MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snopeqopsnid Structured version   Visualization version   GIF version

Theorem snopeqopsnid 5368
Description: Equivalence for an ordered pair of two identical singletons equal to a singleton of an ordered pair. (Contributed by AV, 24-Sep-2020.) (Revised by AV, 15-Jul-2022.) (Avoid depending on this detail.)
Hypothesis
Ref Expression
snopeqopsnid.a 𝐴 ∈ V
Assertion
Ref Expression
snopeqopsnid {⟨𝐴, 𝐴⟩} = ⟨{𝐴}, {𝐴}⟩

Proof of Theorem snopeqopsnid
StepHypRef Expression
1 eqid 2758 . 2 𝐴 = 𝐴
2 eqid 2758 . 2 {𝐴} = {𝐴}
3 snopeqopsnid.a . . 3 𝐴 ∈ V
43, 3snopeqop 5365 . 2 ({⟨𝐴, 𝐴⟩} = ⟨{𝐴}, {𝐴}⟩ ↔ (𝐴 = 𝐴 ∧ {𝐴} = {𝐴} ∧ {𝐴} = {𝐴}))
51, 2, 2, 4mpbir3an 1338 1 {⟨𝐴, 𝐴⟩} = ⟨{𝐴}, {𝐴}⟩
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  wcel 2111  Vcvv 3409  {csn 4522  cop 4528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pr 5298
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-v 3411  df-dif 3861  df-un 3863  df-nul 4226  df-if 4421  df-sn 4523  df-pr 4525  df-op 4529
This theorem is referenced by:  funsneqopb  6905  vtxvalsnop  26933  iedgvalsnop  26934
  Copyright terms: Public domain W3C validator