Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpbir3an | Structured version Visualization version GIF version |
Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 16-Sep-2011.) |
Ref | Expression |
---|---|
mpbir3an.1 | ⊢ 𝜓 |
mpbir3an.2 | ⊢ 𝜒 |
mpbir3an.3 | ⊢ 𝜃 |
mpbir3an.4 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Ref | Expression |
---|---|
mpbir3an | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbir3an.1 | . . 3 ⊢ 𝜓 | |
2 | mpbir3an.2 | . . 3 ⊢ 𝜒 | |
3 | mpbir3an.3 | . . 3 ⊢ 𝜃 | |
4 | 1, 2, 3 | 3pm3.2i 1337 | . 2 ⊢ (𝜓 ∧ 𝜒 ∧ 𝜃) |
5 | mpbir3an.4 | . 2 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
6 | 4, 5 | mpbir 230 | 1 ⊢ 𝜑 |
Copyright terms: Public domain | W3C validator |