Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omndmul2 Structured version   Visualization version   GIF version

Theorem omndmul2 33062
Description: In an ordered monoid, the ordering is compatible with group power. This version does not require the monoid to be commutative. (Contributed by Thierry Arnoux, 23-Mar-2018.)
Hypotheses
Ref Expression
omndmul.0 𝐵 = (Base‘𝑀)
omndmul.1 = (le‘𝑀)
omndmul2.2 · = (.g𝑀)
omndmul2.3 0 = (0g𝑀)
Assertion
Ref Expression
omndmul2 ((𝑀 ∈ oMnd ∧ (𝑋𝐵𝑁 ∈ ℕ0) ∧ 0 𝑋) → 0 (𝑁 · 𝑋))

Proof of Theorem omndmul2
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-3an 1089 . . 3 ((𝑀 ∈ oMnd ∧ (𝑋𝐵𝑁 ∈ ℕ0) ∧ 0 𝑋) ↔ ((𝑀 ∈ oMnd ∧ (𝑋𝐵𝑁 ∈ ℕ0)) ∧ 0 𝑋))
2 anass 468 . . . 4 (((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ↔ (𝑀 ∈ oMnd ∧ (𝑋𝐵𝑁 ∈ ℕ0)))
32anbi1i 623 . . 3 ((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ↔ ((𝑀 ∈ oMnd ∧ (𝑋𝐵𝑁 ∈ ℕ0)) ∧ 0 𝑋))
41, 3bitr4i 278 . 2 ((𝑀 ∈ oMnd ∧ (𝑋𝐵𝑁 ∈ ℕ0) ∧ 0 𝑋) ↔ (((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋))
5 simplr 768 . . 3 ((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) → 𝑁 ∈ ℕ0)
6 oveq1 7455 . . . . 5 (𝑚 = 0 → (𝑚 · 𝑋) = (0 · 𝑋))
76breq2d 5178 . . . 4 (𝑚 = 0 → ( 0 (𝑚 · 𝑋) ↔ 0 (0 · 𝑋)))
8 oveq1 7455 . . . . 5 (𝑚 = 𝑛 → (𝑚 · 𝑋) = (𝑛 · 𝑋))
98breq2d 5178 . . . 4 (𝑚 = 𝑛 → ( 0 (𝑚 · 𝑋) ↔ 0 (𝑛 · 𝑋)))
10 oveq1 7455 . . . . 5 (𝑚 = (𝑛 + 1) → (𝑚 · 𝑋) = ((𝑛 + 1) · 𝑋))
1110breq2d 5178 . . . 4 (𝑚 = (𝑛 + 1) → ( 0 (𝑚 · 𝑋) ↔ 0 ((𝑛 + 1) · 𝑋)))
12 oveq1 7455 . . . . 5 (𝑚 = 𝑁 → (𝑚 · 𝑋) = (𝑁 · 𝑋))
1312breq2d 5178 . . . 4 (𝑚 = 𝑁 → ( 0 (𝑚 · 𝑋) ↔ 0 (𝑁 · 𝑋)))
14 omndtos 33055 . . . . . . . 8 (𝑀 ∈ oMnd → 𝑀 ∈ Toset)
15 tospos 18490 . . . . . . . 8 (𝑀 ∈ Toset → 𝑀 ∈ Poset)
1614, 15syl 17 . . . . . . 7 (𝑀 ∈ oMnd → 𝑀 ∈ Poset)
17 omndmnd 33054 . . . . . . . 8 (𝑀 ∈ oMnd → 𝑀 ∈ Mnd)
18 omndmul.0 . . . . . . . . 9 𝐵 = (Base‘𝑀)
19 omndmul2.3 . . . . . . . . 9 0 = (0g𝑀)
2018, 19mndidcl 18787 . . . . . . . 8 (𝑀 ∈ Mnd → 0𝐵)
2117, 20syl 17 . . . . . . 7 (𝑀 ∈ oMnd → 0𝐵)
22 omndmul.1 . . . . . . . 8 = (le‘𝑀)
2318, 22posref 18388 . . . . . . 7 ((𝑀 ∈ Poset ∧ 0𝐵) → 0 0 )
2416, 21, 23syl2anc 583 . . . . . 6 (𝑀 ∈ oMnd → 0 0 )
2524ad3antrrr 729 . . . . 5 ((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) → 0 0 )
26 omndmul2.2 . . . . . . 7 · = (.g𝑀)
2718, 19, 26mulg0 19114 . . . . . 6 (𝑋𝐵 → (0 · 𝑋) = 0 )
2827ad3antlr 730 . . . . 5 ((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) → (0 · 𝑋) = 0 )
2925, 28breqtrrd 5194 . . . 4 ((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) → 0 (0 · 𝑋))
3016ad5antr 733 . . . . 5 ((((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 (𝑛 · 𝑋)) → 𝑀 ∈ Poset)
3117ad5antr 733 . . . . . . 7 ((((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 (𝑛 · 𝑋)) → 𝑀 ∈ Mnd)
3231, 20syl 17 . . . . . 6 ((((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 (𝑛 · 𝑋)) → 0𝐵)
33 simplr 768 . . . . . . 7 ((((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 (𝑛 · 𝑋)) → 𝑛 ∈ ℕ0)
34 simp-5r 785 . . . . . . 7 ((((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 (𝑛 · 𝑋)) → 𝑋𝐵)
3518, 26, 31, 33, 34mulgnn0cld 19135 . . . . . 6 ((((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 (𝑛 · 𝑋)) → (𝑛 · 𝑋) ∈ 𝐵)
36 simpr32 1264 . . . . . . . . . 10 ((𝑀 ∈ oMnd ∧ (𝑋𝐵𝑁 ∈ ℕ0 ∧ ( 0 𝑋𝑛 ∈ ℕ00 (𝑛 · 𝑋)))) → 𝑛 ∈ ℕ0)
37 1nn0 12569 . . . . . . . . . . 11 1 ∈ ℕ0
3837a1i 11 . . . . . . . . . 10 ((𝑀 ∈ oMnd ∧ (𝑋𝐵𝑁 ∈ ℕ0 ∧ ( 0 𝑋𝑛 ∈ ℕ00 (𝑛 · 𝑋)))) → 1 ∈ ℕ0)
3936, 38nn0addcld 12617 . . . . . . . . 9 ((𝑀 ∈ oMnd ∧ (𝑋𝐵𝑁 ∈ ℕ0 ∧ ( 0 𝑋𝑛 ∈ ℕ00 (𝑛 · 𝑋)))) → (𝑛 + 1) ∈ ℕ0)
40393anassrs 1360 . . . . . . . 8 ((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ ( 0 𝑋𝑛 ∈ ℕ00 (𝑛 · 𝑋))) → (𝑛 + 1) ∈ ℕ0)
41403anassrs 1360 . . . . . . 7 ((((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 (𝑛 · 𝑋)) → (𝑛 + 1) ∈ ℕ0)
4218, 26, 31, 41, 34mulgnn0cld 19135 . . . . . 6 ((((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 (𝑛 · 𝑋)) → ((𝑛 + 1) · 𝑋) ∈ 𝐵)
4332, 35, 423jca 1128 . . . . 5 ((((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 (𝑛 · 𝑋)) → ( 0𝐵 ∧ (𝑛 · 𝑋) ∈ 𝐵 ∧ ((𝑛 + 1) · 𝑋) ∈ 𝐵))
44 simpr 484 . . . . 5 ((((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 (𝑛 · 𝑋)) → 0 (𝑛 · 𝑋))
45 simp-4l 782 . . . . . . . 8 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → 𝑀 ∈ oMnd)
4617ad4antr 731 . . . . . . . . 9 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → 𝑀 ∈ Mnd)
4746, 20syl 17 . . . . . . . 8 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → 0𝐵)
48 simp-4r 783 . . . . . . . 8 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → 𝑋𝐵)
49 simpr 484 . . . . . . . . 9 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
5018, 26, 46, 49, 48mulgnn0cld 19135 . . . . . . . 8 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → (𝑛 · 𝑋) ∈ 𝐵)
51 simplr 768 . . . . . . . 8 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → 0 𝑋)
52 eqid 2740 . . . . . . . . 9 (+g𝑀) = (+g𝑀)
5318, 22, 52omndadd 33056 . . . . . . . 8 ((𝑀 ∈ oMnd ∧ ( 0𝐵𝑋𝐵 ∧ (𝑛 · 𝑋) ∈ 𝐵) ∧ 0 𝑋) → ( 0 (+g𝑀)(𝑛 · 𝑋)) (𝑋(+g𝑀)(𝑛 · 𝑋)))
5445, 47, 48, 50, 51, 53syl131anc 1383 . . . . . . 7 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → ( 0 (+g𝑀)(𝑛 · 𝑋)) (𝑋(+g𝑀)(𝑛 · 𝑋)))
5518, 52, 19mndlid 18792 . . . . . . . 8 ((𝑀 ∈ Mnd ∧ (𝑛 · 𝑋) ∈ 𝐵) → ( 0 (+g𝑀)(𝑛 · 𝑋)) = (𝑛 · 𝑋))
5646, 50, 55syl2anc 583 . . . . . . 7 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → ( 0 (+g𝑀)(𝑛 · 𝑋)) = (𝑛 · 𝑋))
5737a1i 11 . . . . . . . . 9 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → 1 ∈ ℕ0)
5818, 26, 52mulgnn0dir 19144 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ (1 ∈ ℕ0𝑛 ∈ ℕ0𝑋𝐵)) → ((1 + 𝑛) · 𝑋) = ((1 · 𝑋)(+g𝑀)(𝑛 · 𝑋)))
5946, 57, 49, 48, 58syl13anc 1372 . . . . . . . 8 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → ((1 + 𝑛) · 𝑋) = ((1 · 𝑋)(+g𝑀)(𝑛 · 𝑋)))
60 1cnd 11285 . . . . . . . . . . 11 (((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℕ00 𝑋𝑛 ∈ ℕ0)) → 1 ∈ ℂ)
61 simpr3 1196 . . . . . . . . . . . 12 (((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℕ00 𝑋𝑛 ∈ ℕ0)) → 𝑛 ∈ ℕ0)
6261nn0cnd 12615 . . . . . . . . . . 11 (((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℕ00 𝑋𝑛 ∈ ℕ0)) → 𝑛 ∈ ℂ)
6360, 62addcomd 11492 . . . . . . . . . 10 (((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℕ00 𝑋𝑛 ∈ ℕ0)) → (1 + 𝑛) = (𝑛 + 1))
64633anassrs 1360 . . . . . . . . 9 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → (1 + 𝑛) = (𝑛 + 1))
6564oveq1d 7463 . . . . . . . 8 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → ((1 + 𝑛) · 𝑋) = ((𝑛 + 1) · 𝑋))
6618, 26mulg1 19121 . . . . . . . . . 10 (𝑋𝐵 → (1 · 𝑋) = 𝑋)
6748, 66syl 17 . . . . . . . . 9 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → (1 · 𝑋) = 𝑋)
6867oveq1d 7463 . . . . . . . 8 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → ((1 · 𝑋)(+g𝑀)(𝑛 · 𝑋)) = (𝑋(+g𝑀)(𝑛 · 𝑋)))
6959, 65, 683eqtr3rd 2789 . . . . . . 7 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → (𝑋(+g𝑀)(𝑛 · 𝑋)) = ((𝑛 + 1) · 𝑋))
7054, 56, 693brtr3d 5197 . . . . . 6 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → (𝑛 · 𝑋) ((𝑛 + 1) · 𝑋))
7170adantr 480 . . . . 5 ((((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 (𝑛 · 𝑋)) → (𝑛 · 𝑋) ((𝑛 + 1) · 𝑋))
7218, 22postr 18390 . . . . . 6 ((𝑀 ∈ Poset ∧ ( 0𝐵 ∧ (𝑛 · 𝑋) ∈ 𝐵 ∧ ((𝑛 + 1) · 𝑋) ∈ 𝐵)) → (( 0 (𝑛 · 𝑋) ∧ (𝑛 · 𝑋) ((𝑛 + 1) · 𝑋)) → 0 ((𝑛 + 1) · 𝑋)))
7372imp 406 . . . . 5 (((𝑀 ∈ Poset ∧ ( 0𝐵 ∧ (𝑛 · 𝑋) ∈ 𝐵 ∧ ((𝑛 + 1) · 𝑋) ∈ 𝐵)) ∧ ( 0 (𝑛 · 𝑋) ∧ (𝑛 · 𝑋) ((𝑛 + 1) · 𝑋))) → 0 ((𝑛 + 1) · 𝑋))
7430, 43, 44, 71, 73syl22anc 838 . . . 4 ((((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 (𝑛 · 𝑋)) → 0 ((𝑛 + 1) · 𝑋))
757, 9, 11, 13, 29, 74nn0indd 12740 . . 3 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑁 ∈ ℕ0) → 0 (𝑁 · 𝑋))
765, 75mpdan 686 . 2 ((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) → 0 (𝑁 · 𝑋))
774, 76sylbi 217 1 ((𝑀 ∈ oMnd ∧ (𝑋𝐵𝑁 ∈ ℕ0) ∧ 0 𝑋) → 0 (𝑁 · 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108   class class class wbr 5166  cfv 6573  (class class class)co 7448  0cc0 11184  1c1 11185   + caddc 11187  0cn0 12553  Basecbs 17258  +gcplusg 17311  lecple 17318  0gc0g 17499  Posetcpo 18377  Tosetctos 18486  Mndcmnd 18772  .gcmg 19107  oMndcomnd 33047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-seq 14053  df-0g 17501  df-proset 18365  df-poset 18383  df-toset 18487  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mulg 19108  df-omnd 33049
This theorem is referenced by:  omndmul3  33063
  Copyright terms: Public domain W3C validator