Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > snopeqopsnid | Structured version Visualization version GIF version |
Description: Equivalence for an ordered pair of two identical singletons equal to a singleton of an ordered pair. (Contributed by AV, 24-Sep-2020.) (Revised by AV, 15-Jul-2022.) (Avoid depending on this detail.) |
Ref | Expression |
---|---|
snopeqopsnid.a | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
snopeqopsnid | ⊢ {〈𝐴, 𝐴〉} = 〈{𝐴}, {𝐴}〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2758 | . 2 ⊢ 𝐴 = 𝐴 | |
2 | eqid 2758 | . 2 ⊢ {𝐴} = {𝐴} | |
3 | snopeqopsnid.a | . . 3 ⊢ 𝐴 ∈ V | |
4 | 3, 3 | snopeqop 5365 | . 2 ⊢ ({〈𝐴, 𝐴〉} = 〈{𝐴}, {𝐴}〉 ↔ (𝐴 = 𝐴 ∧ {𝐴} = {𝐴} ∧ {𝐴} = {𝐴})) |
5 | 1, 2, 2, 4 | mpbir3an 1338 | 1 ⊢ {〈𝐴, 𝐴〉} = 〈{𝐴}, {𝐴}〉 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 ∈ wcel 2111 Vcvv 3409 {csn 4522 〈cop 4528 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-v 3411 df-dif 3861 df-un 3863 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 |
This theorem is referenced by: funsneqopb 6905 vtxvalsnop 26933 iedgvalsnop 26934 |
Copyright terms: Public domain | W3C validator |