|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > tsksn | Structured version Visualization version GIF version | ||
| Description: A singleton of an element of a Tarski class belongs to the class. JFM CLASSES2 th. 2 (partly). (Contributed by FL, 22-Feb-2011.) (Revised by Mario Carneiro, 18-Jun-2013.) | 
| Ref | Expression | 
|---|---|
| tsksn | ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇) → {𝐴} ∈ 𝑇) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | tskpw 10793 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇) → 𝒫 𝐴 ∈ 𝑇) | |
| 2 | snsspw 4844 | . . 3 ⊢ {𝐴} ⊆ 𝒫 𝐴 | |
| 3 | tskss 10798 | . . 3 ⊢ ((𝑇 ∈ Tarski ∧ 𝒫 𝐴 ∈ 𝑇 ∧ {𝐴} ⊆ 𝒫 𝐴) → {𝐴} ∈ 𝑇) | |
| 4 | 2, 3 | mp3an3 1452 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 𝒫 𝐴 ∈ 𝑇) → {𝐴} ∈ 𝑇) | 
| 5 | 1, 4 | syldan 591 | 1 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇) → {𝐴} ∈ 𝑇) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ⊆ wss 3951 𝒫 cpw 4600 {csn 4626 Tarskictsk 10788 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-pow 5365 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-tsk 10789 | 
| This theorem is referenced by: tsk1 10804 tskop 10811 | 
| Copyright terms: Public domain | W3C validator |