MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxvalsnop Structured version   Visualization version   GIF version

Theorem vtxvalsnop 28770
Description: Degenerated case 2 for vertices: The set of vertices of a singleton containing an ordered pair with equal components is the singleton containing the component. (Contributed by AV, 24-Sep-2020.) (Proof shortened by AV, 15-Jul-2022.) (Avoid depending on this detail.)
Hypotheses
Ref Expression
vtxvalsnop.b 𝐵 ∈ V
vtxvalsnop.g 𝐺 = {⟨𝐵, 𝐵⟩}
Assertion
Ref Expression
vtxvalsnop (Vtx‘𝐺) = {𝐵}

Proof of Theorem vtxvalsnop
StepHypRef Expression
1 vtxvalsnop.g . . 3 𝐺 = {⟨𝐵, 𝐵⟩}
21fveq2i 6884 . 2 (Vtx‘𝐺) = (Vtx‘{⟨𝐵, 𝐵⟩})
3 vtxvalsnop.b . . . 4 𝐵 ∈ V
43snopeqopsnid 5499 . . 3 {⟨𝐵, 𝐵⟩} = ⟨{𝐵}, {𝐵}⟩
54fveq2i 6884 . 2 (Vtx‘{⟨𝐵, 𝐵⟩}) = (Vtx‘⟨{𝐵}, {𝐵}⟩)
6 snex 5421 . . 3 {𝐵} ∈ V
76, 6opvtxfvi 28738 . 2 (Vtx‘⟨{𝐵}, {𝐵}⟩) = {𝐵}
82, 5, 73eqtri 2756 1 (Vtx‘𝐺) = {𝐵}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wcel 2098  Vcvv 3466  {csn 4620  cop 4626  cfv 6533  Vtxcvtx 28725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-iota 6485  df-fun 6535  df-fv 6541  df-1st 7968  df-vtx 28727
This theorem is referenced by:  vtxval3sn  28772
  Copyright terms: Public domain W3C validator