MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snopeqopsnid Structured version   Visualization version   GIF version

Theorem snopeqopsnid 5447
Description: Equivalence for an ordered pair of two identical singletons equal to a singleton of an ordered pair. (Contributed by AV, 24-Sep-2020.) (Revised by AV, 15-Jul-2022.) (Avoid depending on this detail.)
Hypothesis
Ref Expression
snopeqopsnid.a 𝐴 ∈ V
Assertion
Ref Expression
snopeqopsnid {⟨𝐴, 𝐴⟩} = ⟨{𝐴}, {𝐴}⟩

Proof of Theorem snopeqopsnid
StepHypRef Expression
1 eqid 2730 . 2 𝐴 = 𝐴
2 eqid 2730 . 2 {𝐴} = {𝐴}
3 snopeqopsnid.a . . 3 𝐴 ∈ V
43, 3snopeqop 5444 . 2 ({⟨𝐴, 𝐴⟩} = ⟨{𝐴}, {𝐴}⟩ ↔ (𝐴 = 𝐴 ∧ {𝐴} = {𝐴} ∧ {𝐴} = {𝐴}))
51, 2, 2, 4mpbir3an 1342 1 {⟨𝐴, 𝐴⟩} = ⟨{𝐴}, {𝐴}⟩
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2110  Vcvv 3434  {csn 4574  cop 4580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-v 3436  df-dif 3903  df-un 3905  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581
This theorem is referenced by:  funsneqopb  7080  vtxvalsnop  29012  iedgvalsnop  29013
  Copyright terms: Public domain W3C validator