| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpr33 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpr33 | ⊢ ((𝜂 ∧ (𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr3 1197 | . 2 ⊢ ((𝜂 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) → 𝜒) | |
| 2 | 1 | 3ad2antr3 1191 | 1 ⊢ ((𝜂 ∧ (𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: oppccatid 17620 subccatid 17748 fuccatid 17874 setccatid 17986 catccatid 18008 estrccatid 18033 xpccatid 18089 nllyidm 23399 utoptop 24144 cgr3tr4 36086 paddasslem9 39867 cdlemd1 40237 cdlemf2 40601 cdlemk34 40949 dihmeetlem18N 41363 dihmeetlem19N 41364 ssccatid 49104 isthincd2 49469 mndtccatid 49619 |
| Copyright terms: Public domain | W3C validator |