| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtxvalsnop | Structured version Visualization version GIF version | ||
| Description: Degenerated case 2 for vertices: The set of vertices of a singleton containing an ordered pair with equal components is the singleton containing the component. (Contributed by AV, 24-Sep-2020.) (Proof shortened by AV, 15-Jul-2022.) (Avoid depending on this detail.) |
| Ref | Expression |
|---|---|
| vtxvalsnop.b | ⊢ 𝐵 ∈ V |
| vtxvalsnop.g | ⊢ 𝐺 = {〈𝐵, 𝐵〉} |
| Ref | Expression |
|---|---|
| vtxvalsnop | ⊢ (Vtx‘𝐺) = {𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxvalsnop.g | . . 3 ⊢ 𝐺 = {〈𝐵, 𝐵〉} | |
| 2 | 1 | fveq2i 6834 | . 2 ⊢ (Vtx‘𝐺) = (Vtx‘{〈𝐵, 𝐵〉}) |
| 3 | vtxvalsnop.b | . . . 4 ⊢ 𝐵 ∈ V | |
| 4 | 3 | snopeqopsnid 5454 | . . 3 ⊢ {〈𝐵, 𝐵〉} = 〈{𝐵}, {𝐵}〉 |
| 5 | 4 | fveq2i 6834 | . 2 ⊢ (Vtx‘{〈𝐵, 𝐵〉}) = (Vtx‘〈{𝐵}, {𝐵}〉) |
| 6 | snex 5378 | . . 3 ⊢ {𝐵} ∈ V | |
| 7 | 6, 6 | opvtxfvi 29008 | . 2 ⊢ (Vtx‘〈{𝐵}, {𝐵}〉) = {𝐵} |
| 8 | 2, 5, 7 | 3eqtri 2760 | 1 ⊢ (Vtx‘𝐺) = {𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 Vcvv 3437 {csn 4577 〈cop 4583 ‘cfv 6489 Vtxcvtx 28995 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-iota 6445 df-fun 6491 df-fv 6497 df-1st 7930 df-vtx 28997 |
| This theorem is referenced by: vtxval3sn 29042 |
| Copyright terms: Public domain | W3C validator |