝐶 ∨ (𝑃 ∨ 𝑄)) ∨ (𝐶 ∨ 𝑅)))) |
75 | 2, 67, 70, 71, 73, 74 | syl122anc 1378 |
. . . . . . . . 9
⊢ (𝜑 → (((𝑆 ∨ 𝑇) ≤ (𝐶 ∨ (𝑃 ∨ 𝑄)) ∧ 𝑈 ≤ (𝐶 ∨ 𝑅)) → ((𝑆 ∨ 𝑇) ∨ 𝑈) ≤ ((𝐶 ∨ (𝑃 ∨ 𝑄)) ∨ (𝐶 ∨ 𝑅)))) |
76 | 54, 66, 75 | mp2and 696 |
. . . . . . . 8
⊢ (𝜑 → ((𝑆 ∨ 𝑇) ∨ 𝑈) ≤ ((𝐶 ∨ (𝑃 ∨ 𝑄)) ∨ (𝐶 ∨ 𝑅))) |
77 | 1, 3 | dalemreb 37655 |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ (Base‘𝐾)) |
78 | 7, 9 | latjjdi 18209 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ (𝐶 ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾))) → (𝐶 ∨ ((𝑃 ∨ 𝑄) ∨ 𝑅)) = ((𝐶 ∨ (𝑃 ∨ 𝑄)) ∨ (𝐶 ∨ 𝑅))) |
79 | 2, 4, 68, 77, 78 | syl13anc 1371 |
. . . . . . . 8
⊢ (𝜑 → (𝐶 ∨ ((𝑃 ∨ 𝑄) ∨ 𝑅)) = ((𝐶 ∨ (𝑃 ∨ 𝑄)) ∨ (𝐶 ∨ 𝑅))) |
80 | 76, 79 | breqtrrd 5102 |
. . . . . . 7
⊢ (𝜑 → ((𝑆 ∨ 𝑇) ∨ 𝑈) ≤ (𝐶 ∨ ((𝑃 ∨ 𝑄) ∨ 𝑅))) |
81 | | dalem-cly.z |
. . . . . . 7
⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) |
82 | 14 | oveq2i 7286 |
. . . . . . 7
⊢ (𝐶 ∨ 𝑌) = (𝐶 ∨ ((𝑃 ∨ 𝑄) ∨ 𝑅)) |
83 | 80, 81, 82 | 3brtr4g 5108 |
. . . . . 6
⊢ (𝜑 → 𝑍 ≤ (𝐶 ∨ 𝑌)) |
84 | | breq2 5078 |
. . . . . 6
⊢ ((𝐶 ∨ 𝑌) = 𝑌 → (𝑍 ≤ (𝐶 ∨ 𝑌) ↔ 𝑍 ≤ 𝑌)) |
85 | 83, 84 | syl5ibcom 244 |
. . . . 5
⊢ (𝜑 → ((𝐶 ∨ 𝑌) = 𝑌 → 𝑍 ≤ 𝑌)) |
86 | 11, 85 | sylbid 239 |
. . . 4
⊢ (𝜑 → (𝐶 ≤ 𝑌 → 𝑍 ≤ 𝑌)) |
87 | 1 | dalemzeo 37647 |
. . . . . 6
⊢ (𝜑 → 𝑍 ∈ 𝑂) |
88 | 1 | dalemyeo 37646 |
. . . . . 6
⊢ (𝜑 → 𝑌 ∈ 𝑂) |
89 | 8, 5 | lplncmp 37576 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑍 ∈ 𝑂 ∧ 𝑌 ∈ 𝑂) → (𝑍 ≤ 𝑌 ↔ 𝑍 = 𝑌)) |
90 | 13, 87, 88, 89 | syl3anc 1370 |
. . . . 5
⊢ (𝜑 → (𝑍 ≤ 𝑌 ↔ 𝑍 = 𝑌)) |
91 | | eqcom 2745 |
. . . . 5
⊢ (𝑍 = 𝑌 ↔ 𝑌 = 𝑍) |
92 | 90, 91 | bitrdi 287 |
. . . 4
⊢ (𝜑 → (𝑍 ≤ 𝑌 ↔ 𝑌 = 𝑍)) |
93 | 86, 92 | sylibd 238 |
. . 3
⊢ (𝜑 → (𝐶 ≤ 𝑌 → 𝑌 = 𝑍)) |
94 | 93 | necon3ad 2956 |
. 2
⊢ (𝜑 → (𝑌 ≠ 𝑍 → ¬ 𝐶 ≤ 𝑌)) |
95 | 94 | imp 407 |
1
⊢ ((𝜑 ∧ 𝑌 ≠ 𝑍) → ¬ 𝐶 ≤ 𝑌) |