![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snopeqopsnid | Structured version Visualization version GIF version |
Description: Equivalence for an ordered pair of two identical singletons equal to a singleton of an ordered pair. (Contributed by AV, 24-Sep-2020.) (Revised by AV, 15-Jul-2022.) (Avoid depending on this detail.) |
Ref | Expression |
---|---|
snopeqopsnid.a | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
snopeqopsnid | ⊢ {⟨𝐴, 𝐴⟩} = ⟨{𝐴}, {𝐴}⟩ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2731 | . 2 ⊢ 𝐴 = 𝐴 | |
2 | eqid 2731 | . 2 ⊢ {𝐴} = {𝐴} | |
3 | snopeqopsnid.a | . . 3 ⊢ 𝐴 ∈ V | |
4 | 3, 3 | snopeqop 5506 | . 2 ⊢ ({⟨𝐴, 𝐴⟩} = ⟨{𝐴}, {𝐴}⟩ ↔ (𝐴 = 𝐴 ∧ {𝐴} = {𝐴} ∧ {𝐴} = {𝐴})) |
5 | 1, 2, 2, 4 | mpbir3an 1340 | 1 ⊢ {⟨𝐴, 𝐴⟩} = ⟨{𝐴}, {𝐴}⟩ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∈ wcel 2105 Vcvv 3473 {csn 4628 ⟨cop 4634 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 |
This theorem is referenced by: funsneqopb 7152 vtxvalsnop 28569 iedgvalsnop 28570 |
Copyright terms: Public domain | W3C validator |