Step | Hyp | Ref
| Expression |
1 | | df-3an 1090 |
. . 3
⊢ ((𝑀 ∈ oMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ0) ∧ 0 ≤ 𝑋) ↔ ((𝑀 ∈ oMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ0)) ∧ 0 ≤ 𝑋)) |
2 | | anass 472 |
. . . 4
⊢ (((𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑁 ∈ ℕ0) ↔ (𝑀 ∈ oMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑁 ∈
ℕ0))) |
3 | 2 | anbi1i 627 |
. . 3
⊢ ((((𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 ≤ 𝑋) ↔ ((𝑀 ∈ oMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ0)) ∧ 0 ≤ 𝑋)) |
4 | 1, 3 | bitr4i 281 |
. 2
⊢ ((𝑀 ∈ oMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ0) ∧ 0 ≤ 𝑋) ↔ (((𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 ≤ 𝑋)) |
5 | | simplr 769 |
. . 3
⊢ ((((𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 ≤ 𝑋) → 𝑁 ∈
ℕ0) |
6 | | oveq1 7180 |
. . . . 5
⊢ (𝑚 = 0 → (𝑚 · 𝑋) = (0 · 𝑋)) |
7 | 6 | breq2d 5043 |
. . . 4
⊢ (𝑚 = 0 → ( 0 ≤ (𝑚 · 𝑋) ↔ 0 ≤ (0 · 𝑋))) |
8 | | oveq1 7180 |
. . . . 5
⊢ (𝑚 = 𝑛 → (𝑚 · 𝑋) = (𝑛 · 𝑋)) |
9 | 8 | breq2d 5043 |
. . . 4
⊢ (𝑚 = 𝑛 → ( 0 ≤ (𝑚 · 𝑋) ↔ 0 ≤ (𝑛 · 𝑋))) |
10 | | oveq1 7180 |
. . . . 5
⊢ (𝑚 = (𝑛 + 1) → (𝑚 · 𝑋) = ((𝑛 + 1) · 𝑋)) |
11 | 10 | breq2d 5043 |
. . . 4
⊢ (𝑚 = (𝑛 + 1) → ( 0 ≤ (𝑚 · 𝑋) ↔ 0 ≤ ((𝑛 + 1) · 𝑋))) |
12 | | oveq1 7180 |
. . . . 5
⊢ (𝑚 = 𝑁 → (𝑚 · 𝑋) = (𝑁 · 𝑋)) |
13 | 12 | breq2d 5043 |
. . . 4
⊢ (𝑚 = 𝑁 → ( 0 ≤ (𝑚 · 𝑋) ↔ 0 ≤ (𝑁 · 𝑋))) |
14 | | omndtos 30911 |
. . . . . . . 8
⊢ (𝑀 ∈ oMnd → 𝑀 ∈ Toset) |
15 | | tospos 30821 |
. . . . . . . 8
⊢ (𝑀 ∈ Toset → 𝑀 ∈ Poset) |
16 | 14, 15 | syl 17 |
. . . . . . 7
⊢ (𝑀 ∈ oMnd → 𝑀 ∈ Poset) |
17 | | omndmnd 30910 |
. . . . . . . 8
⊢ (𝑀 ∈ oMnd → 𝑀 ∈ Mnd) |
18 | | omndmul.0 |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝑀) |
19 | | omndmul2.3 |
. . . . . . . . 9
⊢ 0 =
(0g‘𝑀) |
20 | 18, 19 | mndidcl 18045 |
. . . . . . . 8
⊢ (𝑀 ∈ Mnd → 0 ∈ 𝐵) |
21 | 17, 20 | syl 17 |
. . . . . . 7
⊢ (𝑀 ∈ oMnd → 0 ∈ 𝐵) |
22 | | omndmul.1 |
. . . . . . . 8
⊢ ≤ =
(le‘𝑀) |
23 | 18, 22 | posref 17680 |
. . . . . . 7
⊢ ((𝑀 ∈ Poset ∧ 0 ∈ 𝐵) → 0 ≤ 0 ) |
24 | 16, 21, 23 | syl2anc 587 |
. . . . . 6
⊢ (𝑀 ∈ oMnd → 0 ≤ 0
) |
25 | 24 | ad3antrrr 730 |
. . . . 5
⊢ ((((𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 ≤ 𝑋) → 0 ≤ 0 ) |
26 | | omndmul2.2 |
. . . . . . 7
⊢ · =
(.g‘𝑀) |
27 | 18, 19, 26 | mulg0 18352 |
. . . . . 6
⊢ (𝑋 ∈ 𝐵 → (0 · 𝑋) = 0 ) |
28 | 27 | ad3antlr 731 |
. . . . 5
⊢ ((((𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 ≤ 𝑋) → (0 · 𝑋) = 0 ) |
29 | 25, 28 | breqtrrd 5059 |
. . . 4
⊢ ((((𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 ≤ 𝑋) → 0 ≤ (0 · 𝑋)) |
30 | 16 | ad5antr 734 |
. . . . 5
⊢
((((((𝑀 ∈ oMnd
∧ 𝑋 ∈ 𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 ≤ 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 ≤ (𝑛 · 𝑋)) → 𝑀 ∈ Poset) |
31 | 17 | ad5antr 734 |
. . . . . . 7
⊢
((((((𝑀 ∈ oMnd
∧ 𝑋 ∈ 𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 ≤ 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 ≤ (𝑛 · 𝑋)) → 𝑀 ∈ Mnd) |
32 | 31, 20 | syl 17 |
. . . . . 6
⊢
((((((𝑀 ∈ oMnd
∧ 𝑋 ∈ 𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 ≤ 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 ≤ (𝑛 · 𝑋)) → 0 ∈ 𝐵) |
33 | | simplr 769 |
. . . . . . 7
⊢
((((((𝑀 ∈ oMnd
∧ 𝑋 ∈ 𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 ≤ 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 ≤ (𝑛 · 𝑋)) → 𝑛 ∈ ℕ0) |
34 | | simp-5r 786 |
. . . . . . 7
⊢
((((((𝑀 ∈ oMnd
∧ 𝑋 ∈ 𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 ≤ 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 ≤ (𝑛 · 𝑋)) → 𝑋 ∈ 𝐵) |
35 | 18, 26 | mulgnn0cl 18365 |
. . . . . . 7
⊢ ((𝑀 ∈ Mnd ∧ 𝑛 ∈ ℕ0
∧ 𝑋 ∈ 𝐵) → (𝑛 · 𝑋) ∈ 𝐵) |
36 | 31, 33, 34, 35 | syl3anc 1372 |
. . . . . 6
⊢
((((((𝑀 ∈ oMnd
∧ 𝑋 ∈ 𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 ≤ 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 ≤ (𝑛 · 𝑋)) → (𝑛 · 𝑋) ∈ 𝐵) |
37 | | simpr32 1265 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ oMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ0 ∧ ( 0 ≤ 𝑋 ∧ 𝑛 ∈ ℕ0 ∧ 0 ≤ (𝑛 · 𝑋)))) → 𝑛 ∈ ℕ0) |
38 | | 1nn0 11995 |
. . . . . . . . . . 11
⊢ 1 ∈
ℕ0 |
39 | 38 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ oMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ0 ∧ ( 0 ≤ 𝑋 ∧ 𝑛 ∈ ℕ0 ∧ 0 ≤ (𝑛 · 𝑋)))) → 1 ∈
ℕ0) |
40 | 37, 39 | nn0addcld 12043 |
. . . . . . . . 9
⊢ ((𝑀 ∈ oMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ0 ∧ ( 0 ≤ 𝑋 ∧ 𝑛 ∈ ℕ0 ∧ 0 ≤ (𝑛 · 𝑋)))) → (𝑛 + 1) ∈
ℕ0) |
41 | 40 | 3anassrs 1361 |
. . . . . . . 8
⊢ ((((𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑁 ∈ ℕ0) ∧ ( 0 ≤ 𝑋 ∧ 𝑛 ∈ ℕ0 ∧ 0 ≤ (𝑛 · 𝑋))) → (𝑛 + 1) ∈
ℕ0) |
42 | 41 | 3anassrs 1361 |
. . . . . . 7
⊢
((((((𝑀 ∈ oMnd
∧ 𝑋 ∈ 𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 ≤ 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 ≤ (𝑛 · 𝑋)) → (𝑛 + 1) ∈
ℕ0) |
43 | 18, 26 | mulgnn0cl 18365 |
. . . . . . 7
⊢ ((𝑀 ∈ Mnd ∧ (𝑛 + 1) ∈ ℕ0
∧ 𝑋 ∈ 𝐵) → ((𝑛 + 1) · 𝑋) ∈ 𝐵) |
44 | 31, 42, 34, 43 | syl3anc 1372 |
. . . . . 6
⊢
((((((𝑀 ∈ oMnd
∧ 𝑋 ∈ 𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 ≤ 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 ≤ (𝑛 · 𝑋)) → ((𝑛 + 1) · 𝑋) ∈ 𝐵) |
45 | 32, 36, 44 | 3jca 1129 |
. . . . 5
⊢
((((((𝑀 ∈ oMnd
∧ 𝑋 ∈ 𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 ≤ 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 ≤ (𝑛 · 𝑋)) → ( 0 ∈ 𝐵 ∧ (𝑛 · 𝑋) ∈ 𝐵 ∧ ((𝑛 + 1) · 𝑋) ∈ 𝐵)) |
46 | | simpr 488 |
. . . . 5
⊢
((((((𝑀 ∈ oMnd
∧ 𝑋 ∈ 𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 ≤ 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 ≤ (𝑛 · 𝑋)) → 0 ≤ (𝑛 · 𝑋)) |
47 | | simp-4l 783 |
. . . . . . . 8
⊢
(((((𝑀 ∈ oMnd
∧ 𝑋 ∈ 𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 ≤ 𝑋) ∧ 𝑛 ∈ ℕ0) → 𝑀 ∈ oMnd) |
48 | 17 | ad4antr 732 |
. . . . . . . . 9
⊢
(((((𝑀 ∈ oMnd
∧ 𝑋 ∈ 𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 ≤ 𝑋) ∧ 𝑛 ∈ ℕ0) → 𝑀 ∈ Mnd) |
49 | 48, 20 | syl 17 |
. . . . . . . 8
⊢
(((((𝑀 ∈ oMnd
∧ 𝑋 ∈ 𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 ≤ 𝑋) ∧ 𝑛 ∈ ℕ0) → 0 ∈ 𝐵) |
50 | | simp-4r 784 |
. . . . . . . 8
⊢
(((((𝑀 ∈ oMnd
∧ 𝑋 ∈ 𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 ≤ 𝑋) ∧ 𝑛 ∈ ℕ0) → 𝑋 ∈ 𝐵) |
51 | | simpr 488 |
. . . . . . . . 9
⊢
(((((𝑀 ∈ oMnd
∧ 𝑋 ∈ 𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 ≤ 𝑋) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈
ℕ0) |
52 | 48, 51, 50, 35 | syl3anc 1372 |
. . . . . . . 8
⊢
(((((𝑀 ∈ oMnd
∧ 𝑋 ∈ 𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 ≤ 𝑋) ∧ 𝑛 ∈ ℕ0) → (𝑛 · 𝑋) ∈ 𝐵) |
53 | | simplr 769 |
. . . . . . . 8
⊢
(((((𝑀 ∈ oMnd
∧ 𝑋 ∈ 𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 ≤ 𝑋) ∧ 𝑛 ∈ ℕ0) → 0 ≤ 𝑋) |
54 | | eqid 2739 |
. . . . . . . . 9
⊢
(+g‘𝑀) = (+g‘𝑀) |
55 | 18, 22, 54 | omndadd 30912 |
. . . . . . . 8
⊢ ((𝑀 ∈ oMnd ∧ ( 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ (𝑛 · 𝑋) ∈ 𝐵) ∧ 0 ≤ 𝑋) → ( 0 (+g‘𝑀)(𝑛 · 𝑋)) ≤ (𝑋(+g‘𝑀)(𝑛 · 𝑋))) |
56 | 47, 49, 50, 52, 53, 55 | syl131anc 1384 |
. . . . . . 7
⊢
(((((𝑀 ∈ oMnd
∧ 𝑋 ∈ 𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 ≤ 𝑋) ∧ 𝑛 ∈ ℕ0) → ( 0
(+g‘𝑀)(𝑛 · 𝑋)) ≤ (𝑋(+g‘𝑀)(𝑛 · 𝑋))) |
57 | 18, 54, 19 | mndlid 18050 |
. . . . . . . 8
⊢ ((𝑀 ∈ Mnd ∧ (𝑛 · 𝑋) ∈ 𝐵) → ( 0 (+g‘𝑀)(𝑛 · 𝑋)) = (𝑛 · 𝑋)) |
58 | 48, 52, 57 | syl2anc 587 |
. . . . . . 7
⊢
(((((𝑀 ∈ oMnd
∧ 𝑋 ∈ 𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 ≤ 𝑋) ∧ 𝑛 ∈ ℕ0) → ( 0
(+g‘𝑀)(𝑛 · 𝑋)) = (𝑛 · 𝑋)) |
59 | 38 | a1i 11 |
. . . . . . . . 9
⊢
(((((𝑀 ∈ oMnd
∧ 𝑋 ∈ 𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 ≤ 𝑋) ∧ 𝑛 ∈ ℕ0) → 1 ∈
ℕ0) |
60 | 18, 26, 54 | mulgnn0dir 18378 |
. . . . . . . . 9
⊢ ((𝑀 ∈ Mnd ∧ (1 ∈
ℕ0 ∧ 𝑛
∈ ℕ0 ∧ 𝑋 ∈ 𝐵)) → ((1 + 𝑛) · 𝑋) = ((1 · 𝑋)(+g‘𝑀)(𝑛 · 𝑋))) |
61 | 48, 59, 51, 50, 60 | syl13anc 1373 |
. . . . . . . 8
⊢
(((((𝑀 ∈ oMnd
∧ 𝑋 ∈ 𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 ≤ 𝑋) ∧ 𝑛 ∈ ℕ0) → ((1 +
𝑛) · 𝑋) = ((1 · 𝑋)(+g‘𝑀)(𝑛 · 𝑋))) |
62 | | 1cnd 10717 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵) ∧ (𝑁 ∈ ℕ0 ∧ 0 ≤ 𝑋 ∧ 𝑛 ∈ ℕ0)) → 1 ∈
ℂ) |
63 | | simpr3 1197 |
. . . . . . . . . . . 12
⊢ (((𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵) ∧ (𝑁 ∈ ℕ0 ∧ 0 ≤ 𝑋 ∧ 𝑛 ∈ ℕ0)) → 𝑛 ∈
ℕ0) |
64 | 63 | nn0cnd 12041 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵) ∧ (𝑁 ∈ ℕ0 ∧ 0 ≤ 𝑋 ∧ 𝑛 ∈ ℕ0)) → 𝑛 ∈
ℂ) |
65 | 62, 64 | addcomd 10923 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵) ∧ (𝑁 ∈ ℕ0 ∧ 0 ≤ 𝑋 ∧ 𝑛 ∈ ℕ0)) → (1 +
𝑛) = (𝑛 + 1)) |
66 | 65 | 3anassrs 1361 |
. . . . . . . . 9
⊢
(((((𝑀 ∈ oMnd
∧ 𝑋 ∈ 𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 ≤ 𝑋) ∧ 𝑛 ∈ ℕ0) → (1 +
𝑛) = (𝑛 + 1)) |
67 | 66 | oveq1d 7188 |
. . . . . . . 8
⊢
(((((𝑀 ∈ oMnd
∧ 𝑋 ∈ 𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 ≤ 𝑋) ∧ 𝑛 ∈ ℕ0) → ((1 +
𝑛) · 𝑋) = ((𝑛 + 1) · 𝑋)) |
68 | 18, 26 | mulg1 18356 |
. . . . . . . . . 10
⊢ (𝑋 ∈ 𝐵 → (1 · 𝑋) = 𝑋) |
69 | 50, 68 | syl 17 |
. . . . . . . . 9
⊢
(((((𝑀 ∈ oMnd
∧ 𝑋 ∈ 𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 ≤ 𝑋) ∧ 𝑛 ∈ ℕ0) → (1 · 𝑋) = 𝑋) |
70 | 69 | oveq1d 7188 |
. . . . . . . 8
⊢
(((((𝑀 ∈ oMnd
∧ 𝑋 ∈ 𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 ≤ 𝑋) ∧ 𝑛 ∈ ℕ0) → ((1 · 𝑋)(+g‘𝑀)(𝑛 · 𝑋)) = (𝑋(+g‘𝑀)(𝑛 · 𝑋))) |
71 | 61, 67, 70 | 3eqtr3rd 2783 |
. . . . . . 7
⊢
(((((𝑀 ∈ oMnd
∧ 𝑋 ∈ 𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 ≤ 𝑋) ∧ 𝑛 ∈ ℕ0) → (𝑋(+g‘𝑀)(𝑛 · 𝑋)) = ((𝑛 + 1) · 𝑋)) |
72 | 56, 58, 71 | 3brtr3d 5062 |
. . . . . 6
⊢
(((((𝑀 ∈ oMnd
∧ 𝑋 ∈ 𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 ≤ 𝑋) ∧ 𝑛 ∈ ℕ0) → (𝑛 · 𝑋) ≤ ((𝑛 + 1) · 𝑋)) |
73 | 72 | adantr 484 |
. . . . 5
⊢
((((((𝑀 ∈ oMnd
∧ 𝑋 ∈ 𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 ≤ 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 ≤ (𝑛 · 𝑋)) → (𝑛 · 𝑋) ≤ ((𝑛 + 1) · 𝑋)) |
74 | 18, 22 | postr 17682 |
. . . . . 6
⊢ ((𝑀 ∈ Poset ∧ ( 0 ∈ 𝐵 ∧ (𝑛 · 𝑋) ∈ 𝐵 ∧ ((𝑛 + 1) · 𝑋) ∈ 𝐵)) → (( 0 ≤ (𝑛 · 𝑋) ∧ (𝑛 · 𝑋) ≤ ((𝑛 + 1) · 𝑋)) → 0 ≤ ((𝑛 + 1) · 𝑋))) |
75 | 74 | imp 410 |
. . . . 5
⊢ (((𝑀 ∈ Poset ∧ ( 0 ∈ 𝐵 ∧ (𝑛 · 𝑋) ∈ 𝐵 ∧ ((𝑛 + 1) · 𝑋) ∈ 𝐵)) ∧ ( 0 ≤ (𝑛 · 𝑋) ∧ (𝑛 · 𝑋) ≤ ((𝑛 + 1) · 𝑋))) → 0 ≤ ((𝑛 + 1) · 𝑋)) |
76 | 30, 45, 46, 73, 75 | syl22anc 838 |
. . . 4
⊢
((((((𝑀 ∈ oMnd
∧ 𝑋 ∈ 𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 ≤ 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 ≤ (𝑛 · 𝑋)) → 0 ≤ ((𝑛 + 1) · 𝑋)) |
77 | 7, 9, 11, 13, 29, 76 | nn0indd 12163 |
. . 3
⊢
(((((𝑀 ∈ oMnd
∧ 𝑋 ∈ 𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 ≤ 𝑋) ∧ 𝑁 ∈ ℕ0) → 0 ≤ (𝑁 · 𝑋)) |
78 | 5, 77 | mpdan 687 |
. 2
⊢ ((((𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 ≤ 𝑋) → 0 ≤ (𝑁 · 𝑋)) |
79 | 4, 78 | sylbi 220 |
1
⊢ ((𝑀 ∈ oMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ0) ∧ 0 ≤ 𝑋) → 0 ≤ (𝑁 · 𝑋)) |