Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tsksn | Structured version Visualization version GIF version |
Description: A singleton of an element of a Tarski class belongs to the class. JFM CLASSES2 th. 2 (partly). (Contributed by FL, 22-Feb-2011.) (Revised by Mario Carneiro, 18-Jun-2013.) |
Ref | Expression |
---|---|
tsksn | ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇) → {𝐴} ∈ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tskpw 10206 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇) → 𝒫 𝐴 ∈ 𝑇) | |
2 | snsspw 4733 | . . 3 ⊢ {𝐴} ⊆ 𝒫 𝐴 | |
3 | tskss 10211 | . . 3 ⊢ ((𝑇 ∈ Tarski ∧ 𝒫 𝐴 ∈ 𝑇 ∧ {𝐴} ⊆ 𝒫 𝐴) → {𝐴} ∈ 𝑇) | |
4 | 2, 3 | mp3an3 1448 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 𝒫 𝐴 ∈ 𝑇) → {𝐴} ∈ 𝑇) |
5 | 1, 4 | syldan 595 | 1 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇) → {𝐴} ∈ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 ∈ wcel 2112 ⊆ wss 3859 𝒫 cpw 4495 {csn 4523 Tarskictsk 10201 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-pow 5235 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2071 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-un 3864 df-in 3866 df-ss 3876 df-pw 4497 df-sn 4524 df-pr 4526 df-op 4530 df-br 5034 df-tsk 10202 |
This theorem is referenced by: tsk1 10217 tskop 10224 |
Copyright terms: Public domain | W3C validator |