Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp1l1 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp1l1 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1190 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜑) | |
2 | 1 | 3ad2ant1 1132 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: mapxpen 8983 lsmcv 20474 archiabl 31560 sltlpss 34148 trisegint 34391 linethru 34516 hlrelat3 37638 cvrval3 37639 cvrval4N 37640 2atlt 37665 atbtwnex 37674 1cvratlt 37700 atcvrlln2 37745 atcvrlln 37746 2llnmat 37750 lplnexllnN 37790 lvolnlelpln 37811 lnjatN 38006 lncvrat 38008 lncmp 38009 cdlemd9 38432 dihord5b 39485 dihmeetALTN 39553 dih1dimatlem0 39554 mapdrvallem2 39871 grumnudlem 42131 |
Copyright terms: Public domain | W3C validator |