MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simpr33 Structured version   Visualization version   GIF version

Theorem simpr33 1266
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.)
Assertion
Ref Expression
simpr33 ((𝜂 ∧ (𝜃𝜏 ∧ (𝜑𝜓𝜒))) → 𝜒)

Proof of Theorem simpr33
StepHypRef Expression
1 simpr3 1197 . 2 ((𝜂 ∧ (𝜑𝜓𝜒)) → 𝜒)
213ad2antr3 1191 1 ((𝜂 ∧ (𝜃𝜏 ∧ (𝜑𝜓𝜒))) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  oppccatid  17680  subccatid  17808  fuccatid  17934  setccatid  18046  catccatid  18068  estrccatid  18093  xpccatid  18149  nllyidm  23376  utoptop  24122  cgr3tr4  36040  paddasslem9  39822  cdlemd1  40192  cdlemf2  40556  cdlemk34  40904  dihmeetlem18N  41318  dihmeetlem19N  41319  ssccatid  49061  isthincd2  49426  mndtccatid  49576
  Copyright terms: Public domain W3C validator