| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp1l1 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp1l1 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1192 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜑) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp3 8089 mapxpen 9067 hash7g 14400 lsmcv 21087 sltlpss 27873 archiabl 33208 trisegint 36144 linethru 36269 hlrelat3 39584 cvrval3 39585 cvrval4N 39586 2atlt 39611 atbtwnex 39620 1cvratlt 39646 atcvrlln2 39691 atcvrlln 39692 2llnmat 39696 lplnexllnN 39736 lvolnlelpln 39757 lnjatN 39952 lncvrat 39954 lncmp 39955 cdlemd9 40378 dihord5b 41431 dihmeetALTN 41499 dih1dimatlem0 41500 mapdrvallem2 41817 grumnudlem 44442 |
| Copyright terms: Public domain | W3C validator |