Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem-cly Structured version   Visualization version   GIF version

Theorem dalem-cly 37685
Description: Lemma for dalem9 37686. Center of perspectivity 𝐶 is not in plane 𝑌 (when 𝑌 and 𝑍 are different planes). (Contributed by NM, 13-Aug-2012.)
Hypotheses
Ref Expression
dalema.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalemc.l = (le‘𝐾)
dalemc.j = (join‘𝐾)
dalemc.a 𝐴 = (Atoms‘𝐾)
dalem-cly.o 𝑂 = (LPlanes‘𝐾)
dalem-cly.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem-cly.z 𝑍 = ((𝑆 𝑇) 𝑈)
Assertion
Ref Expression
dalem-cly ((𝜑𝑌𝑍) → ¬ 𝐶 𝑌)

Proof of Theorem dalem-cly
StepHypRef Expression
1 dalema.ph . . . . . . 7 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
21dalemkelat 37638 . . . . . 6 (𝜑𝐾 ∈ Lat)
3 dalemc.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
41, 3dalemceb 37652 . . . . . 6 (𝜑𝐶 ∈ (Base‘𝐾))
5 dalem-cly.o . . . . . . 7 𝑂 = (LPlanes‘𝐾)
61, 5dalemyeb 37663 . . . . . 6 (𝜑𝑌 ∈ (Base‘𝐾))
7 eqid 2738 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
8 dalemc.l . . . . . . 7 = (le‘𝐾)
9 dalemc.j . . . . . . 7 = (join‘𝐾)
107, 8, 9latleeqj1 18169 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝐶 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝐶 𝑌 ↔ (𝐶 𝑌) = 𝑌))
112, 4, 6, 10syl3anc 1370 . . . . 5 (𝜑 → (𝐶 𝑌 ↔ (𝐶 𝑌) = 𝑌))
121dalemclpjs 37648 . . . . . . . . . . . . 13 (𝜑𝐶 (𝑃 𝑆))
131dalemkehl 37637 . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ HL)
14 dalem-cly.y . . . . . . . . . . . . . . 15 𝑌 = ((𝑃 𝑄) 𝑅)
151, 8, 9, 3, 5, 14dalemcea 37674 . . . . . . . . . . . . . 14 (𝜑𝐶𝐴)
161dalemsea 37643 . . . . . . . . . . . . . 14 (𝜑𝑆𝐴)
171dalempea 37640 . . . . . . . . . . . . . 14 (𝜑𝑃𝐴)
181dalemqea 37641 . . . . . . . . . . . . . . 15 (𝜑𝑄𝐴)
191dalem-clpjq 37651 . . . . . . . . . . . . . . 15 (𝜑 → ¬ 𝐶 (𝑃 𝑄))
208, 9, 3atnlej1 37393 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝐶𝐴𝑃𝐴𝑄𝐴) ∧ ¬ 𝐶 (𝑃 𝑄)) → 𝐶𝑃)
2113, 15, 17, 18, 19, 20syl131anc 1382 . . . . . . . . . . . . . 14 (𝜑𝐶𝑃)
228, 9, 3hlatexch1 37409 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝐶𝐴𝑆𝐴𝑃𝐴) ∧ 𝐶𝑃) → (𝐶 (𝑃 𝑆) → 𝑆 (𝑃 𝐶)))
2313, 15, 16, 17, 21, 22syl131anc 1382 . . . . . . . . . . . . 13 (𝜑 → (𝐶 (𝑃 𝑆) → 𝑆 (𝑃 𝐶)))
2412, 23mpd 15 . . . . . . . . . . . 12 (𝜑𝑆 (𝑃 𝐶))
259, 3hlatjcom 37382 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝐶𝐴𝑃𝐴) → (𝐶 𝑃) = (𝑃 𝐶))
2613, 15, 17, 25syl3anc 1370 . . . . . . . . . . . 12 (𝜑 → (𝐶 𝑃) = (𝑃 𝐶))
2724, 26breqtrrd 5102 . . . . . . . . . . 11 (𝜑𝑆 (𝐶 𝑃))
281dalemclqjt 37649 . . . . . . . . . . . . 13 (𝜑𝐶 (𝑄 𝑇))
291dalemtea 37644 . . . . . . . . . . . . . 14 (𝜑𝑇𝐴)
301dalemrea 37642 . . . . . . . . . . . . . . 15 (𝜑𝑅𝐴)
31 simp312 1320 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))) → ¬ 𝐶 (𝑄 𝑅))
321, 31sylbi 216 . . . . . . . . . . . . . . 15 (𝜑 → ¬ 𝐶 (𝑄 𝑅))
338, 9, 3atnlej1 37393 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝐶𝐴𝑄𝐴𝑅𝐴) ∧ ¬ 𝐶 (𝑄 𝑅)) → 𝐶𝑄)
3413, 15, 18, 30, 32, 33syl131anc 1382 . . . . . . . . . . . . . 14 (𝜑𝐶𝑄)
358, 9, 3hlatexch1 37409 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝐶𝐴𝑇𝐴𝑄𝐴) ∧ 𝐶𝑄) → (𝐶 (𝑄 𝑇) → 𝑇 (𝑄 𝐶)))
3613, 15, 29, 18, 34, 35syl131anc 1382 . . . . . . . . . . . . 13 (𝜑 → (𝐶 (𝑄 𝑇) → 𝑇 (𝑄 𝐶)))
3728, 36mpd 15 . . . . . . . . . . . 12 (𝜑𝑇 (𝑄 𝐶))
389, 3hlatjcom 37382 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝐶𝐴𝑄𝐴) → (𝐶 𝑄) = (𝑄 𝐶))
3913, 15, 18, 38syl3anc 1370 . . . . . . . . . . . 12 (𝜑 → (𝐶 𝑄) = (𝑄 𝐶))
4037, 39breqtrrd 5102 . . . . . . . . . . 11 (𝜑𝑇 (𝐶 𝑄))
411, 3dalemseb 37656 . . . . . . . . . . . 12 (𝜑𝑆 ∈ (Base‘𝐾))
427, 9, 3hlatjcl 37381 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝐶𝐴𝑃𝐴) → (𝐶 𝑃) ∈ (Base‘𝐾))
4313, 15, 17, 42syl3anc 1370 . . . . . . . . . . . 12 (𝜑 → (𝐶 𝑃) ∈ (Base‘𝐾))
441, 3dalemteb 37657 . . . . . . . . . . . 12 (𝜑𝑇 ∈ (Base‘𝐾))
457, 9, 3hlatjcl 37381 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝐶𝐴𝑄𝐴) → (𝐶 𝑄) ∈ (Base‘𝐾))
4613, 15, 18, 45syl3anc 1370 . . . . . . . . . . . 12 (𝜑 → (𝐶 𝑄) ∈ (Base‘𝐾))
477, 8, 9latjlej12 18173 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ (𝐶 𝑃) ∈ (Base‘𝐾)) ∧ (𝑇 ∈ (Base‘𝐾) ∧ (𝐶 𝑄) ∈ (Base‘𝐾))) → ((𝑆 (𝐶 𝑃) ∧ 𝑇 (𝐶 𝑄)) → (𝑆 𝑇) ((𝐶 𝑃) (𝐶 𝑄))))
482, 41, 43, 44, 46, 47syl122anc 1378 . . . . . . . . . . 11 (𝜑 → ((𝑆 (𝐶 𝑃) ∧ 𝑇 (𝐶 𝑄)) → (𝑆 𝑇) ((𝐶 𝑃) (𝐶 𝑄))))
4927, 40, 48mp2and 696 . . . . . . . . . 10 (𝜑 → (𝑆 𝑇) ((𝐶 𝑃) (𝐶 𝑄)))
501, 3dalempeb 37653 . . . . . . . . . . 11 (𝜑𝑃 ∈ (Base‘𝐾))
511, 3dalemqeb 37654 . . . . . . . . . . 11 (𝜑𝑄 ∈ (Base‘𝐾))
527, 9latjjdi 18209 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝐶 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾))) → (𝐶 (𝑃 𝑄)) = ((𝐶 𝑃) (𝐶 𝑄)))
532, 4, 50, 51, 52syl13anc 1371 . . . . . . . . . 10 (𝜑 → (𝐶 (𝑃 𝑄)) = ((𝐶 𝑃) (𝐶 𝑄)))
5449, 53breqtrrd 5102 . . . . . . . . 9 (𝜑 → (𝑆 𝑇) (𝐶 (𝑃 𝑄)))
551dalemclrju 37650 . . . . . . . . . . 11 (𝜑𝐶 (𝑅 𝑈))
561dalemuea 37645 . . . . . . . . . . . 12 (𝜑𝑈𝐴)
57 simp313 1321 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))) → ¬ 𝐶 (𝑅 𝑃))
581, 57sylbi 216 . . . . . . . . . . . . 13 (𝜑 → ¬ 𝐶 (𝑅 𝑃))
598, 9, 3atnlej1 37393 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝐶𝐴𝑅𝐴𝑃𝐴) ∧ ¬ 𝐶 (𝑅 𝑃)) → 𝐶𝑅)
6013, 15, 30, 17, 58, 59syl131anc 1382 . . . . . . . . . . . 12 (𝜑𝐶𝑅)
618, 9, 3hlatexch1 37409 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝐶𝐴𝑈𝐴𝑅𝐴) ∧ 𝐶𝑅) → (𝐶 (𝑅 𝑈) → 𝑈 (𝑅 𝐶)))
6213, 15, 56, 30, 60, 61syl131anc 1382 . . . . . . . . . . 11 (𝜑 → (𝐶 (𝑅 𝑈) → 𝑈 (𝑅 𝐶)))
6355, 62mpd 15 . . . . . . . . . 10 (𝜑𝑈 (𝑅 𝐶))
649, 3hlatjcom 37382 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝐶𝐴𝑅𝐴) → (𝐶 𝑅) = (𝑅 𝐶))
6513, 15, 30, 64syl3anc 1370 . . . . . . . . . 10 (𝜑 → (𝐶 𝑅) = (𝑅 𝐶))
6663, 65breqtrrd 5102 . . . . . . . . 9 (𝜑𝑈 (𝐶 𝑅))
671, 9, 3dalemsjteb 37660 . . . . . . . . . 10 (𝜑 → (𝑆 𝑇) ∈ (Base‘𝐾))
681, 9, 3dalempjqeb 37659 . . . . . . . . . . 11 (𝜑 → (𝑃 𝑄) ∈ (Base‘𝐾))
697, 9latjcl 18157 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝐶 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → (𝐶 (𝑃 𝑄)) ∈ (Base‘𝐾))
702, 4, 68, 69syl3anc 1370 . . . . . . . . . 10 (𝜑 → (𝐶 (𝑃 𝑄)) ∈ (Base‘𝐾))
711, 3dalemueb 37658 . . . . . . . . . 10 (𝜑𝑈 ∈ (Base‘𝐾))
727, 9, 3hlatjcl 37381 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝐶𝐴𝑅𝐴) → (𝐶 𝑅) ∈ (Base‘𝐾))
7313, 15, 30, 72syl3anc 1370 . . . . . . . . . 10 (𝜑 → (𝐶 𝑅) ∈ (Base‘𝐾))
747, 8, 9latjlej12 18173 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ ((𝑆 𝑇) ∈ (Base‘𝐾) ∧ (𝐶 (𝑃 𝑄)) ∈ (Base‘𝐾)) ∧ (𝑈 ∈ (Base‘𝐾) ∧ (𝐶 𝑅) ∈ (Base‘𝐾))) → (((𝑆 𝑇) (𝐶 (𝑃 𝑄)) ∧ 𝑈 (𝐶 𝑅)) → ((𝑆 𝑇) 𝑈) ((𝐶 (𝑃 𝑄)) (𝐶 𝑅))))
752, 67, 70, 71, 73, 74syl122anc 1378 . . . . . . . . 9 (𝜑 → (((𝑆 𝑇) (𝐶 (𝑃 𝑄)) ∧ 𝑈 (𝐶 𝑅)) → ((𝑆 𝑇) 𝑈) ((𝐶 (𝑃 𝑄)) (𝐶 𝑅))))
7654, 66, 75mp2and 696 . . . . . . . 8 (𝜑 → ((𝑆 𝑇) 𝑈) ((𝐶 (𝑃 𝑄)) (𝐶 𝑅)))
771, 3dalemreb 37655 . . . . . . . . 9 (𝜑𝑅 ∈ (Base‘𝐾))
787, 9latjjdi 18209 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝐶 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾))) → (𝐶 ((𝑃 𝑄) 𝑅)) = ((𝐶 (𝑃 𝑄)) (𝐶 𝑅)))
792, 4, 68, 77, 78syl13anc 1371 . . . . . . . 8 (𝜑 → (𝐶 ((𝑃 𝑄) 𝑅)) = ((𝐶 (𝑃 𝑄)) (𝐶 𝑅)))
8076, 79breqtrrd 5102 . . . . . . 7 (𝜑 → ((𝑆 𝑇) 𝑈) (𝐶 ((𝑃 𝑄) 𝑅)))
81 dalem-cly.z . . . . . . 7 𝑍 = ((𝑆 𝑇) 𝑈)
8214oveq2i 7286 . . . . . . 7 (𝐶 𝑌) = (𝐶 ((𝑃 𝑄) 𝑅))
8380, 81, 823brtr4g 5108 . . . . . 6 (𝜑𝑍 (𝐶 𝑌))
84 breq2 5078 . . . . . 6 ((𝐶 𝑌) = 𝑌 → (𝑍 (𝐶 𝑌) ↔ 𝑍 𝑌))
8583, 84syl5ibcom 244 . . . . 5 (𝜑 → ((𝐶 𝑌) = 𝑌𝑍 𝑌))
8611, 85sylbid 239 . . . 4 (𝜑 → (𝐶 𝑌𝑍 𝑌))
871dalemzeo 37647 . . . . . 6 (𝜑𝑍𝑂)
881dalemyeo 37646 . . . . . 6 (𝜑𝑌𝑂)
898, 5lplncmp 37576 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑍𝑂𝑌𝑂) → (𝑍 𝑌𝑍 = 𝑌))
9013, 87, 88, 89syl3anc 1370 . . . . 5 (𝜑 → (𝑍 𝑌𝑍 = 𝑌))
91 eqcom 2745 . . . . 5 (𝑍 = 𝑌𝑌 = 𝑍)
9290, 91bitrdi 287 . . . 4 (𝜑 → (𝑍 𝑌𝑌 = 𝑍))
9386, 92sylibd 238 . . 3 (𝜑 → (𝐶 𝑌𝑌 = 𝑍))
9493necon3ad 2956 . 2 (𝜑 → (𝑌𝑍 → ¬ 𝐶 𝑌))
9594imp 407 1 ((𝜑𝑌𝑍) → ¬ 𝐶 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  cfv 6433  (class class class)co 7275  Basecbs 16912  lecple 16969  joincjn 18029  Latclat 18149  Atomscatm 37277  HLchlt 37364  LPlanesclpl 37506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-lat 18150  df-clat 18217  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-llines 37512  df-lplanes 37513
This theorem is referenced by:  dalem9  37686
  Copyright terms: Public domain W3C validator