| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iedgvalsnop | Structured version Visualization version GIF version | ||
| Description: Degenerated case 2 for edges: The set of indexed edges of a singleton containing an ordered pair with equal components is the singleton containing the component. (Contributed by AV, 24-Sep-2020.) (Proof shortened by AV, 15-Jul-2022.) (Avoid depending on this detail.) |
| Ref | Expression |
|---|---|
| vtxvalsnop.b | ⊢ 𝐵 ∈ V |
| vtxvalsnop.g | ⊢ 𝐺 = {〈𝐵, 𝐵〉} |
| Ref | Expression |
|---|---|
| iedgvalsnop | ⊢ (iEdg‘𝐺) = {𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxvalsnop.g | . . 3 ⊢ 𝐺 = {〈𝐵, 𝐵〉} | |
| 2 | 1 | fveq2i 6879 | . 2 ⊢ (iEdg‘𝐺) = (iEdg‘{〈𝐵, 𝐵〉}) |
| 3 | vtxvalsnop.b | . . . 4 ⊢ 𝐵 ∈ V | |
| 4 | 3 | snopeqopsnid 5484 | . . 3 ⊢ {〈𝐵, 𝐵〉} = 〈{𝐵}, {𝐵}〉 |
| 5 | 4 | fveq2i 6879 | . 2 ⊢ (iEdg‘{〈𝐵, 𝐵〉}) = (iEdg‘〈{𝐵}, {𝐵}〉) |
| 6 | snex 5406 | . . 3 ⊢ {𝐵} ∈ V | |
| 7 | 6, 6 | opiedgfvi 28989 | . 2 ⊢ (iEdg‘〈{𝐵}, {𝐵}〉) = {𝐵} |
| 8 | 2, 5, 7 | 3eqtri 2762 | 1 ⊢ (iEdg‘𝐺) = {𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 Vcvv 3459 {csn 4601 〈cop 4607 ‘cfv 6531 iEdgciedg 28976 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6484 df-fun 6533 df-fv 6539 df-2nd 7989 df-iedg 28978 |
| This theorem is referenced by: iedgval3sn 29023 |
| Copyright terms: Public domain | W3C validator |