MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snopeqopsnid Structured version   Visualization version   GIF version

Theorem snopeqopsnid 5472
Description: Equivalence for an ordered pair of two identical singletons equal to a singleton of an ordered pair. (Contributed by AV, 24-Sep-2020.) (Revised by AV, 15-Jul-2022.) (Avoid depending on this detail.)
Hypothesis
Ref Expression
snopeqopsnid.a 𝐴 ∈ V
Assertion
Ref Expression
snopeqopsnid {⟨𝐴, 𝐴⟩} = ⟨{𝐴}, {𝐴}⟩

Proof of Theorem snopeqopsnid
StepHypRef Expression
1 eqid 2730 . 2 𝐴 = 𝐴
2 eqid 2730 . 2 {𝐴} = {𝐴}
3 snopeqopsnid.a . . 3 𝐴 ∈ V
43, 3snopeqop 5469 . 2 ({⟨𝐴, 𝐴⟩} = ⟨{𝐴}, {𝐴}⟩ ↔ (𝐴 = 𝐴 ∧ {𝐴} = {𝐴} ∧ {𝐴} = {𝐴}))
51, 2, 2, 4mpbir3an 1342 1 {⟨𝐴, 𝐴⟩} = ⟨{𝐴}, {𝐴}⟩
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  Vcvv 3450  {csn 4592  cop 4598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599
This theorem is referenced by:  funsneqopb  7127  vtxvalsnop  28975  iedgvalsnop  28976
  Copyright terms: Public domain W3C validator