| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp1l1 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp1l1 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1192 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜑) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp3 8075 mapxpen 9051 hash7g 14388 lsmcv 21073 sltlpss 27848 archiabl 33159 trisegint 36062 linethru 36187 hlrelat3 39451 cvrval3 39452 cvrval4N 39453 2atlt 39478 atbtwnex 39487 1cvratlt 39513 atcvrlln2 39558 atcvrlln 39559 2llnmat 39563 lplnexllnN 39603 lvolnlelpln 39624 lnjatN 39819 lncvrat 39821 lncmp 39822 cdlemd9 40245 dihord5b 41298 dihmeetALTN 41366 dih1dimatlem0 41367 mapdrvallem2 41684 grumnudlem 44318 |
| Copyright terms: Public domain | W3C validator |