MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp1l1 Structured version   Visualization version   GIF version

Theorem simp1l1 1267
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp1l1 ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏𝜂) → 𝜑)

Proof of Theorem simp1l1
StepHypRef Expression
1 simpl1 1192 . 2 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜑)
213ad2ant1 1133 1 ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏𝜂) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  poxp3  8075  mapxpen  9051  hash7g  14388  lsmcv  21073  sltlpss  27848  archiabl  33159  trisegint  36062  linethru  36187  hlrelat3  39451  cvrval3  39452  cvrval4N  39453  2atlt  39478  atbtwnex  39487  1cvratlt  39513  atcvrlln2  39558  atcvrlln  39559  2llnmat  39563  lplnexllnN  39603  lvolnlelpln  39624  lnjatN  39819  lncvrat  39821  lncmp  39822  cdlemd9  40245  dihord5b  41298  dihmeetALTN  41366  dih1dimatlem0  41367  mapdrvallem2  41684  grumnudlem  44318
  Copyright terms: Public domain W3C validator