MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iedgvalsnop Structured version   Visualization version   GIF version

Theorem iedgvalsnop 29020
Description: Degenerated case 2 for edges: The set of indexed edges of a singleton containing an ordered pair with equal components is the singleton containing the component. (Contributed by AV, 24-Sep-2020.) (Proof shortened by AV, 15-Jul-2022.) (Avoid depending on this detail.)
Hypotheses
Ref Expression
vtxvalsnop.b 𝐵 ∈ V
vtxvalsnop.g 𝐺 = {⟨𝐵, 𝐵⟩}
Assertion
Ref Expression
iedgvalsnop (iEdg‘𝐺) = {𝐵}

Proof of Theorem iedgvalsnop
StepHypRef Expression
1 vtxvalsnop.g . . 3 𝐺 = {⟨𝐵, 𝐵⟩}
21fveq2i 6825 . 2 (iEdg‘𝐺) = (iEdg‘{⟨𝐵, 𝐵⟩})
3 vtxvalsnop.b . . . 4 𝐵 ∈ V
43snopeqopsnid 5447 . . 3 {⟨𝐵, 𝐵⟩} = ⟨{𝐵}, {𝐵}⟩
54fveq2i 6825 . 2 (iEdg‘{⟨𝐵, 𝐵⟩}) = (iEdg‘⟨{𝐵}, {𝐵}⟩)
6 snex 5372 . . 3 {𝐵} ∈ V
76, 6opiedgfvi 28988 . 2 (iEdg‘⟨{𝐵}, {𝐵}⟩) = {𝐵}
82, 5, 73eqtri 2758 1 (iEdg‘𝐺) = {𝐵}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  Vcvv 3436  {csn 4573  cop 4579  cfv 6481  iEdgciedg 28975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-iota 6437  df-fun 6483  df-fv 6489  df-2nd 7922  df-iedg 28977
This theorem is referenced by:  iedgval3sn  29022
  Copyright terms: Public domain W3C validator