![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simpr33 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpr33 | ⊢ ((𝜂 ∧ (𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr3 1196 | . 2 ⊢ ((𝜂 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) → 𝜒) | |
2 | 1 | 3ad2antr3 1190 | 1 ⊢ ((𝜂 ∧ (𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: oppccatid 17781 subccatid 17912 fuccatid 18041 setccatid 18153 catccatid 18175 estrccatid 18202 xpccatid 18259 nllyidm 23520 utoptop 24266 cgr3tr4 36018 paddasslem9 39787 cdlemd1 40157 cdlemf2 40521 cdlemk34 40869 dihmeetlem18N 41283 dihmeetlem19N 41284 isthincd2 48711 mndtccatid 48766 |
Copyright terms: Public domain | W3C validator |