MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simpr33 Structured version   Visualization version   GIF version

Theorem simpr33 1266
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.)
Assertion
Ref Expression
simpr33 ((𝜂 ∧ (𝜃𝜏 ∧ (𝜑𝜓𝜒))) → 𝜒)

Proof of Theorem simpr33
StepHypRef Expression
1 simpr3 1197 . 2 ((𝜂 ∧ (𝜑𝜓𝜒)) → 𝜒)
213ad2antr3 1191 1 ((𝜂 ∧ (𝜃𝜏 ∧ (𝜑𝜓𝜒))) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089
This theorem is referenced by:  oppccatid  17775  subccatid  17906  fuccatid  18035  setccatid  18147  catccatid  18169  estrccatid  18196  xpccatid  18253  nllyidm  23522  utoptop  24268  cgr3tr4  36047  paddasslem9  39825  cdlemd1  40195  cdlemf2  40559  cdlemk34  40907  dihmeetlem18N  41321  dihmeetlem19N  41322  isthincd2  48963  mndtccatid  49021
  Copyright terms: Public domain W3C validator