Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscard4 Structured version   Visualization version   GIF version

Theorem iscard4 43495
Description: Two ways to express the property of being a cardinal number. (Contributed by RP, 8-Nov-2023.)
Assertion
Ref Expression
iscard4 ((card‘𝐴) = 𝐴𝐴 ∈ ran card)

Proof of Theorem iscard4
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqcom 2736 . 2 ((card‘𝐴) = 𝐴𝐴 = (card‘𝐴))
2 mptrel 5779 . . . . 5 Rel (𝑥 ∈ V ↦ {𝑦 ∈ On ∣ 𝑦𝑥})
3 df-card 9868 . . . . . 6 card = (𝑥 ∈ V ↦ {𝑦 ∈ On ∣ 𝑦𝑥})
43releqi 5732 . . . . 5 (Rel card ↔ Rel (𝑥 ∈ V ↦ {𝑦 ∈ On ∣ 𝑦𝑥}))
52, 4mpbir 231 . . . 4 Rel card
6 relelrnb 5900 . . . 4 (Rel card → (𝐴 ∈ ran card ↔ ∃𝑥 𝑥card𝐴))
75, 6ax-mp 5 . . 3 (𝐴 ∈ ran card ↔ ∃𝑥 𝑥card𝐴)
83funmpt2 6539 . . . . . . 7 Fun card
9 funbrfv 6891 . . . . . . 7 (Fun card → (𝑥card𝐴 → (card‘𝑥) = 𝐴))
108, 9ax-mp 5 . . . . . 6 (𝑥card𝐴 → (card‘𝑥) = 𝐴)
1110eqcomd 2735 . . . . 5 (𝑥card𝐴𝐴 = (card‘𝑥))
1211eximi 1835 . . . 4 (∃𝑥 𝑥card𝐴 → ∃𝑥 𝐴 = (card‘𝑥))
13 cardidm 9888 . . . . . . 7 (card‘(card‘𝑥)) = (card‘𝑥)
14 fveq2 6840 . . . . . . 7 (𝐴 = (card‘𝑥) → (card‘𝐴) = (card‘(card‘𝑥)))
15 id 22 . . . . . . 7 (𝐴 = (card‘𝑥) → 𝐴 = (card‘𝑥))
1613, 14, 153eqtr4a 2790 . . . . . 6 (𝐴 = (card‘𝑥) → (card‘𝐴) = 𝐴)
1716exlimiv 1930 . . . . 5 (∃𝑥 𝐴 = (card‘𝑥) → (card‘𝐴) = 𝐴)
181biimpi 216 . . . . . . . . . . 11 ((card‘𝐴) = 𝐴𝐴 = (card‘𝐴))
19 cardon 9873 . . . . . . . . . . 11 (card‘𝐴) ∈ On
2018, 19eqeltrdi 2836 . . . . . . . . . 10 ((card‘𝐴) = 𝐴𝐴 ∈ On)
21 onenon 9878 . . . . . . . . . 10 (𝐴 ∈ On → 𝐴 ∈ dom card)
2220, 21syl 17 . . . . . . . . 9 ((card‘𝐴) = 𝐴𝐴 ∈ dom card)
23 funfvbrb 7005 . . . . . . . . . 10 (Fun card → (𝐴 ∈ dom card ↔ 𝐴card(card‘𝐴)))
2423biimpd 229 . . . . . . . . 9 (Fun card → (𝐴 ∈ dom card → 𝐴card(card‘𝐴)))
258, 22, 24mpsyl 68 . . . . . . . 8 ((card‘𝐴) = 𝐴𝐴card(card‘𝐴))
26 id 22 . . . . . . . 8 ((card‘𝐴) = 𝐴 → (card‘𝐴) = 𝐴)
2725, 26breqtrd 5128 . . . . . . 7 ((card‘𝐴) = 𝐴𝐴card𝐴)
28 id 22 . . . . . . . . . 10 (𝐴 = (card‘𝐴) → 𝐴 = (card‘𝐴))
2928, 19eqeltrdi 2836 . . . . . . . . 9 (𝐴 = (card‘𝐴) → 𝐴 ∈ On)
3029eqcoms 2737 . . . . . . . 8 ((card‘𝐴) = 𝐴𝐴 ∈ On)
31 sbcbr1g 5159 . . . . . . . . 9 (𝐴 ∈ On → ([𝐴 / 𝑥]𝑥card𝐴𝐴 / 𝑥𝑥card𝐴))
32 csbvarg 4393 . . . . . . . . . 10 (𝐴 ∈ On → 𝐴 / 𝑥𝑥 = 𝐴)
3332breq1d 5112 . . . . . . . . 9 (𝐴 ∈ On → (𝐴 / 𝑥𝑥card𝐴𝐴card𝐴))
3431, 33bitrd 279 . . . . . . . 8 (𝐴 ∈ On → ([𝐴 / 𝑥]𝑥card𝐴𝐴card𝐴))
3530, 34syl 17 . . . . . . 7 ((card‘𝐴) = 𝐴 → ([𝐴 / 𝑥]𝑥card𝐴𝐴card𝐴))
3627, 35mpbird 257 . . . . . 6 ((card‘𝐴) = 𝐴[𝐴 / 𝑥]𝑥card𝐴)
3736spesbcd 3843 . . . . 5 ((card‘𝐴) = 𝐴 → ∃𝑥 𝑥card𝐴)
3817, 37syl 17 . . . 4 (∃𝑥 𝐴 = (card‘𝑥) → ∃𝑥 𝑥card𝐴)
3912, 38impbii 209 . . 3 (∃𝑥 𝑥card𝐴 ↔ ∃𝑥 𝐴 = (card‘𝑥))
40 oncard 9889 . . 3 (∃𝑥 𝐴 = (card‘𝑥) ↔ 𝐴 = (card‘𝐴))
417, 39, 403bitrri 298 . 2 (𝐴 = (card‘𝐴) ↔ 𝐴 ∈ ran card)
421, 41bitri 275 1 ((card‘𝐴) = 𝐴𝐴 ∈ ran card)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wex 1779  wcel 2109  {crab 3402  Vcvv 3444  [wsbc 3750  csb 3859   cint 4906   class class class wbr 5102  cmpt 5183  dom cdm 5631  ran crn 5632  Rel wrel 5636  Oncon0 6320  Fun wfun 6493  cfv 6499  cen 8892  cardccrd 9864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-er 8648  df-en 8896  df-card 9868
This theorem is referenced by:  minregex  43496  minregex2  43497  elrncard  43499  alephiso2  43520
  Copyright terms: Public domain W3C validator