Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscard4 Structured version   Visualization version   GIF version

Theorem iscard4 43636
Description: Two ways to express the property of being a cardinal number. (Contributed by RP, 8-Nov-2023.)
Assertion
Ref Expression
iscard4 ((card‘𝐴) = 𝐴𝐴 ∈ ran card)

Proof of Theorem iscard4
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqcom 2738 . 2 ((card‘𝐴) = 𝐴𝐴 = (card‘𝐴))
2 mptrel 5764 . . . . 5 Rel (𝑥 ∈ V ↦ {𝑦 ∈ On ∣ 𝑦𝑥})
3 df-card 9832 . . . . . 6 card = (𝑥 ∈ V ↦ {𝑦 ∈ On ∣ 𝑦𝑥})
43releqi 5717 . . . . 5 (Rel card ↔ Rel (𝑥 ∈ V ↦ {𝑦 ∈ On ∣ 𝑦𝑥}))
52, 4mpbir 231 . . . 4 Rel card
6 relelrnb 5886 . . . 4 (Rel card → (𝐴 ∈ ran card ↔ ∃𝑥 𝑥card𝐴))
75, 6ax-mp 5 . . 3 (𝐴 ∈ ran card ↔ ∃𝑥 𝑥card𝐴)
83funmpt2 6520 . . . . . . 7 Fun card
9 funbrfv 6870 . . . . . . 7 (Fun card → (𝑥card𝐴 → (card‘𝑥) = 𝐴))
108, 9ax-mp 5 . . . . . 6 (𝑥card𝐴 → (card‘𝑥) = 𝐴)
1110eqcomd 2737 . . . . 5 (𝑥card𝐴𝐴 = (card‘𝑥))
1211eximi 1836 . . . 4 (∃𝑥 𝑥card𝐴 → ∃𝑥 𝐴 = (card‘𝑥))
13 cardidm 9852 . . . . . . 7 (card‘(card‘𝑥)) = (card‘𝑥)
14 fveq2 6822 . . . . . . 7 (𝐴 = (card‘𝑥) → (card‘𝐴) = (card‘(card‘𝑥)))
15 id 22 . . . . . . 7 (𝐴 = (card‘𝑥) → 𝐴 = (card‘𝑥))
1613, 14, 153eqtr4a 2792 . . . . . 6 (𝐴 = (card‘𝑥) → (card‘𝐴) = 𝐴)
1716exlimiv 1931 . . . . 5 (∃𝑥 𝐴 = (card‘𝑥) → (card‘𝐴) = 𝐴)
181biimpi 216 . . . . . . . . . . 11 ((card‘𝐴) = 𝐴𝐴 = (card‘𝐴))
19 cardon 9837 . . . . . . . . . . 11 (card‘𝐴) ∈ On
2018, 19eqeltrdi 2839 . . . . . . . . . 10 ((card‘𝐴) = 𝐴𝐴 ∈ On)
21 onenon 9842 . . . . . . . . . 10 (𝐴 ∈ On → 𝐴 ∈ dom card)
2220, 21syl 17 . . . . . . . . 9 ((card‘𝐴) = 𝐴𝐴 ∈ dom card)
23 funfvbrb 6984 . . . . . . . . . 10 (Fun card → (𝐴 ∈ dom card ↔ 𝐴card(card‘𝐴)))
2423biimpd 229 . . . . . . . . 9 (Fun card → (𝐴 ∈ dom card → 𝐴card(card‘𝐴)))
258, 22, 24mpsyl 68 . . . . . . . 8 ((card‘𝐴) = 𝐴𝐴card(card‘𝐴))
26 id 22 . . . . . . . 8 ((card‘𝐴) = 𝐴 → (card‘𝐴) = 𝐴)
2725, 26breqtrd 5115 . . . . . . 7 ((card‘𝐴) = 𝐴𝐴card𝐴)
28 id 22 . . . . . . . . . 10 (𝐴 = (card‘𝐴) → 𝐴 = (card‘𝐴))
2928, 19eqeltrdi 2839 . . . . . . . . 9 (𝐴 = (card‘𝐴) → 𝐴 ∈ On)
3029eqcoms 2739 . . . . . . . 8 ((card‘𝐴) = 𝐴𝐴 ∈ On)
31 sbcbr1g 5146 . . . . . . . . 9 (𝐴 ∈ On → ([𝐴 / 𝑥]𝑥card𝐴𝐴 / 𝑥𝑥card𝐴))
32 csbvarg 4381 . . . . . . . . . 10 (𝐴 ∈ On → 𝐴 / 𝑥𝑥 = 𝐴)
3332breq1d 5099 . . . . . . . . 9 (𝐴 ∈ On → (𝐴 / 𝑥𝑥card𝐴𝐴card𝐴))
3431, 33bitrd 279 . . . . . . . 8 (𝐴 ∈ On → ([𝐴 / 𝑥]𝑥card𝐴𝐴card𝐴))
3530, 34syl 17 . . . . . . 7 ((card‘𝐴) = 𝐴 → ([𝐴 / 𝑥]𝑥card𝐴𝐴card𝐴))
3627, 35mpbird 257 . . . . . 6 ((card‘𝐴) = 𝐴[𝐴 / 𝑥]𝑥card𝐴)
3736spesbcd 3829 . . . . 5 ((card‘𝐴) = 𝐴 → ∃𝑥 𝑥card𝐴)
3817, 37syl 17 . . . 4 (∃𝑥 𝐴 = (card‘𝑥) → ∃𝑥 𝑥card𝐴)
3912, 38impbii 209 . . 3 (∃𝑥 𝑥card𝐴 ↔ ∃𝑥 𝐴 = (card‘𝑥))
40 oncard 9853 . . 3 (∃𝑥 𝐴 = (card‘𝑥) ↔ 𝐴 = (card‘𝐴))
417, 39, 403bitrri 298 . 2 (𝐴 = (card‘𝐴) ↔ 𝐴 ∈ ran card)
421, 41bitri 275 1 ((card‘𝐴) = 𝐴𝐴 ∈ ran card)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wex 1780  wcel 2111  {crab 3395  Vcvv 3436  [wsbc 3736  csb 3845   cint 4895   class class class wbr 5089  cmpt 5170  dom cdm 5614  ran crn 5615  Rel wrel 5619  Oncon0 6306  Fun wfun 6475  cfv 6481  cen 8866  cardccrd 9828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-er 8622  df-en 8870  df-card 9832
This theorem is referenced by:  minregex  43637  minregex2  43638  elrncard  43640  alephiso2  43661
  Copyright terms: Public domain W3C validator