MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsksn Structured version   Visualization version   GIF version

Theorem tsksn 10752
Description: A singleton of an element of a Tarski class belongs to the class. JFM CLASSES2 th. 2 (partly). (Contributed by FL, 22-Feb-2011.) (Revised by Mario Carneiro, 18-Jun-2013.)
Assertion
Ref Expression
tsksn ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → {𝐴} ∈ 𝑇)

Proof of Theorem tsksn
StepHypRef Expression
1 tskpw 10745 . 2 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → 𝒫 𝐴𝑇)
2 snsspw 4838 . . 3 {𝐴} ⊆ 𝒫 𝐴
3 tskss 10750 . . 3 ((𝑇 ∈ Tarski ∧ 𝒫 𝐴𝑇 ∧ {𝐴} ⊆ 𝒫 𝐴) → {𝐴} ∈ 𝑇)
42, 3mp3an3 1446 . 2 ((𝑇 ∈ Tarski ∧ 𝒫 𝐴𝑇) → {𝐴} ∈ 𝑇)
51, 4syldan 590 1 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → {𝐴} ∈ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2098  wss 3941  𝒫 cpw 4595  {csn 4621  Tarskictsk 10740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-pow 5354
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-br 5140  df-tsk 10741
This theorem is referenced by:  tsk1  10756  tskop  10763
  Copyright terms: Public domain W3C validator