Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omndmul2 Structured version   Visualization version   GIF version

Theorem omndmul2 30918
Description: In an ordered monoid, the ordering is compatible with group power. This version does not require the monoid to be commutative. (Contributed by Thierry Arnoux, 23-Mar-2018.)
Hypotheses
Ref Expression
omndmul.0 𝐵 = (Base‘𝑀)
omndmul.1 = (le‘𝑀)
omndmul2.2 · = (.g𝑀)
omndmul2.3 0 = (0g𝑀)
Assertion
Ref Expression
omndmul2 ((𝑀 ∈ oMnd ∧ (𝑋𝐵𝑁 ∈ ℕ0) ∧ 0 𝑋) → 0 (𝑁 · 𝑋))

Proof of Theorem omndmul2
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-3an 1090 . . 3 ((𝑀 ∈ oMnd ∧ (𝑋𝐵𝑁 ∈ ℕ0) ∧ 0 𝑋) ↔ ((𝑀 ∈ oMnd ∧ (𝑋𝐵𝑁 ∈ ℕ0)) ∧ 0 𝑋))
2 anass 472 . . . 4 (((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ↔ (𝑀 ∈ oMnd ∧ (𝑋𝐵𝑁 ∈ ℕ0)))
32anbi1i 627 . . 3 ((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ↔ ((𝑀 ∈ oMnd ∧ (𝑋𝐵𝑁 ∈ ℕ0)) ∧ 0 𝑋))
41, 3bitr4i 281 . 2 ((𝑀 ∈ oMnd ∧ (𝑋𝐵𝑁 ∈ ℕ0) ∧ 0 𝑋) ↔ (((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋))
5 simplr 769 . . 3 ((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) → 𝑁 ∈ ℕ0)
6 oveq1 7180 . . . . 5 (𝑚 = 0 → (𝑚 · 𝑋) = (0 · 𝑋))
76breq2d 5043 . . . 4 (𝑚 = 0 → ( 0 (𝑚 · 𝑋) ↔ 0 (0 · 𝑋)))
8 oveq1 7180 . . . . 5 (𝑚 = 𝑛 → (𝑚 · 𝑋) = (𝑛 · 𝑋))
98breq2d 5043 . . . 4 (𝑚 = 𝑛 → ( 0 (𝑚 · 𝑋) ↔ 0 (𝑛 · 𝑋)))
10 oveq1 7180 . . . . 5 (𝑚 = (𝑛 + 1) → (𝑚 · 𝑋) = ((𝑛 + 1) · 𝑋))
1110breq2d 5043 . . . 4 (𝑚 = (𝑛 + 1) → ( 0 (𝑚 · 𝑋) ↔ 0 ((𝑛 + 1) · 𝑋)))
12 oveq1 7180 . . . . 5 (𝑚 = 𝑁 → (𝑚 · 𝑋) = (𝑁 · 𝑋))
1312breq2d 5043 . . . 4 (𝑚 = 𝑁 → ( 0 (𝑚 · 𝑋) ↔ 0 (𝑁 · 𝑋)))
14 omndtos 30911 . . . . . . . 8 (𝑀 ∈ oMnd → 𝑀 ∈ Toset)
15 tospos 30821 . . . . . . . 8 (𝑀 ∈ Toset → 𝑀 ∈ Poset)
1614, 15syl 17 . . . . . . 7 (𝑀 ∈ oMnd → 𝑀 ∈ Poset)
17 omndmnd 30910 . . . . . . . 8 (𝑀 ∈ oMnd → 𝑀 ∈ Mnd)
18 omndmul.0 . . . . . . . . 9 𝐵 = (Base‘𝑀)
19 omndmul2.3 . . . . . . . . 9 0 = (0g𝑀)
2018, 19mndidcl 18045 . . . . . . . 8 (𝑀 ∈ Mnd → 0𝐵)
2117, 20syl 17 . . . . . . 7 (𝑀 ∈ oMnd → 0𝐵)
22 omndmul.1 . . . . . . . 8 = (le‘𝑀)
2318, 22posref 17680 . . . . . . 7 ((𝑀 ∈ Poset ∧ 0𝐵) → 0 0 )
2416, 21, 23syl2anc 587 . . . . . 6 (𝑀 ∈ oMnd → 0 0 )
2524ad3antrrr 730 . . . . 5 ((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) → 0 0 )
26 omndmul2.2 . . . . . . 7 · = (.g𝑀)
2718, 19, 26mulg0 18352 . . . . . 6 (𝑋𝐵 → (0 · 𝑋) = 0 )
2827ad3antlr 731 . . . . 5 ((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) → (0 · 𝑋) = 0 )
2925, 28breqtrrd 5059 . . . 4 ((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) → 0 (0 · 𝑋))
3016ad5antr 734 . . . . 5 ((((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 (𝑛 · 𝑋)) → 𝑀 ∈ Poset)
3117ad5antr 734 . . . . . . 7 ((((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 (𝑛 · 𝑋)) → 𝑀 ∈ Mnd)
3231, 20syl 17 . . . . . 6 ((((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 (𝑛 · 𝑋)) → 0𝐵)
33 simplr 769 . . . . . . 7 ((((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 (𝑛 · 𝑋)) → 𝑛 ∈ ℕ0)
34 simp-5r 786 . . . . . . 7 ((((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 (𝑛 · 𝑋)) → 𝑋𝐵)
3518, 26mulgnn0cl 18365 . . . . . . 7 ((𝑀 ∈ Mnd ∧ 𝑛 ∈ ℕ0𝑋𝐵) → (𝑛 · 𝑋) ∈ 𝐵)
3631, 33, 34, 35syl3anc 1372 . . . . . 6 ((((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 (𝑛 · 𝑋)) → (𝑛 · 𝑋) ∈ 𝐵)
37 simpr32 1265 . . . . . . . . . 10 ((𝑀 ∈ oMnd ∧ (𝑋𝐵𝑁 ∈ ℕ0 ∧ ( 0 𝑋𝑛 ∈ ℕ00 (𝑛 · 𝑋)))) → 𝑛 ∈ ℕ0)
38 1nn0 11995 . . . . . . . . . . 11 1 ∈ ℕ0
3938a1i 11 . . . . . . . . . 10 ((𝑀 ∈ oMnd ∧ (𝑋𝐵𝑁 ∈ ℕ0 ∧ ( 0 𝑋𝑛 ∈ ℕ00 (𝑛 · 𝑋)))) → 1 ∈ ℕ0)
4037, 39nn0addcld 12043 . . . . . . . . 9 ((𝑀 ∈ oMnd ∧ (𝑋𝐵𝑁 ∈ ℕ0 ∧ ( 0 𝑋𝑛 ∈ ℕ00 (𝑛 · 𝑋)))) → (𝑛 + 1) ∈ ℕ0)
41403anassrs 1361 . . . . . . . 8 ((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ ( 0 𝑋𝑛 ∈ ℕ00 (𝑛 · 𝑋))) → (𝑛 + 1) ∈ ℕ0)
42413anassrs 1361 . . . . . . 7 ((((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 (𝑛 · 𝑋)) → (𝑛 + 1) ∈ ℕ0)
4318, 26mulgnn0cl 18365 . . . . . . 7 ((𝑀 ∈ Mnd ∧ (𝑛 + 1) ∈ ℕ0𝑋𝐵) → ((𝑛 + 1) · 𝑋) ∈ 𝐵)
4431, 42, 34, 43syl3anc 1372 . . . . . 6 ((((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 (𝑛 · 𝑋)) → ((𝑛 + 1) · 𝑋) ∈ 𝐵)
4532, 36, 443jca 1129 . . . . 5 ((((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 (𝑛 · 𝑋)) → ( 0𝐵 ∧ (𝑛 · 𝑋) ∈ 𝐵 ∧ ((𝑛 + 1) · 𝑋) ∈ 𝐵))
46 simpr 488 . . . . 5 ((((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 (𝑛 · 𝑋)) → 0 (𝑛 · 𝑋))
47 simp-4l 783 . . . . . . . 8 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → 𝑀 ∈ oMnd)
4817ad4antr 732 . . . . . . . . 9 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → 𝑀 ∈ Mnd)
4948, 20syl 17 . . . . . . . 8 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → 0𝐵)
50 simp-4r 784 . . . . . . . 8 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → 𝑋𝐵)
51 simpr 488 . . . . . . . . 9 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
5248, 51, 50, 35syl3anc 1372 . . . . . . . 8 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → (𝑛 · 𝑋) ∈ 𝐵)
53 simplr 769 . . . . . . . 8 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → 0 𝑋)
54 eqid 2739 . . . . . . . . 9 (+g𝑀) = (+g𝑀)
5518, 22, 54omndadd 30912 . . . . . . . 8 ((𝑀 ∈ oMnd ∧ ( 0𝐵𝑋𝐵 ∧ (𝑛 · 𝑋) ∈ 𝐵) ∧ 0 𝑋) → ( 0 (+g𝑀)(𝑛 · 𝑋)) (𝑋(+g𝑀)(𝑛 · 𝑋)))
5647, 49, 50, 52, 53, 55syl131anc 1384 . . . . . . 7 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → ( 0 (+g𝑀)(𝑛 · 𝑋)) (𝑋(+g𝑀)(𝑛 · 𝑋)))
5718, 54, 19mndlid 18050 . . . . . . . 8 ((𝑀 ∈ Mnd ∧ (𝑛 · 𝑋) ∈ 𝐵) → ( 0 (+g𝑀)(𝑛 · 𝑋)) = (𝑛 · 𝑋))
5848, 52, 57syl2anc 587 . . . . . . 7 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → ( 0 (+g𝑀)(𝑛 · 𝑋)) = (𝑛 · 𝑋))
5938a1i 11 . . . . . . . . 9 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → 1 ∈ ℕ0)
6018, 26, 54mulgnn0dir 18378 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ (1 ∈ ℕ0𝑛 ∈ ℕ0𝑋𝐵)) → ((1 + 𝑛) · 𝑋) = ((1 · 𝑋)(+g𝑀)(𝑛 · 𝑋)))
6148, 59, 51, 50, 60syl13anc 1373 . . . . . . . 8 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → ((1 + 𝑛) · 𝑋) = ((1 · 𝑋)(+g𝑀)(𝑛 · 𝑋)))
62 1cnd 10717 . . . . . . . . . . 11 (((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℕ00 𝑋𝑛 ∈ ℕ0)) → 1 ∈ ℂ)
63 simpr3 1197 . . . . . . . . . . . 12 (((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℕ00 𝑋𝑛 ∈ ℕ0)) → 𝑛 ∈ ℕ0)
6463nn0cnd 12041 . . . . . . . . . . 11 (((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℕ00 𝑋𝑛 ∈ ℕ0)) → 𝑛 ∈ ℂ)
6562, 64addcomd 10923 . . . . . . . . . 10 (((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℕ00 𝑋𝑛 ∈ ℕ0)) → (1 + 𝑛) = (𝑛 + 1))
66653anassrs 1361 . . . . . . . . 9 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → (1 + 𝑛) = (𝑛 + 1))
6766oveq1d 7188 . . . . . . . 8 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → ((1 + 𝑛) · 𝑋) = ((𝑛 + 1) · 𝑋))
6818, 26mulg1 18356 . . . . . . . . . 10 (𝑋𝐵 → (1 · 𝑋) = 𝑋)
6950, 68syl 17 . . . . . . . . 9 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → (1 · 𝑋) = 𝑋)
7069oveq1d 7188 . . . . . . . 8 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → ((1 · 𝑋)(+g𝑀)(𝑛 · 𝑋)) = (𝑋(+g𝑀)(𝑛 · 𝑋)))
7161, 67, 703eqtr3rd 2783 . . . . . . 7 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → (𝑋(+g𝑀)(𝑛 · 𝑋)) = ((𝑛 + 1) · 𝑋))
7256, 58, 713brtr3d 5062 . . . . . 6 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → (𝑛 · 𝑋) ((𝑛 + 1) · 𝑋))
7372adantr 484 . . . . 5 ((((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 (𝑛 · 𝑋)) → (𝑛 · 𝑋) ((𝑛 + 1) · 𝑋))
7418, 22postr 17682 . . . . . 6 ((𝑀 ∈ Poset ∧ ( 0𝐵 ∧ (𝑛 · 𝑋) ∈ 𝐵 ∧ ((𝑛 + 1) · 𝑋) ∈ 𝐵)) → (( 0 (𝑛 · 𝑋) ∧ (𝑛 · 𝑋) ((𝑛 + 1) · 𝑋)) → 0 ((𝑛 + 1) · 𝑋)))
7574imp 410 . . . . 5 (((𝑀 ∈ Poset ∧ ( 0𝐵 ∧ (𝑛 · 𝑋) ∈ 𝐵 ∧ ((𝑛 + 1) · 𝑋) ∈ 𝐵)) ∧ ( 0 (𝑛 · 𝑋) ∧ (𝑛 · 𝑋) ((𝑛 + 1) · 𝑋))) → 0 ((𝑛 + 1) · 𝑋))
7630, 45, 46, 73, 75syl22anc 838 . . . 4 ((((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 (𝑛 · 𝑋)) → 0 ((𝑛 + 1) · 𝑋))
777, 9, 11, 13, 29, 76nn0indd 12163 . . 3 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑁 ∈ ℕ0) → 0 (𝑁 · 𝑋))
785, 77mpdan 687 . 2 ((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) → 0 (𝑁 · 𝑋))
794, 78sylbi 220 1 ((𝑀 ∈ oMnd ∧ (𝑋𝐵𝑁 ∈ ℕ0) ∧ 0 𝑋) → 0 (𝑁 · 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1088   = wceq 1542  wcel 2114   class class class wbr 5031  cfv 6340  (class class class)co 7173  0cc0 10618  1c1 10619   + caddc 10621  0cn0 11979  Basecbs 16589  +gcplusg 16671  lecple 16678  0gc0g 16819  Posetcpo 17669  Tosetctos 17762  Mndcmnd 18030  .gcmg 18345  oMndcomnd 30903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7482  ax-cnex 10674  ax-resscn 10675  ax-1cn 10676  ax-icn 10677  ax-addcl 10678  ax-addrcl 10679  ax-mulcl 10680  ax-mulrcl 10681  ax-mulcom 10682  ax-addass 10683  ax-mulass 10684  ax-distr 10685  ax-i2m1 10686  ax-1ne0 10687  ax-1rid 10688  ax-rnegex 10689  ax-rrecex 10690  ax-cnre 10691  ax-pre-lttri 10692  ax-pre-lttrn 10693  ax-pre-ltadd 10694  ax-pre-mulgt0 10695
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3401  df-sbc 3682  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-pss 3863  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-tp 4522  df-op 4524  df-uni 4798  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5484  df-we 5486  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7130  df-ov 7176  df-oprab 7177  df-mpo 7178  df-om 7603  df-1st 7717  df-2nd 7718  df-wrecs 7979  df-recs 8040  df-rdg 8078  df-er 8323  df-en 8559  df-dom 8560  df-sdom 8561  df-pnf 10758  df-mnf 10759  df-xr 10760  df-ltxr 10761  df-le 10762  df-sub 10953  df-neg 10954  df-nn 11720  df-n0 11980  df-z 12066  df-uz 12328  df-fz 12985  df-seq 13464  df-0g 16821  df-proset 17657  df-poset 17675  df-toset 17763  df-mgm 17971  df-sgrp 18020  df-mnd 18031  df-mulg 18346  df-omnd 30905
This theorem is referenced by:  omndmul3  30919
  Copyright terms: Public domain W3C validator