MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iedgvalsnop Structured version   Visualization version   GIF version

Theorem iedgvalsnop 29021
Description: Degenerated case 2 for edges: The set of indexed edges of a singleton containing an ordered pair with equal components is the singleton containing the component. (Contributed by AV, 24-Sep-2020.) (Proof shortened by AV, 15-Jul-2022.) (Avoid depending on this detail.)
Hypotheses
Ref Expression
vtxvalsnop.b 𝐵 ∈ V
vtxvalsnop.g 𝐺 = {⟨𝐵, 𝐵⟩}
Assertion
Ref Expression
iedgvalsnop (iEdg‘𝐺) = {𝐵}

Proof of Theorem iedgvalsnop
StepHypRef Expression
1 vtxvalsnop.g . . 3 𝐺 = {⟨𝐵, 𝐵⟩}
21fveq2i 6879 . 2 (iEdg‘𝐺) = (iEdg‘{⟨𝐵, 𝐵⟩})
3 vtxvalsnop.b . . . 4 𝐵 ∈ V
43snopeqopsnid 5484 . . 3 {⟨𝐵, 𝐵⟩} = ⟨{𝐵}, {𝐵}⟩
54fveq2i 6879 . 2 (iEdg‘{⟨𝐵, 𝐵⟩}) = (iEdg‘⟨{𝐵}, {𝐵}⟩)
6 snex 5406 . . 3 {𝐵} ∈ V
76, 6opiedgfvi 28989 . 2 (iEdg‘⟨{𝐵}, {𝐵}⟩) = {𝐵}
82, 5, 73eqtri 2762 1 (iEdg‘𝐺) = {𝐵}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2108  Vcvv 3459  {csn 4601  cop 4607  cfv 6531  iEdgciedg 28976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-iota 6484  df-fun 6533  df-fv 6539  df-2nd 7989  df-iedg 28978
This theorem is referenced by:  iedgval3sn  29023
  Copyright terms: Public domain W3C validator