MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snwf Structured version   Visualization version   GIF version

Theorem snwf 9498
Description: A singleton is well-founded if its element is. (Contributed by Mario Carneiro, 10-Jun-2013.) (Revised by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
snwf (𝐴 (𝑅1 “ On) → {𝐴} ∈ (𝑅1 “ On))

Proof of Theorem snwf
StepHypRef Expression
1 pwwf 9496 . 2 (𝐴 (𝑅1 “ On) ↔ 𝒫 𝐴 (𝑅1 “ On))
2 snsspw 4772 . . 3 {𝐴} ⊆ 𝒫 𝐴
3 sswf 9497 . . 3 ((𝒫 𝐴 (𝑅1 “ On) ∧ {𝐴} ⊆ 𝒫 𝐴) → {𝐴} ∈ (𝑅1 “ On))
42, 3mpan2 687 . 2 (𝒫 𝐴 (𝑅1 “ On) → {𝐴} ∈ (𝑅1 “ On))
51, 4sylbi 216 1 (𝐴 (𝑅1 “ On) → {𝐴} ∈ (𝑅1 “ On))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wss 3883  𝒫 cpw 4530  {csn 4558   cuni 4836  cima 5583  Oncon0 6251  𝑅1cr1 9451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-r1 9453  df-rank 9454
This theorem is referenced by:  prwf  9500  opwf  9501  ranksnb  9516  rankprb  9540  rankopb  9541  rankcf  10464  rankaltopb  34208
  Copyright terms: Public domain W3C validator