MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp1l1 Structured version   Visualization version   GIF version

Theorem simp1l1 1267
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp1l1 ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏𝜂) → 𝜑)

Proof of Theorem simp1l1
StepHypRef Expression
1 simpl1 1192 . 2 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜑)
213ad2ant1 1133 1 ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏𝜂) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  poxp3  8089  mapxpen  9067  hash7g  14400  lsmcv  21087  sltlpss  27873  archiabl  33208  trisegint  36144  linethru  36269  hlrelat3  39584  cvrval3  39585  cvrval4N  39586  2atlt  39611  atbtwnex  39620  1cvratlt  39646  atcvrlln2  39691  atcvrlln  39692  2llnmat  39696  lplnexllnN  39736  lvolnlelpln  39757  lnjatN  39952  lncvrat  39954  lncmp  39955  cdlemd9  40378  dihord5b  41431  dihmeetALTN  41499  dih1dimatlem0  41500  mapdrvallem2  41817  grumnudlem  44442
  Copyright terms: Public domain W3C validator