Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omndmul2 Structured version   Visualization version   GIF version

Theorem omndmul2 32786
Description: In an ordered monoid, the ordering is compatible with group power. This version does not require the monoid to be commutative. (Contributed by Thierry Arnoux, 23-Mar-2018.)
Hypotheses
Ref Expression
omndmul.0 𝐵 = (Base‘𝑀)
omndmul.1 = (le‘𝑀)
omndmul2.2 · = (.g𝑀)
omndmul2.3 0 = (0g𝑀)
Assertion
Ref Expression
omndmul2 ((𝑀 ∈ oMnd ∧ (𝑋𝐵𝑁 ∈ ℕ0) ∧ 0 𝑋) → 0 (𝑁 · 𝑋))

Proof of Theorem omndmul2
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-3an 1087 . . 3 ((𝑀 ∈ oMnd ∧ (𝑋𝐵𝑁 ∈ ℕ0) ∧ 0 𝑋) ↔ ((𝑀 ∈ oMnd ∧ (𝑋𝐵𝑁 ∈ ℕ0)) ∧ 0 𝑋))
2 anass 468 . . . 4 (((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ↔ (𝑀 ∈ oMnd ∧ (𝑋𝐵𝑁 ∈ ℕ0)))
32anbi1i 623 . . 3 ((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ↔ ((𝑀 ∈ oMnd ∧ (𝑋𝐵𝑁 ∈ ℕ0)) ∧ 0 𝑋))
41, 3bitr4i 278 . 2 ((𝑀 ∈ oMnd ∧ (𝑋𝐵𝑁 ∈ ℕ0) ∧ 0 𝑋) ↔ (((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋))
5 simplr 768 . . 3 ((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) → 𝑁 ∈ ℕ0)
6 oveq1 7421 . . . . 5 (𝑚 = 0 → (𝑚 · 𝑋) = (0 · 𝑋))
76breq2d 5154 . . . 4 (𝑚 = 0 → ( 0 (𝑚 · 𝑋) ↔ 0 (0 · 𝑋)))
8 oveq1 7421 . . . . 5 (𝑚 = 𝑛 → (𝑚 · 𝑋) = (𝑛 · 𝑋))
98breq2d 5154 . . . 4 (𝑚 = 𝑛 → ( 0 (𝑚 · 𝑋) ↔ 0 (𝑛 · 𝑋)))
10 oveq1 7421 . . . . 5 (𝑚 = (𝑛 + 1) → (𝑚 · 𝑋) = ((𝑛 + 1) · 𝑋))
1110breq2d 5154 . . . 4 (𝑚 = (𝑛 + 1) → ( 0 (𝑚 · 𝑋) ↔ 0 ((𝑛 + 1) · 𝑋)))
12 oveq1 7421 . . . . 5 (𝑚 = 𝑁 → (𝑚 · 𝑋) = (𝑁 · 𝑋))
1312breq2d 5154 . . . 4 (𝑚 = 𝑁 → ( 0 (𝑚 · 𝑋) ↔ 0 (𝑁 · 𝑋)))
14 omndtos 32779 . . . . . . . 8 (𝑀 ∈ oMnd → 𝑀 ∈ Toset)
15 tospos 18405 . . . . . . . 8 (𝑀 ∈ Toset → 𝑀 ∈ Poset)
1614, 15syl 17 . . . . . . 7 (𝑀 ∈ oMnd → 𝑀 ∈ Poset)
17 omndmnd 32778 . . . . . . . 8 (𝑀 ∈ oMnd → 𝑀 ∈ Mnd)
18 omndmul.0 . . . . . . . . 9 𝐵 = (Base‘𝑀)
19 omndmul2.3 . . . . . . . . 9 0 = (0g𝑀)
2018, 19mndidcl 18702 . . . . . . . 8 (𝑀 ∈ Mnd → 0𝐵)
2117, 20syl 17 . . . . . . 7 (𝑀 ∈ oMnd → 0𝐵)
22 omndmul.1 . . . . . . . 8 = (le‘𝑀)
2318, 22posref 18303 . . . . . . 7 ((𝑀 ∈ Poset ∧ 0𝐵) → 0 0 )
2416, 21, 23syl2anc 583 . . . . . 6 (𝑀 ∈ oMnd → 0 0 )
2524ad3antrrr 729 . . . . 5 ((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) → 0 0 )
26 omndmul2.2 . . . . . . 7 · = (.g𝑀)
2718, 19, 26mulg0 19023 . . . . . 6 (𝑋𝐵 → (0 · 𝑋) = 0 )
2827ad3antlr 730 . . . . 5 ((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) → (0 · 𝑋) = 0 )
2925, 28breqtrrd 5170 . . . 4 ((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) → 0 (0 · 𝑋))
3016ad5antr 733 . . . . 5 ((((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 (𝑛 · 𝑋)) → 𝑀 ∈ Poset)
3117ad5antr 733 . . . . . . 7 ((((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 (𝑛 · 𝑋)) → 𝑀 ∈ Mnd)
3231, 20syl 17 . . . . . 6 ((((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 (𝑛 · 𝑋)) → 0𝐵)
33 simplr 768 . . . . . . 7 ((((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 (𝑛 · 𝑋)) → 𝑛 ∈ ℕ0)
34 simp-5r 785 . . . . . . 7 ((((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 (𝑛 · 𝑋)) → 𝑋𝐵)
3518, 26, 31, 33, 34mulgnn0cld 19043 . . . . . 6 ((((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 (𝑛 · 𝑋)) → (𝑛 · 𝑋) ∈ 𝐵)
36 simpr32 1262 . . . . . . . . . 10 ((𝑀 ∈ oMnd ∧ (𝑋𝐵𝑁 ∈ ℕ0 ∧ ( 0 𝑋𝑛 ∈ ℕ00 (𝑛 · 𝑋)))) → 𝑛 ∈ ℕ0)
37 1nn0 12512 . . . . . . . . . . 11 1 ∈ ℕ0
3837a1i 11 . . . . . . . . . 10 ((𝑀 ∈ oMnd ∧ (𝑋𝐵𝑁 ∈ ℕ0 ∧ ( 0 𝑋𝑛 ∈ ℕ00 (𝑛 · 𝑋)))) → 1 ∈ ℕ0)
3936, 38nn0addcld 12560 . . . . . . . . 9 ((𝑀 ∈ oMnd ∧ (𝑋𝐵𝑁 ∈ ℕ0 ∧ ( 0 𝑋𝑛 ∈ ℕ00 (𝑛 · 𝑋)))) → (𝑛 + 1) ∈ ℕ0)
40393anassrs 1358 . . . . . . . 8 ((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ ( 0 𝑋𝑛 ∈ ℕ00 (𝑛 · 𝑋))) → (𝑛 + 1) ∈ ℕ0)
41403anassrs 1358 . . . . . . 7 ((((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 (𝑛 · 𝑋)) → (𝑛 + 1) ∈ ℕ0)
4218, 26, 31, 41, 34mulgnn0cld 19043 . . . . . 6 ((((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 (𝑛 · 𝑋)) → ((𝑛 + 1) · 𝑋) ∈ 𝐵)
4332, 35, 423jca 1126 . . . . 5 ((((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 (𝑛 · 𝑋)) → ( 0𝐵 ∧ (𝑛 · 𝑋) ∈ 𝐵 ∧ ((𝑛 + 1) · 𝑋) ∈ 𝐵))
44 simpr 484 . . . . 5 ((((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 (𝑛 · 𝑋)) → 0 (𝑛 · 𝑋))
45 simp-4l 782 . . . . . . . 8 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → 𝑀 ∈ oMnd)
4617ad4antr 731 . . . . . . . . 9 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → 𝑀 ∈ Mnd)
4746, 20syl 17 . . . . . . . 8 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → 0𝐵)
48 simp-4r 783 . . . . . . . 8 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → 𝑋𝐵)
49 simpr 484 . . . . . . . . 9 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
5018, 26, 46, 49, 48mulgnn0cld 19043 . . . . . . . 8 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → (𝑛 · 𝑋) ∈ 𝐵)
51 simplr 768 . . . . . . . 8 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → 0 𝑋)
52 eqid 2728 . . . . . . . . 9 (+g𝑀) = (+g𝑀)
5318, 22, 52omndadd 32780 . . . . . . . 8 ((𝑀 ∈ oMnd ∧ ( 0𝐵𝑋𝐵 ∧ (𝑛 · 𝑋) ∈ 𝐵) ∧ 0 𝑋) → ( 0 (+g𝑀)(𝑛 · 𝑋)) (𝑋(+g𝑀)(𝑛 · 𝑋)))
5445, 47, 48, 50, 51, 53syl131anc 1381 . . . . . . 7 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → ( 0 (+g𝑀)(𝑛 · 𝑋)) (𝑋(+g𝑀)(𝑛 · 𝑋)))
5518, 52, 19mndlid 18707 . . . . . . . 8 ((𝑀 ∈ Mnd ∧ (𝑛 · 𝑋) ∈ 𝐵) → ( 0 (+g𝑀)(𝑛 · 𝑋)) = (𝑛 · 𝑋))
5646, 50, 55syl2anc 583 . . . . . . 7 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → ( 0 (+g𝑀)(𝑛 · 𝑋)) = (𝑛 · 𝑋))
5737a1i 11 . . . . . . . . 9 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → 1 ∈ ℕ0)
5818, 26, 52mulgnn0dir 19052 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ (1 ∈ ℕ0𝑛 ∈ ℕ0𝑋𝐵)) → ((1 + 𝑛) · 𝑋) = ((1 · 𝑋)(+g𝑀)(𝑛 · 𝑋)))
5946, 57, 49, 48, 58syl13anc 1370 . . . . . . . 8 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → ((1 + 𝑛) · 𝑋) = ((1 · 𝑋)(+g𝑀)(𝑛 · 𝑋)))
60 1cnd 11233 . . . . . . . . . . 11 (((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℕ00 𝑋𝑛 ∈ ℕ0)) → 1 ∈ ℂ)
61 simpr3 1194 . . . . . . . . . . . 12 (((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℕ00 𝑋𝑛 ∈ ℕ0)) → 𝑛 ∈ ℕ0)
6261nn0cnd 12558 . . . . . . . . . . 11 (((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℕ00 𝑋𝑛 ∈ ℕ0)) → 𝑛 ∈ ℂ)
6360, 62addcomd 11440 . . . . . . . . . 10 (((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℕ00 𝑋𝑛 ∈ ℕ0)) → (1 + 𝑛) = (𝑛 + 1))
64633anassrs 1358 . . . . . . . . 9 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → (1 + 𝑛) = (𝑛 + 1))
6564oveq1d 7429 . . . . . . . 8 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → ((1 + 𝑛) · 𝑋) = ((𝑛 + 1) · 𝑋))
6618, 26mulg1 19029 . . . . . . . . . 10 (𝑋𝐵 → (1 · 𝑋) = 𝑋)
6748, 66syl 17 . . . . . . . . 9 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → (1 · 𝑋) = 𝑋)
6867oveq1d 7429 . . . . . . . 8 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → ((1 · 𝑋)(+g𝑀)(𝑛 · 𝑋)) = (𝑋(+g𝑀)(𝑛 · 𝑋)))
6959, 65, 683eqtr3rd 2777 . . . . . . 7 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → (𝑋(+g𝑀)(𝑛 · 𝑋)) = ((𝑛 + 1) · 𝑋))
7054, 56, 693brtr3d 5173 . . . . . 6 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → (𝑛 · 𝑋) ((𝑛 + 1) · 𝑋))
7170adantr 480 . . . . 5 ((((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 (𝑛 · 𝑋)) → (𝑛 · 𝑋) ((𝑛 + 1) · 𝑋))
7218, 22postr 18305 . . . . . 6 ((𝑀 ∈ Poset ∧ ( 0𝐵 ∧ (𝑛 · 𝑋) ∈ 𝐵 ∧ ((𝑛 + 1) · 𝑋) ∈ 𝐵)) → (( 0 (𝑛 · 𝑋) ∧ (𝑛 · 𝑋) ((𝑛 + 1) · 𝑋)) → 0 ((𝑛 + 1) · 𝑋)))
7372imp 406 . . . . 5 (((𝑀 ∈ Poset ∧ ( 0𝐵 ∧ (𝑛 · 𝑋) ∈ 𝐵 ∧ ((𝑛 + 1) · 𝑋) ∈ 𝐵)) ∧ ( 0 (𝑛 · 𝑋) ∧ (𝑛 · 𝑋) ((𝑛 + 1) · 𝑋))) → 0 ((𝑛 + 1) · 𝑋))
7430, 43, 44, 71, 73syl22anc 838 . . . 4 ((((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 (𝑛 · 𝑋)) → 0 ((𝑛 + 1) · 𝑋))
757, 9, 11, 13, 29, 74nn0indd 12683 . . 3 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑁 ∈ ℕ0) → 0 (𝑁 · 𝑋))
765, 75mpdan 686 . 2 ((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) → 0 (𝑁 · 𝑋))
774, 76sylbi 216 1 ((𝑀 ∈ oMnd ∧ (𝑋𝐵𝑁 ∈ ℕ0) ∧ 0 𝑋) → 0 (𝑁 · 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1534  wcel 2099   class class class wbr 5142  cfv 6542  (class class class)co 7414  0cc0 11132  1c1 11133   + caddc 11135  0cn0 12496  Basecbs 17173  +gcplusg 17226  lecple 17233  0gc0g 17414  Posetcpo 18292  Tosetctos 18401  Mndcmnd 18687  .gcmg 19016  oMndcomnd 32771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-nn 12237  df-n0 12497  df-z 12583  df-uz 12847  df-fz 13511  df-seq 13993  df-0g 17416  df-proset 18280  df-poset 18298  df-toset 18402  df-mgm 18593  df-sgrp 18672  df-mnd 18688  df-mulg 19017  df-omnd 32773
This theorem is referenced by:  omndmul3  32787
  Copyright terms: Public domain W3C validator