Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem-cly Structured version   Visualization version   GIF version

Theorem dalem-cly 37612
Description: Lemma for dalem9 37613. Center of perspectivity 𝐶 is not in plane 𝑌 (when 𝑌 and 𝑍 are different planes). (Contributed by NM, 13-Aug-2012.)
Hypotheses
Ref Expression
dalema.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalemc.l = (le‘𝐾)
dalemc.j = (join‘𝐾)
dalemc.a 𝐴 = (Atoms‘𝐾)
dalem-cly.o 𝑂 = (LPlanes‘𝐾)
dalem-cly.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem-cly.z 𝑍 = ((𝑆 𝑇) 𝑈)
Assertion
Ref Expression
dalem-cly ((𝜑𝑌𝑍) → ¬ 𝐶 𝑌)

Proof of Theorem dalem-cly
StepHypRef Expression
1 dalema.ph . . . . . . 7 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
21dalemkelat 37565 . . . . . 6 (𝜑𝐾 ∈ Lat)
3 dalemc.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
41, 3dalemceb 37579 . . . . . 6 (𝜑𝐶 ∈ (Base‘𝐾))
5 dalem-cly.o . . . . . . 7 𝑂 = (LPlanes‘𝐾)
61, 5dalemyeb 37590 . . . . . 6 (𝜑𝑌 ∈ (Base‘𝐾))
7 eqid 2738 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
8 dalemc.l . . . . . . 7 = (le‘𝐾)
9 dalemc.j . . . . . . 7 = (join‘𝐾)
107, 8, 9latleeqj1 18084 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝐶 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝐶 𝑌 ↔ (𝐶 𝑌) = 𝑌))
112, 4, 6, 10syl3anc 1369 . . . . 5 (𝜑 → (𝐶 𝑌 ↔ (𝐶 𝑌) = 𝑌))
121dalemclpjs 37575 . . . . . . . . . . . . 13 (𝜑𝐶 (𝑃 𝑆))
131dalemkehl 37564 . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ HL)
14 dalem-cly.y . . . . . . . . . . . . . . 15 𝑌 = ((𝑃 𝑄) 𝑅)
151, 8, 9, 3, 5, 14dalemcea 37601 . . . . . . . . . . . . . 14 (𝜑𝐶𝐴)
161dalemsea 37570 . . . . . . . . . . . . . 14 (𝜑𝑆𝐴)
171dalempea 37567 . . . . . . . . . . . . . 14 (𝜑𝑃𝐴)
181dalemqea 37568 . . . . . . . . . . . . . . 15 (𝜑𝑄𝐴)
191dalem-clpjq 37578 . . . . . . . . . . . . . . 15 (𝜑 → ¬ 𝐶 (𝑃 𝑄))
208, 9, 3atnlej1 37320 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝐶𝐴𝑃𝐴𝑄𝐴) ∧ ¬ 𝐶 (𝑃 𝑄)) → 𝐶𝑃)
2113, 15, 17, 18, 19, 20syl131anc 1381 . . . . . . . . . . . . . 14 (𝜑𝐶𝑃)
228, 9, 3hlatexch1 37336 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝐶𝐴𝑆𝐴𝑃𝐴) ∧ 𝐶𝑃) → (𝐶 (𝑃 𝑆) → 𝑆 (𝑃 𝐶)))
2313, 15, 16, 17, 21, 22syl131anc 1381 . . . . . . . . . . . . 13 (𝜑 → (𝐶 (𝑃 𝑆) → 𝑆 (𝑃 𝐶)))
2412, 23mpd 15 . . . . . . . . . . . 12 (𝜑𝑆 (𝑃 𝐶))
259, 3hlatjcom 37309 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝐶𝐴𝑃𝐴) → (𝐶 𝑃) = (𝑃 𝐶))
2613, 15, 17, 25syl3anc 1369 . . . . . . . . . . . 12 (𝜑 → (𝐶 𝑃) = (𝑃 𝐶))
2724, 26breqtrrd 5098 . . . . . . . . . . 11 (𝜑𝑆 (𝐶 𝑃))
281dalemclqjt 37576 . . . . . . . . . . . . 13 (𝜑𝐶 (𝑄 𝑇))
291dalemtea 37571 . . . . . . . . . . . . . 14 (𝜑𝑇𝐴)
301dalemrea 37569 . . . . . . . . . . . . . . 15 (𝜑𝑅𝐴)
31 simp312 1319 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))) → ¬ 𝐶 (𝑄 𝑅))
321, 31sylbi 216 . . . . . . . . . . . . . . 15 (𝜑 → ¬ 𝐶 (𝑄 𝑅))
338, 9, 3atnlej1 37320 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝐶𝐴𝑄𝐴𝑅𝐴) ∧ ¬ 𝐶 (𝑄 𝑅)) → 𝐶𝑄)
3413, 15, 18, 30, 32, 33syl131anc 1381 . . . . . . . . . . . . . 14 (𝜑𝐶𝑄)
358, 9, 3hlatexch1 37336 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝐶𝐴𝑇𝐴𝑄𝐴) ∧ 𝐶𝑄) → (𝐶 (𝑄 𝑇) → 𝑇 (𝑄 𝐶)))
3613, 15, 29, 18, 34, 35syl131anc 1381 . . . . . . . . . . . . 13 (𝜑 → (𝐶 (𝑄 𝑇) → 𝑇 (𝑄 𝐶)))
3728, 36mpd 15 . . . . . . . . . . . 12 (𝜑𝑇 (𝑄 𝐶))
389, 3hlatjcom 37309 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝐶𝐴𝑄𝐴) → (𝐶 𝑄) = (𝑄 𝐶))
3913, 15, 18, 38syl3anc 1369 . . . . . . . . . . . 12 (𝜑 → (𝐶 𝑄) = (𝑄 𝐶))
4037, 39breqtrrd 5098 . . . . . . . . . . 11 (𝜑𝑇 (𝐶 𝑄))
411, 3dalemseb 37583 . . . . . . . . . . . 12 (𝜑𝑆 ∈ (Base‘𝐾))
427, 9, 3hlatjcl 37308 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝐶𝐴𝑃𝐴) → (𝐶 𝑃) ∈ (Base‘𝐾))
4313, 15, 17, 42syl3anc 1369 . . . . . . . . . . . 12 (𝜑 → (𝐶 𝑃) ∈ (Base‘𝐾))
441, 3dalemteb 37584 . . . . . . . . . . . 12 (𝜑𝑇 ∈ (Base‘𝐾))
457, 9, 3hlatjcl 37308 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝐶𝐴𝑄𝐴) → (𝐶 𝑄) ∈ (Base‘𝐾))
4613, 15, 18, 45syl3anc 1369 . . . . . . . . . . . 12 (𝜑 → (𝐶 𝑄) ∈ (Base‘𝐾))
477, 8, 9latjlej12 18088 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ (𝐶 𝑃) ∈ (Base‘𝐾)) ∧ (𝑇 ∈ (Base‘𝐾) ∧ (𝐶 𝑄) ∈ (Base‘𝐾))) → ((𝑆 (𝐶 𝑃) ∧ 𝑇 (𝐶 𝑄)) → (𝑆 𝑇) ((𝐶 𝑃) (𝐶 𝑄))))
482, 41, 43, 44, 46, 47syl122anc 1377 . . . . . . . . . . 11 (𝜑 → ((𝑆 (𝐶 𝑃) ∧ 𝑇 (𝐶 𝑄)) → (𝑆 𝑇) ((𝐶 𝑃) (𝐶 𝑄))))
4927, 40, 48mp2and 695 . . . . . . . . . 10 (𝜑 → (𝑆 𝑇) ((𝐶 𝑃) (𝐶 𝑄)))
501, 3dalempeb 37580 . . . . . . . . . . 11 (𝜑𝑃 ∈ (Base‘𝐾))
511, 3dalemqeb 37581 . . . . . . . . . . 11 (𝜑𝑄 ∈ (Base‘𝐾))
527, 9latjjdi 18124 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝐶 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾))) → (𝐶 (𝑃 𝑄)) = ((𝐶 𝑃) (𝐶 𝑄)))
532, 4, 50, 51, 52syl13anc 1370 . . . . . . . . . 10 (𝜑 → (𝐶 (𝑃 𝑄)) = ((𝐶 𝑃) (𝐶 𝑄)))
5449, 53breqtrrd 5098 . . . . . . . . 9 (𝜑 → (𝑆 𝑇) (𝐶 (𝑃 𝑄)))
551dalemclrju 37577 . . . . . . . . . . 11 (𝜑𝐶 (𝑅 𝑈))
561dalemuea 37572 . . . . . . . . . . . 12 (𝜑𝑈𝐴)
57 simp313 1320 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))) → ¬ 𝐶 (𝑅 𝑃))
581, 57sylbi 216 . . . . . . . . . . . . 13 (𝜑 → ¬ 𝐶 (𝑅 𝑃))
598, 9, 3atnlej1 37320 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝐶𝐴𝑅𝐴𝑃𝐴) ∧ ¬ 𝐶 (𝑅 𝑃)) → 𝐶𝑅)
6013, 15, 30, 17, 58, 59syl131anc 1381 . . . . . . . . . . . 12 (𝜑𝐶𝑅)
618, 9, 3hlatexch1 37336 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝐶𝐴𝑈𝐴𝑅𝐴) ∧ 𝐶𝑅) → (𝐶 (𝑅 𝑈) → 𝑈 (𝑅 𝐶)))
6213, 15, 56, 30, 60, 61syl131anc 1381 . . . . . . . . . . 11 (𝜑 → (𝐶 (𝑅 𝑈) → 𝑈 (𝑅 𝐶)))
6355, 62mpd 15 . . . . . . . . . 10 (𝜑𝑈 (𝑅 𝐶))
649, 3hlatjcom 37309 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝐶𝐴𝑅𝐴) → (𝐶 𝑅) = (𝑅 𝐶))
6513, 15, 30, 64syl3anc 1369 . . . . . . . . . 10 (𝜑 → (𝐶 𝑅) = (𝑅 𝐶))
6663, 65breqtrrd 5098 . . . . . . . . 9 (𝜑𝑈 (𝐶 𝑅))
671, 9, 3dalemsjteb 37587 . . . . . . . . . 10 (𝜑 → (𝑆 𝑇) ∈ (Base‘𝐾))
681, 9, 3dalempjqeb 37586 . . . . . . . . . . 11 (𝜑 → (𝑃 𝑄) ∈ (Base‘𝐾))
697, 9latjcl 18072 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝐶 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → (𝐶 (𝑃 𝑄)) ∈ (Base‘𝐾))
702, 4, 68, 69syl3anc 1369 . . . . . . . . . 10 (𝜑 → (𝐶 (𝑃 𝑄)) ∈ (Base‘𝐾))
711, 3dalemueb 37585 . . . . . . . . . 10 (𝜑𝑈 ∈ (Base‘𝐾))
727, 9, 3hlatjcl 37308 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝐶𝐴𝑅𝐴) → (𝐶 𝑅) ∈ (Base‘𝐾))
7313, 15, 30, 72syl3anc 1369 . . . . . . . . . 10 (𝜑 → (𝐶 𝑅) ∈ (Base‘𝐾))
747, 8, 9latjlej12 18088 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ ((𝑆 𝑇) ∈ (Base‘𝐾) ∧ (𝐶 (𝑃 𝑄)) ∈ (Base‘𝐾)) ∧ (𝑈 ∈ (Base‘𝐾) ∧ (𝐶 𝑅) ∈ (Base‘𝐾))) → (((𝑆 𝑇) (𝐶 (𝑃 𝑄)) ∧ 𝑈 (𝐶 𝑅)) → ((𝑆 𝑇) 𝑈) ((𝐶 (𝑃 𝑄)) (𝐶 𝑅))))
752, 67, 70, 71, 73, 74syl122anc 1377 . . . . . . . . 9 (𝜑 → (((𝑆 𝑇) (𝐶 (𝑃 𝑄)) ∧ 𝑈 (𝐶 𝑅)) → ((𝑆 𝑇) 𝑈) ((𝐶 (𝑃 𝑄)) (𝐶 𝑅))))
7654, 66, 75mp2and 695 . . . . . . . 8 (𝜑 → ((𝑆 𝑇) 𝑈) ((𝐶 (𝑃 𝑄)) (𝐶 𝑅)))
771, 3dalemreb 37582 . . . . . . . . 9 (𝜑𝑅 ∈ (Base‘𝐾))
787, 9latjjdi 18124 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝐶 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾))) → (𝐶 ((𝑃 𝑄) 𝑅)) = ((𝐶 (𝑃 𝑄)) (𝐶 𝑅)))
792, 4, 68, 77, 78syl13anc 1370 . . . . . . . 8 (𝜑 → (𝐶 ((𝑃 𝑄) 𝑅)) = ((𝐶 (𝑃 𝑄)) (𝐶 𝑅)))
8076, 79breqtrrd 5098 . . . . . . 7 (𝜑 → ((𝑆 𝑇) 𝑈) (𝐶 ((𝑃 𝑄) 𝑅)))
81 dalem-cly.z . . . . . . 7 𝑍 = ((𝑆 𝑇) 𝑈)
8214oveq2i 7266 . . . . . . 7 (𝐶 𝑌) = (𝐶 ((𝑃 𝑄) 𝑅))
8380, 81, 823brtr4g 5104 . . . . . 6 (𝜑𝑍 (𝐶 𝑌))
84 breq2 5074 . . . . . 6 ((𝐶 𝑌) = 𝑌 → (𝑍 (𝐶 𝑌) ↔ 𝑍 𝑌))
8583, 84syl5ibcom 244 . . . . 5 (𝜑 → ((𝐶 𝑌) = 𝑌𝑍 𝑌))
8611, 85sylbid 239 . . . 4 (𝜑 → (𝐶 𝑌𝑍 𝑌))
871dalemzeo 37574 . . . . . 6 (𝜑𝑍𝑂)
881dalemyeo 37573 . . . . . 6 (𝜑𝑌𝑂)
898, 5lplncmp 37503 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑍𝑂𝑌𝑂) → (𝑍 𝑌𝑍 = 𝑌))
9013, 87, 88, 89syl3anc 1369 . . . . 5 (𝜑 → (𝑍 𝑌𝑍 = 𝑌))
91 eqcom 2745 . . . . 5 (𝑍 = 𝑌𝑌 = 𝑍)
9290, 91bitrdi 286 . . . 4 (𝜑 → (𝑍 𝑌𝑌 = 𝑍))
9386, 92sylibd 238 . . 3 (𝜑 → (𝐶 𝑌𝑌 = 𝑍))
9493necon3ad 2955 . 2 (𝜑 → (𝑌𝑍 → ¬ 𝐶 𝑌))
9594imp 406 1 ((𝜑𝑌𝑍) → ¬ 𝐶 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070  cfv 6418  (class class class)co 7255  Basecbs 16840  lecple 16895  joincjn 17944  Latclat 18064  Atomscatm 37204  HLchlt 37291  LPlanesclpl 37433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-lat 18065  df-clat 18132  df-oposet 37117  df-ol 37119  df-oml 37120  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292  df-llines 37439  df-lplanes 37440
This theorem is referenced by:  dalem9  37613
  Copyright terms: Public domain W3C validator