![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simpr33 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpr33 | ⊢ ((𝜂 ∧ (𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr3 1194 | . 2 ⊢ ((𝜂 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) → 𝜒) | |
2 | 1 | 3ad2antr3 1188 | 1 ⊢ ((𝜂 ∧ (𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: oppccatid 17692 subccatid 17823 fuccatid 17952 setccatid 18064 catccatid 18086 estrccatid 18113 xpccatid 18170 nllyidm 23380 utoptop 24126 cgr3tr4 35584 paddasslem9 39238 cdlemd1 39608 cdlemf2 39972 cdlemk34 40320 dihmeetlem18N 40734 dihmeetlem19N 40735 isthincd2 47967 mndtccatid 48022 |
Copyright terms: Public domain | W3C validator |