MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snwf Structured version   Visualization version   GIF version

Theorem snwf 9786
Description: A singleton is well-founded if its element is. (Contributed by Mario Carneiro, 10-Jun-2013.) (Revised by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
snwf (𝐴 (𝑅1 “ On) → {𝐴} ∈ (𝑅1 “ On))

Proof of Theorem snwf
StepHypRef Expression
1 pwwf 9784 . 2 (𝐴 (𝑅1 “ On) ↔ 𝒫 𝐴 (𝑅1 “ On))
2 snsspw 4838 . . 3 {𝐴} ⊆ 𝒫 𝐴
3 sswf 9785 . . 3 ((𝒫 𝐴 (𝑅1 “ On) ∧ {𝐴} ⊆ 𝒫 𝐴) → {𝐴} ∈ (𝑅1 “ On))
42, 3mpan2 689 . 2 (𝒫 𝐴 (𝑅1 “ On) → {𝐴} ∈ (𝑅1 “ On))
51, 4sylbi 216 1 (𝐴 (𝑅1 “ On) → {𝐴} ∈ (𝑅1 “ On))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  wss 3944  𝒫 cpw 4596  {csn 4622   cuni 4901  cima 5672  Oncon0 6353  𝑅1cr1 9739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-ov 7396  df-om 7839  df-2nd 7958  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-r1 9741  df-rank 9742
This theorem is referenced by:  prwf  9788  opwf  9789  ranksnb  9804  rankprb  9828  rankopb  9829  rankcf  10754  rankaltopb  34781
  Copyright terms: Public domain W3C validator