| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp1l1 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp1l1 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1192 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜑) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp3 8090 mapxpen 9067 hash7g 14412 lsmcv 21067 sltlpss 27841 archiabl 33159 trisegint 36021 linethru 36146 hlrelat3 39411 cvrval3 39412 cvrval4N 39413 2atlt 39438 atbtwnex 39447 1cvratlt 39473 atcvrlln2 39518 atcvrlln 39519 2llnmat 39523 lplnexllnN 39563 lvolnlelpln 39584 lnjatN 39779 lncvrat 39781 lncmp 39782 cdlemd9 40205 dihord5b 41258 dihmeetALTN 41326 dih1dimatlem0 41327 mapdrvallem2 41644 grumnudlem 44278 |
| Copyright terms: Public domain | W3C validator |