| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snopeqopsnid | Structured version Visualization version GIF version | ||
| Description: Equivalence for an ordered pair of two identical singletons equal to a singleton of an ordered pair. (Contributed by AV, 24-Sep-2020.) (Revised by AV, 15-Jul-2022.) (Avoid depending on this detail.) |
| Ref | Expression |
|---|---|
| snopeqopsnid.a | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| snopeqopsnid | ⊢ {〈𝐴, 𝐴〉} = 〈{𝐴}, {𝐴}〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . 2 ⊢ 𝐴 = 𝐴 | |
| 2 | eqid 2733 | . 2 ⊢ {𝐴} = {𝐴} | |
| 3 | snopeqopsnid.a | . . 3 ⊢ 𝐴 ∈ V | |
| 4 | 3, 3 | snopeqop 5451 | . 2 ⊢ ({〈𝐴, 𝐴〉} = 〈{𝐴}, {𝐴}〉 ↔ (𝐴 = 𝐴 ∧ {𝐴} = {𝐴} ∧ {𝐴} = {𝐴})) |
| 5 | 1, 2, 2, 4 | mpbir3an 1342 | 1 ⊢ {〈𝐴, 𝐴〉} = 〈{𝐴}, {𝐴}〉 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 Vcvv 3438 {csn 4577 〈cop 4583 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2931 df-v 3440 df-dif 3902 df-un 3904 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 |
| This theorem is referenced by: funsneqopb 7094 vtxvalsnop 29030 iedgvalsnop 29031 |
| Copyright terms: Public domain | W3C validator |