| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iedgvalsnop | Structured version Visualization version GIF version | ||
| Description: Degenerated case 2 for edges: The set of indexed edges of a singleton containing an ordered pair with equal components is the singleton containing the component. (Contributed by AV, 24-Sep-2020.) (Proof shortened by AV, 15-Jul-2022.) (Avoid depending on this detail.) |
| Ref | Expression |
|---|---|
| vtxvalsnop.b | ⊢ 𝐵 ∈ V |
| vtxvalsnop.g | ⊢ 𝐺 = {〈𝐵, 𝐵〉} |
| Ref | Expression |
|---|---|
| iedgvalsnop | ⊢ (iEdg‘𝐺) = {𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxvalsnop.g | . . 3 ⊢ 𝐺 = {〈𝐵, 𝐵〉} | |
| 2 | 1 | fveq2i 6825 | . 2 ⊢ (iEdg‘𝐺) = (iEdg‘{〈𝐵, 𝐵〉}) |
| 3 | vtxvalsnop.b | . . . 4 ⊢ 𝐵 ∈ V | |
| 4 | 3 | snopeqopsnid 5452 | . . 3 ⊢ {〈𝐵, 𝐵〉} = 〈{𝐵}, {𝐵}〉 |
| 5 | 4 | fveq2i 6825 | . 2 ⊢ (iEdg‘{〈𝐵, 𝐵〉}) = (iEdg‘〈{𝐵}, {𝐵}〉) |
| 6 | snex 5375 | . . 3 ⊢ {𝐵} ∈ V | |
| 7 | 6, 6 | opiedgfvi 28955 | . 2 ⊢ (iEdg‘〈{𝐵}, {𝐵}〉) = {𝐵} |
| 8 | 2, 5, 7 | 3eqtri 2756 | 1 ⊢ (iEdg‘𝐺) = {𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3436 {csn 4577 〈cop 4583 ‘cfv 6482 iEdgciedg 28942 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6438 df-fun 6484 df-fv 6490 df-2nd 7925 df-iedg 28944 |
| This theorem is referenced by: iedgval3sn 28989 |
| Copyright terms: Public domain | W3C validator |