MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simpr33 Structured version   Visualization version   GIF version

Theorem simpr33 1263
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.)
Assertion
Ref Expression
simpr33 ((𝜂 ∧ (𝜃𝜏 ∧ (𝜑𝜓𝜒))) → 𝜒)

Proof of Theorem simpr33
StepHypRef Expression
1 simpr3 1194 . 2 ((𝜂 ∧ (𝜑𝜓𝜒)) → 𝜒)
213ad2antr3 1188 1 ((𝜂 ∧ (𝜃𝜏 ∧ (𝜑𝜓𝜒))) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by:  oppccatid  17692  subccatid  17823  fuccatid  17952  setccatid  18064  catccatid  18086  estrccatid  18113  xpccatid  18170  nllyidm  23380  utoptop  24126  cgr3tr4  35584  paddasslem9  39238  cdlemd1  39608  cdlemf2  39972  cdlemk34  40320  dihmeetlem18N  40734  dihmeetlem19N  40735  isthincd2  47967  mndtccatid  48022
  Copyright terms: Public domain W3C validator