Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simpr33 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpr33 | ⊢ ((𝜂 ∧ (𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr3 1194 | . 2 ⊢ ((𝜂 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) → 𝜒) | |
2 | 1 | 3ad2antr3 1188 | 1 ⊢ ((𝜂 ∧ (𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: oppccatid 17347 subccatid 17477 fuccatid 17603 setccatid 17715 catccatid 17737 estrccatid 17764 xpccatid 17821 nllyidm 22548 utoptop 23294 cgr3tr4 34281 paddasslem9 37769 cdlemd1 38139 cdlemf2 38503 cdlemk34 38851 dihmeetlem18N 39265 dihmeetlem19N 39266 isthincd2 46207 mndtccatid 46260 |
Copyright terms: Public domain | W3C validator |