MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp1l1 Structured version   Visualization version   GIF version

Theorem simp1l1 1264
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp1l1 ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏𝜂) → 𝜑)

Proof of Theorem simp1l1
StepHypRef Expression
1 simpl1 1189 . 2 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜑)
213ad2ant1 1131 1 ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏𝜂) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by:  mapxpen  8879  lsmcv  20318  archiabl  31354  sltlpss  34014  trisegint  34257  linethru  34382  hlrelat3  37353  cvrval3  37354  cvrval4N  37355  2atlt  37380  atbtwnex  37389  1cvratlt  37415  atcvrlln2  37460  atcvrlln  37461  2llnmat  37465  lplnexllnN  37505  lvolnlelpln  37526  lnjatN  37721  lncvrat  37723  lncmp  37724  cdlemd9  38147  dihord5b  39200  dihmeetALTN  39268  dih1dimatlem0  39269  mapdrvallem2  39586  grumnudlem  41792
  Copyright terms: Public domain W3C validator