![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snopeqopsnid | Structured version Visualization version GIF version |
Description: Equivalence for an ordered pair of two identical singletons equal to a singleton of an ordered pair. (Contributed by AV, 24-Sep-2020.) (Revised by AV, 15-Jul-2022.) (Avoid depending on this detail.) |
Ref | Expression |
---|---|
snopeqopsnid.a | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
snopeqopsnid | ⊢ {〈𝐴, 𝐴〉} = 〈{𝐴}, {𝐴}〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2799 | . 2 ⊢ 𝐴 = 𝐴 | |
2 | eqid 2799 | . 2 ⊢ {𝐴} = {𝐴} | |
3 | snopeqopsnid.a | . . 3 ⊢ 𝐴 ∈ V | |
4 | 3, 3 | snopeqop 5161 | . 2 ⊢ ({〈𝐴, 𝐴〉} = 〈{𝐴}, {𝐴}〉 ↔ (𝐴 = 𝐴 ∧ {𝐴} = {𝐴} ∧ {𝐴} = {𝐴})) |
5 | 1, 2, 2, 4 | mpbir3an 1442 | 1 ⊢ {〈𝐴, 𝐴〉} = 〈{𝐴}, {𝐴}〉 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1653 ∈ wcel 2157 Vcvv 3385 {csn 4368 〈cop 4374 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 |
This theorem is referenced by: funsneqopb 6647 vtxvalsnop 26276 iedgvalsnop 26277 |
Copyright terms: Public domain | W3C validator |