| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snopeqopsnid | Structured version Visualization version GIF version | ||
| Description: Equivalence for an ordered pair of two identical singletons equal to a singleton of an ordered pair. (Contributed by AV, 24-Sep-2020.) (Revised by AV, 15-Jul-2022.) (Avoid depending on this detail.) |
| Ref | Expression |
|---|---|
| snopeqopsnid.a | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| snopeqopsnid | ⊢ {〈𝐴, 𝐴〉} = 〈{𝐴}, {𝐴}〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . 2 ⊢ 𝐴 = 𝐴 | |
| 2 | eqid 2736 | . 2 ⊢ {𝐴} = {𝐴} | |
| 3 | snopeqopsnid.a | . . 3 ⊢ 𝐴 ∈ V | |
| 4 | 3, 3 | snopeqop 5486 | . 2 ⊢ ({〈𝐴, 𝐴〉} = 〈{𝐴}, {𝐴}〉 ↔ (𝐴 = 𝐴 ∧ {𝐴} = {𝐴} ∧ {𝐴} = {𝐴})) |
| 5 | 1, 2, 2, 4 | mpbir3an 1342 | 1 ⊢ {〈𝐴, 𝐴〉} = 〈{𝐴}, {𝐴}〉 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3464 {csn 4606 〈cop 4612 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 |
| This theorem is referenced by: funsneqopb 7147 vtxvalsnop 29025 iedgvalsnop 29026 |
| Copyright terms: Public domain | W3C validator |