| Step | Hyp | Ref
| Expression |
| 1 | | eqcom 2743 |
. 2
⊢
((card‘𝐴) =
𝐴 ↔ 𝐴 = (card‘𝐴)) |
| 2 | | mptrel 5809 |
. . . . 5
⊢ Rel
(𝑥 ∈ V ↦ ∩ {𝑦
∈ On ∣ 𝑦 ≈
𝑥}) |
| 3 | | df-card 9958 |
. . . . . 6
⊢ card =
(𝑥 ∈ V ↦ ∩ {𝑦
∈ On ∣ 𝑦 ≈
𝑥}) |
| 4 | 3 | releqi 5761 |
. . . . 5
⊢ (Rel card
↔ Rel (𝑥 ∈ V
↦ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑥})) |
| 5 | 2, 4 | mpbir 231 |
. . . 4
⊢ Rel
card |
| 6 | | relelrnb 5932 |
. . . 4
⊢ (Rel card
→ (𝐴 ∈ ran card
↔ ∃𝑥 𝑥card𝐴)) |
| 7 | 5, 6 | ax-mp 5 |
. . 3
⊢ (𝐴 ∈ ran card ↔
∃𝑥 𝑥card𝐴) |
| 8 | 3 | funmpt2 6580 |
. . . . . . 7
⊢ Fun
card |
| 9 | | funbrfv 6932 |
. . . . . . 7
⊢ (Fun card
→ (𝑥card𝐴 → (card‘𝑥) = 𝐴)) |
| 10 | 8, 9 | ax-mp 5 |
. . . . . 6
⊢ (𝑥card𝐴 → (card‘𝑥) = 𝐴) |
| 11 | 10 | eqcomd 2742 |
. . . . 5
⊢ (𝑥card𝐴 → 𝐴 = (card‘𝑥)) |
| 12 | 11 | eximi 1835 |
. . . 4
⊢
(∃𝑥 𝑥card𝐴 → ∃𝑥 𝐴 = (card‘𝑥)) |
| 13 | | cardidm 9978 |
. . . . . . 7
⊢
(card‘(card‘𝑥)) = (card‘𝑥) |
| 14 | | fveq2 6881 |
. . . . . . 7
⊢ (𝐴 = (card‘𝑥) → (card‘𝐴) =
(card‘(card‘𝑥))) |
| 15 | | id 22 |
. . . . . . 7
⊢ (𝐴 = (card‘𝑥) → 𝐴 = (card‘𝑥)) |
| 16 | 13, 14, 15 | 3eqtr4a 2797 |
. . . . . 6
⊢ (𝐴 = (card‘𝑥) → (card‘𝐴) = 𝐴) |
| 17 | 16 | exlimiv 1930 |
. . . . 5
⊢
(∃𝑥 𝐴 = (card‘𝑥) → (card‘𝐴) = 𝐴) |
| 18 | 1 | biimpi 216 |
. . . . . . . . . . 11
⊢
((card‘𝐴) =
𝐴 → 𝐴 = (card‘𝐴)) |
| 19 | | cardon 9963 |
. . . . . . . . . . 11
⊢
(card‘𝐴)
∈ On |
| 20 | 18, 19 | eqeltrdi 2843 |
. . . . . . . . . 10
⊢
((card‘𝐴) =
𝐴 → 𝐴 ∈ On) |
| 21 | | onenon 9968 |
. . . . . . . . . 10
⊢ (𝐴 ∈ On → 𝐴 ∈ dom
card) |
| 22 | 20, 21 | syl 17 |
. . . . . . . . 9
⊢
((card‘𝐴) =
𝐴 → 𝐴 ∈ dom card) |
| 23 | | funfvbrb 7046 |
. . . . . . . . . 10
⊢ (Fun card
→ (𝐴 ∈ dom card
↔ 𝐴card(card‘𝐴))) |
| 24 | 23 | biimpd 229 |
. . . . . . . . 9
⊢ (Fun card
→ (𝐴 ∈ dom card
→ 𝐴card(card‘𝐴))) |
| 25 | 8, 22, 24 | mpsyl 68 |
. . . . . . . 8
⊢
((card‘𝐴) =
𝐴 → 𝐴card(card‘𝐴)) |
| 26 | | id 22 |
. . . . . . . 8
⊢
((card‘𝐴) =
𝐴 → (card‘𝐴) = 𝐴) |
| 27 | 25, 26 | breqtrd 5150 |
. . . . . . 7
⊢
((card‘𝐴) =
𝐴 → 𝐴card𝐴) |
| 28 | | id 22 |
. . . . . . . . . 10
⊢ (𝐴 = (card‘𝐴) → 𝐴 = (card‘𝐴)) |
| 29 | 28, 19 | eqeltrdi 2843 |
. . . . . . . . 9
⊢ (𝐴 = (card‘𝐴) → 𝐴 ∈ On) |
| 30 | 29 | eqcoms 2744 |
. . . . . . . 8
⊢
((card‘𝐴) =
𝐴 → 𝐴 ∈ On) |
| 31 | | sbcbr1g 5181 |
. . . . . . . . 9
⊢ (𝐴 ∈ On → ([𝐴 / 𝑥]𝑥card𝐴 ↔ ⦋𝐴 / 𝑥⦌𝑥card𝐴)) |
| 32 | | csbvarg 4414 |
. . . . . . . . . 10
⊢ (𝐴 ∈ On →
⦋𝐴 / 𝑥⦌𝑥 = 𝐴) |
| 33 | 32 | breq1d 5134 |
. . . . . . . . 9
⊢ (𝐴 ∈ On →
(⦋𝐴 / 𝑥⦌𝑥card𝐴 ↔ 𝐴card𝐴)) |
| 34 | 31, 33 | bitrd 279 |
. . . . . . . 8
⊢ (𝐴 ∈ On → ([𝐴 / 𝑥]𝑥card𝐴 ↔ 𝐴card𝐴)) |
| 35 | 30, 34 | syl 17 |
. . . . . . 7
⊢
((card‘𝐴) =
𝐴 → ([𝐴 / 𝑥]𝑥card𝐴 ↔ 𝐴card𝐴)) |
| 36 | 27, 35 | mpbird 257 |
. . . . . 6
⊢
((card‘𝐴) =
𝐴 → [𝐴 / 𝑥]𝑥card𝐴) |
| 37 | 36 | spesbcd 3863 |
. . . . 5
⊢
((card‘𝐴) =
𝐴 → ∃𝑥 𝑥card𝐴) |
| 38 | 17, 37 | syl 17 |
. . . 4
⊢
(∃𝑥 𝐴 = (card‘𝑥) → ∃𝑥 𝑥card𝐴) |
| 39 | 12, 38 | impbii 209 |
. . 3
⊢
(∃𝑥 𝑥card𝐴 ↔ ∃𝑥 𝐴 = (card‘𝑥)) |
| 40 | | oncard 9979 |
. . 3
⊢
(∃𝑥 𝐴 = (card‘𝑥) ↔ 𝐴 = (card‘𝐴)) |
| 41 | 7, 39, 40 | 3bitrri 298 |
. 2
⊢ (𝐴 = (card‘𝐴) ↔ 𝐴 ∈ ran card) |
| 42 | 1, 41 | bitri 275 |
1
⊢
((card‘𝐴) =
𝐴 ↔ 𝐴 ∈ ran card) |