MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simpr33 Structured version   Visualization version   GIF version

Theorem simpr33 1266
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.)
Assertion
Ref Expression
simpr33 ((𝜂 ∧ (𝜃𝜏 ∧ (𝜑𝜓𝜒))) → 𝜒)

Proof of Theorem simpr33
StepHypRef Expression
1 simpr3 1197 . 2 ((𝜂 ∧ (𝜑𝜓𝜒)) → 𝜒)
213ad2antr3 1191 1 ((𝜂 ∧ (𝜃𝜏 ∧ (𝜑𝜓𝜒))) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  oppccatid  17620  subccatid  17748  fuccatid  17874  setccatid  17986  catccatid  18008  estrccatid  18033  xpccatid  18089  nllyidm  23399  utoptop  24144  cgr3tr4  36086  paddasslem9  39867  cdlemd1  40237  cdlemf2  40601  cdlemk34  40949  dihmeetlem18N  41363  dihmeetlem19N  41364  ssccatid  49104  isthincd2  49469  mndtccatid  49619
  Copyright terms: Public domain W3C validator