MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsksn Structured version   Visualization version   GIF version

Theorem tsksn 10516
Description: A singleton of an element of a Tarski class belongs to the class. JFM CLASSES2 th. 2 (partly). (Contributed by FL, 22-Feb-2011.) (Revised by Mario Carneiro, 18-Jun-2013.)
Assertion
Ref Expression
tsksn ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → {𝐴} ∈ 𝑇)

Proof of Theorem tsksn
StepHypRef Expression
1 tskpw 10509 . 2 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → 𝒫 𝐴𝑇)
2 snsspw 4775 . . 3 {𝐴} ⊆ 𝒫 𝐴
3 tskss 10514 . . 3 ((𝑇 ∈ Tarski ∧ 𝒫 𝐴𝑇 ∧ {𝐴} ⊆ 𝒫 𝐴) → {𝐴} ∈ 𝑇)
42, 3mp3an3 1449 . 2 ((𝑇 ∈ Tarski ∧ 𝒫 𝐴𝑇) → {𝐴} ∈ 𝑇)
51, 4syldan 591 1 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → {𝐴} ∈ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  wss 3887  𝒫 cpw 4533  {csn 4561  Tarskictsk 10504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-pow 5288
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-tsk 10505
This theorem is referenced by:  tsk1  10520  tskop  10527
  Copyright terms: Public domain W3C validator