MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp1l1 Structured version   Visualization version   GIF version

Theorem simp1l1 1267
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp1l1 ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏𝜂) → 𝜑)

Proof of Theorem simp1l1
StepHypRef Expression
1 simpl1 1192 . 2 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜑)
213ad2ant1 1133 1 ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏𝜂) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  poxp3  8129  mapxpen  9107  hash7g  14451  lsmcv  21051  sltlpss  27819  archiabl  33152  trisegint  36016  linethru  36141  hlrelat3  39406  cvrval3  39407  cvrval4N  39408  2atlt  39433  atbtwnex  39442  1cvratlt  39468  atcvrlln2  39513  atcvrlln  39514  2llnmat  39518  lplnexllnN  39558  lvolnlelpln  39579  lnjatN  39774  lncvrat  39776  lncmp  39777  cdlemd9  40200  dihord5b  41253  dihmeetALTN  41321  dih1dimatlem0  41322  mapdrvallem2  41639  grumnudlem  44274
  Copyright terms: Public domain W3C validator