MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omndmul2 Structured version   Visualization version   GIF version

Theorem omndmul2 20047
Description: In an ordered monoid, the ordering is compatible with group power. This version does not require the monoid to be commutative. (Contributed by Thierry Arnoux, 23-Mar-2018.)
Hypotheses
Ref Expression
omndmul.0 𝐵 = (Base‘𝑀)
omndmul.1 = (le‘𝑀)
omndmul2.2 · = (.g𝑀)
omndmul2.3 0 = (0g𝑀)
Assertion
Ref Expression
omndmul2 ((𝑀 ∈ oMnd ∧ (𝑋𝐵𝑁 ∈ ℕ0) ∧ 0 𝑋) → 0 (𝑁 · 𝑋))

Proof of Theorem omndmul2
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-3an 1088 . . 3 ((𝑀 ∈ oMnd ∧ (𝑋𝐵𝑁 ∈ ℕ0) ∧ 0 𝑋) ↔ ((𝑀 ∈ oMnd ∧ (𝑋𝐵𝑁 ∈ ℕ0)) ∧ 0 𝑋))
2 anass 468 . . . 4 (((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ↔ (𝑀 ∈ oMnd ∧ (𝑋𝐵𝑁 ∈ ℕ0)))
32anbi1i 624 . . 3 ((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ↔ ((𝑀 ∈ oMnd ∧ (𝑋𝐵𝑁 ∈ ℕ0)) ∧ 0 𝑋))
41, 3bitr4i 278 . 2 ((𝑀 ∈ oMnd ∧ (𝑋𝐵𝑁 ∈ ℕ0) ∧ 0 𝑋) ↔ (((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋))
5 simplr 768 . . 3 ((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) → 𝑁 ∈ ℕ0)
6 oveq1 7359 . . . . 5 (𝑚 = 0 → (𝑚 · 𝑋) = (0 · 𝑋))
76breq2d 5105 . . . 4 (𝑚 = 0 → ( 0 (𝑚 · 𝑋) ↔ 0 (0 · 𝑋)))
8 oveq1 7359 . . . . 5 (𝑚 = 𝑛 → (𝑚 · 𝑋) = (𝑛 · 𝑋))
98breq2d 5105 . . . 4 (𝑚 = 𝑛 → ( 0 (𝑚 · 𝑋) ↔ 0 (𝑛 · 𝑋)))
10 oveq1 7359 . . . . 5 (𝑚 = (𝑛 + 1) → (𝑚 · 𝑋) = ((𝑛 + 1) · 𝑋))
1110breq2d 5105 . . . 4 (𝑚 = (𝑛 + 1) → ( 0 (𝑚 · 𝑋) ↔ 0 ((𝑛 + 1) · 𝑋)))
12 oveq1 7359 . . . . 5 (𝑚 = 𝑁 → (𝑚 · 𝑋) = (𝑁 · 𝑋))
1312breq2d 5105 . . . 4 (𝑚 = 𝑁 → ( 0 (𝑚 · 𝑋) ↔ 0 (𝑁 · 𝑋)))
14 omndtos 20041 . . . . . . . 8 (𝑀 ∈ oMnd → 𝑀 ∈ Toset)
15 tospos 18326 . . . . . . . 8 (𝑀 ∈ Toset → 𝑀 ∈ Poset)
1614, 15syl 17 . . . . . . 7 (𝑀 ∈ oMnd → 𝑀 ∈ Poset)
17 omndmnd 20040 . . . . . . . 8 (𝑀 ∈ oMnd → 𝑀 ∈ Mnd)
18 omndmul.0 . . . . . . . . 9 𝐵 = (Base‘𝑀)
19 omndmul2.3 . . . . . . . . 9 0 = (0g𝑀)
2018, 19mndidcl 18659 . . . . . . . 8 (𝑀 ∈ Mnd → 0𝐵)
2117, 20syl 17 . . . . . . 7 (𝑀 ∈ oMnd → 0𝐵)
22 omndmul.1 . . . . . . . 8 = (le‘𝑀)
2318, 22posref 18226 . . . . . . 7 ((𝑀 ∈ Poset ∧ 0𝐵) → 0 0 )
2416, 21, 23syl2anc 584 . . . . . 6 (𝑀 ∈ oMnd → 0 0 )
2524ad3antrrr 730 . . . . 5 ((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) → 0 0 )
26 omndmul2.2 . . . . . . 7 · = (.g𝑀)
2718, 19, 26mulg0 18989 . . . . . 6 (𝑋𝐵 → (0 · 𝑋) = 0 )
2827ad3antlr 731 . . . . 5 ((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) → (0 · 𝑋) = 0 )
2925, 28breqtrrd 5121 . . . 4 ((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) → 0 (0 · 𝑋))
3016ad5antr 734 . . . . 5 ((((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 (𝑛 · 𝑋)) → 𝑀 ∈ Poset)
3117ad5antr 734 . . . . . . 7 ((((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 (𝑛 · 𝑋)) → 𝑀 ∈ Mnd)
3231, 20syl 17 . . . . . 6 ((((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 (𝑛 · 𝑋)) → 0𝐵)
33 simplr 768 . . . . . . 7 ((((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 (𝑛 · 𝑋)) → 𝑛 ∈ ℕ0)
34 simp-5r 785 . . . . . . 7 ((((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 (𝑛 · 𝑋)) → 𝑋𝐵)
3518, 26, 31, 33, 34mulgnn0cld 19010 . . . . . 6 ((((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 (𝑛 · 𝑋)) → (𝑛 · 𝑋) ∈ 𝐵)
36 simpr32 1265 . . . . . . . . . 10 ((𝑀 ∈ oMnd ∧ (𝑋𝐵𝑁 ∈ ℕ0 ∧ ( 0 𝑋𝑛 ∈ ℕ00 (𝑛 · 𝑋)))) → 𝑛 ∈ ℕ0)
37 1nn0 12404 . . . . . . . . . . 11 1 ∈ ℕ0
3837a1i 11 . . . . . . . . . 10 ((𝑀 ∈ oMnd ∧ (𝑋𝐵𝑁 ∈ ℕ0 ∧ ( 0 𝑋𝑛 ∈ ℕ00 (𝑛 · 𝑋)))) → 1 ∈ ℕ0)
3936, 38nn0addcld 12453 . . . . . . . . 9 ((𝑀 ∈ oMnd ∧ (𝑋𝐵𝑁 ∈ ℕ0 ∧ ( 0 𝑋𝑛 ∈ ℕ00 (𝑛 · 𝑋)))) → (𝑛 + 1) ∈ ℕ0)
40393anassrs 1361 . . . . . . . 8 ((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ ( 0 𝑋𝑛 ∈ ℕ00 (𝑛 · 𝑋))) → (𝑛 + 1) ∈ ℕ0)
41403anassrs 1361 . . . . . . 7 ((((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 (𝑛 · 𝑋)) → (𝑛 + 1) ∈ ℕ0)
4218, 26, 31, 41, 34mulgnn0cld 19010 . . . . . 6 ((((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 (𝑛 · 𝑋)) → ((𝑛 + 1) · 𝑋) ∈ 𝐵)
4332, 35, 423jca 1128 . . . . 5 ((((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 (𝑛 · 𝑋)) → ( 0𝐵 ∧ (𝑛 · 𝑋) ∈ 𝐵 ∧ ((𝑛 + 1) · 𝑋) ∈ 𝐵))
44 simpr 484 . . . . 5 ((((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 (𝑛 · 𝑋)) → 0 (𝑛 · 𝑋))
45 simp-4l 782 . . . . . . . 8 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → 𝑀 ∈ oMnd)
4617ad4antr 732 . . . . . . . . 9 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → 𝑀 ∈ Mnd)
4746, 20syl 17 . . . . . . . 8 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → 0𝐵)
48 simp-4r 783 . . . . . . . 8 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → 𝑋𝐵)
49 simpr 484 . . . . . . . . 9 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
5018, 26, 46, 49, 48mulgnn0cld 19010 . . . . . . . 8 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → (𝑛 · 𝑋) ∈ 𝐵)
51 simplr 768 . . . . . . . 8 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → 0 𝑋)
52 eqid 2733 . . . . . . . . 9 (+g𝑀) = (+g𝑀)
5318, 22, 52omndadd 20042 . . . . . . . 8 ((𝑀 ∈ oMnd ∧ ( 0𝐵𝑋𝐵 ∧ (𝑛 · 𝑋) ∈ 𝐵) ∧ 0 𝑋) → ( 0 (+g𝑀)(𝑛 · 𝑋)) (𝑋(+g𝑀)(𝑛 · 𝑋)))
5445, 47, 48, 50, 51, 53syl131anc 1385 . . . . . . 7 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → ( 0 (+g𝑀)(𝑛 · 𝑋)) (𝑋(+g𝑀)(𝑛 · 𝑋)))
5518, 52, 19mndlid 18664 . . . . . . . 8 ((𝑀 ∈ Mnd ∧ (𝑛 · 𝑋) ∈ 𝐵) → ( 0 (+g𝑀)(𝑛 · 𝑋)) = (𝑛 · 𝑋))
5646, 50, 55syl2anc 584 . . . . . . 7 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → ( 0 (+g𝑀)(𝑛 · 𝑋)) = (𝑛 · 𝑋))
5737a1i 11 . . . . . . . . 9 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → 1 ∈ ℕ0)
5818, 26, 52mulgnn0dir 19019 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ (1 ∈ ℕ0𝑛 ∈ ℕ0𝑋𝐵)) → ((1 + 𝑛) · 𝑋) = ((1 · 𝑋)(+g𝑀)(𝑛 · 𝑋)))
5946, 57, 49, 48, 58syl13anc 1374 . . . . . . . 8 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → ((1 + 𝑛) · 𝑋) = ((1 · 𝑋)(+g𝑀)(𝑛 · 𝑋)))
60 1cnd 11114 . . . . . . . . . . 11 (((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℕ00 𝑋𝑛 ∈ ℕ0)) → 1 ∈ ℂ)
61 simpr3 1197 . . . . . . . . . . . 12 (((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℕ00 𝑋𝑛 ∈ ℕ0)) → 𝑛 ∈ ℕ0)
6261nn0cnd 12451 . . . . . . . . . . 11 (((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℕ00 𝑋𝑛 ∈ ℕ0)) → 𝑛 ∈ ℂ)
6360, 62addcomd 11322 . . . . . . . . . 10 (((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℕ00 𝑋𝑛 ∈ ℕ0)) → (1 + 𝑛) = (𝑛 + 1))
64633anassrs 1361 . . . . . . . . 9 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → (1 + 𝑛) = (𝑛 + 1))
6564oveq1d 7367 . . . . . . . 8 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → ((1 + 𝑛) · 𝑋) = ((𝑛 + 1) · 𝑋))
6618, 26mulg1 18996 . . . . . . . . . 10 (𝑋𝐵 → (1 · 𝑋) = 𝑋)
6748, 66syl 17 . . . . . . . . 9 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → (1 · 𝑋) = 𝑋)
6867oveq1d 7367 . . . . . . . 8 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → ((1 · 𝑋)(+g𝑀)(𝑛 · 𝑋)) = (𝑋(+g𝑀)(𝑛 · 𝑋)))
6959, 65, 683eqtr3rd 2777 . . . . . . 7 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → (𝑋(+g𝑀)(𝑛 · 𝑋)) = ((𝑛 + 1) · 𝑋))
7054, 56, 693brtr3d 5124 . . . . . 6 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → (𝑛 · 𝑋) ((𝑛 + 1) · 𝑋))
7170adantr 480 . . . . 5 ((((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 (𝑛 · 𝑋)) → (𝑛 · 𝑋) ((𝑛 + 1) · 𝑋))
7218, 22postr 18228 . . . . . 6 ((𝑀 ∈ Poset ∧ ( 0𝐵 ∧ (𝑛 · 𝑋) ∈ 𝐵 ∧ ((𝑛 + 1) · 𝑋) ∈ 𝐵)) → (( 0 (𝑛 · 𝑋) ∧ (𝑛 · 𝑋) ((𝑛 + 1) · 𝑋)) → 0 ((𝑛 + 1) · 𝑋)))
7372imp 406 . . . . 5 (((𝑀 ∈ Poset ∧ ( 0𝐵 ∧ (𝑛 · 𝑋) ∈ 𝐵 ∧ ((𝑛 + 1) · 𝑋) ∈ 𝐵)) ∧ ( 0 (𝑛 · 𝑋) ∧ (𝑛 · 𝑋) ((𝑛 + 1) · 𝑋))) → 0 ((𝑛 + 1) · 𝑋))
7430, 43, 44, 71, 73syl22anc 838 . . . 4 ((((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 (𝑛 · 𝑋)) → 0 ((𝑛 + 1) · 𝑋))
757, 9, 11, 13, 29, 74nn0indd 12576 . . 3 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑁 ∈ ℕ0) → 0 (𝑁 · 𝑋))
765, 75mpdan 687 . 2 ((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) → 0 (𝑁 · 𝑋))
774, 76sylbi 217 1 ((𝑀 ∈ oMnd ∧ (𝑋𝐵𝑁 ∈ ℕ0) ∧ 0 𝑋) → 0 (𝑁 · 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113   class class class wbr 5093  cfv 6486  (class class class)co 7352  0cc0 11013  1c1 11014   + caddc 11016  0cn0 12388  Basecbs 17122  +gcplusg 17163  lecple 17170  0gc0g 17345  Posetcpo 18215  Tosetctos 18322  Mndcmnd 18644  .gcmg 18982  oMndcomnd 20033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-n0 12389  df-z 12476  df-uz 12739  df-fz 13410  df-seq 13911  df-0g 17347  df-proset 18202  df-poset 18221  df-toset 18323  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-mulg 18983  df-omnd 20035
This theorem is referenced by:  omndmul3  20048
  Copyright terms: Public domain W3C validator