MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simpr33 Structured version   Visualization version   GIF version

Theorem simpr33 1265
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.)
Assertion
Ref Expression
simpr33 ((𝜂 ∧ (𝜃𝜏 ∧ (𝜑𝜓𝜒))) → 𝜒)

Proof of Theorem simpr33
StepHypRef Expression
1 simpr3 1196 . 2 ((𝜂 ∧ (𝜑𝜓𝜒)) → 𝜒)
213ad2antr3 1190 1 ((𝜂 ∧ (𝜃𝜏 ∧ (𝜑𝜓𝜒))) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089
This theorem is referenced by:  oppccatid  17781  subccatid  17912  fuccatid  18041  setccatid  18153  catccatid  18175  estrccatid  18202  xpccatid  18259  nllyidm  23520  utoptop  24266  cgr3tr4  36018  paddasslem9  39787  cdlemd1  40157  cdlemf2  40521  cdlemk34  40869  dihmeetlem18N  41283  dihmeetlem19N  41284  isthincd2  48711  mndtccatid  48766
  Copyright terms: Public domain W3C validator