Step | Hyp | Ref
| Expression |
1 | | eqcom 2745 |
. 2
⊢
((card‘𝐴) =
𝐴 ↔ 𝐴 = (card‘𝐴)) |
2 | | mptrel 5724 |
. . . . 5
⊢ Rel
(𝑥 ∈ V ↦ ∩ {𝑦
∈ On ∣ 𝑦 ≈
𝑥}) |
3 | | df-card 9628 |
. . . . . 6
⊢ card =
(𝑥 ∈ V ↦ ∩ {𝑦
∈ On ∣ 𝑦 ≈
𝑥}) |
4 | 3 | releqi 5678 |
. . . . 5
⊢ (Rel card
↔ Rel (𝑥 ∈ V
↦ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑥})) |
5 | 2, 4 | mpbir 230 |
. . . 4
⊢ Rel
card |
6 | | relelrnb 5845 |
. . . 4
⊢ (Rel card
→ (𝐴 ∈ ran card
↔ ∃𝑥 𝑥card𝐴)) |
7 | 5, 6 | ax-mp 5 |
. . 3
⊢ (𝐴 ∈ ran card ↔
∃𝑥 𝑥card𝐴) |
8 | 3 | funmpt2 6457 |
. . . . . . 7
⊢ Fun
card |
9 | | funbrfv 6802 |
. . . . . . 7
⊢ (Fun card
→ (𝑥card𝐴 → (card‘𝑥) = 𝐴)) |
10 | 8, 9 | ax-mp 5 |
. . . . . 6
⊢ (𝑥card𝐴 → (card‘𝑥) = 𝐴) |
11 | 10 | eqcomd 2744 |
. . . . 5
⊢ (𝑥card𝐴 → 𝐴 = (card‘𝑥)) |
12 | 11 | eximi 1838 |
. . . 4
⊢
(∃𝑥 𝑥card𝐴 → ∃𝑥 𝐴 = (card‘𝑥)) |
13 | | cardidm 9648 |
. . . . . . 7
⊢
(card‘(card‘𝑥)) = (card‘𝑥) |
14 | | fveq2 6756 |
. . . . . . 7
⊢ (𝐴 = (card‘𝑥) → (card‘𝐴) =
(card‘(card‘𝑥))) |
15 | | id 22 |
. . . . . . 7
⊢ (𝐴 = (card‘𝑥) → 𝐴 = (card‘𝑥)) |
16 | 13, 14, 15 | 3eqtr4a 2805 |
. . . . . 6
⊢ (𝐴 = (card‘𝑥) → (card‘𝐴) = 𝐴) |
17 | 16 | exlimiv 1934 |
. . . . 5
⊢
(∃𝑥 𝐴 = (card‘𝑥) → (card‘𝐴) = 𝐴) |
18 | 1 | biimpi 215 |
. . . . . . . . . . 11
⊢
((card‘𝐴) =
𝐴 → 𝐴 = (card‘𝐴)) |
19 | | cardon 9633 |
. . . . . . . . . . 11
⊢
(card‘𝐴)
∈ On |
20 | 18, 19 | eqeltrdi 2847 |
. . . . . . . . . 10
⊢
((card‘𝐴) =
𝐴 → 𝐴 ∈ On) |
21 | | onenon 9638 |
. . . . . . . . . 10
⊢ (𝐴 ∈ On → 𝐴 ∈ dom
card) |
22 | 20, 21 | syl 17 |
. . . . . . . . 9
⊢
((card‘𝐴) =
𝐴 → 𝐴 ∈ dom card) |
23 | | funfvbrb 6910 |
. . . . . . . . . 10
⊢ (Fun card
→ (𝐴 ∈ dom card
↔ 𝐴card(card‘𝐴))) |
24 | 23 | biimpd 228 |
. . . . . . . . 9
⊢ (Fun card
→ (𝐴 ∈ dom card
→ 𝐴card(card‘𝐴))) |
25 | 8, 22, 24 | mpsyl 68 |
. . . . . . . 8
⊢
((card‘𝐴) =
𝐴 → 𝐴card(card‘𝐴)) |
26 | | id 22 |
. . . . . . . 8
⊢
((card‘𝐴) =
𝐴 → (card‘𝐴) = 𝐴) |
27 | 25, 26 | breqtrd 5096 |
. . . . . . 7
⊢
((card‘𝐴) =
𝐴 → 𝐴card𝐴) |
28 | | id 22 |
. . . . . . . . . 10
⊢ (𝐴 = (card‘𝐴) → 𝐴 = (card‘𝐴)) |
29 | 28, 19 | eqeltrdi 2847 |
. . . . . . . . 9
⊢ (𝐴 = (card‘𝐴) → 𝐴 ∈ On) |
30 | 29 | eqcoms 2746 |
. . . . . . . 8
⊢
((card‘𝐴) =
𝐴 → 𝐴 ∈ On) |
31 | | sbcbr1g 5127 |
. . . . . . . . 9
⊢ (𝐴 ∈ On → ([𝐴 / 𝑥]𝑥card𝐴 ↔ ⦋𝐴 / 𝑥⦌𝑥card𝐴)) |
32 | | csbvarg 4362 |
. . . . . . . . . 10
⊢ (𝐴 ∈ On →
⦋𝐴 / 𝑥⦌𝑥 = 𝐴) |
33 | 32 | breq1d 5080 |
. . . . . . . . 9
⊢ (𝐴 ∈ On →
(⦋𝐴 / 𝑥⦌𝑥card𝐴 ↔ 𝐴card𝐴)) |
34 | 31, 33 | bitrd 278 |
. . . . . . . 8
⊢ (𝐴 ∈ On → ([𝐴 / 𝑥]𝑥card𝐴 ↔ 𝐴card𝐴)) |
35 | 30, 34 | syl 17 |
. . . . . . 7
⊢
((card‘𝐴) =
𝐴 → ([𝐴 / 𝑥]𝑥card𝐴 ↔ 𝐴card𝐴)) |
36 | 27, 35 | mpbird 256 |
. . . . . 6
⊢
((card‘𝐴) =
𝐴 → [𝐴 / 𝑥]𝑥card𝐴) |
37 | 36 | spesbcd 3812 |
. . . . 5
⊢
((card‘𝐴) =
𝐴 → ∃𝑥 𝑥card𝐴) |
38 | 17, 37 | syl 17 |
. . . 4
⊢
(∃𝑥 𝐴 = (card‘𝑥) → ∃𝑥 𝑥card𝐴) |
39 | 12, 38 | impbii 208 |
. . 3
⊢
(∃𝑥 𝑥card𝐴 ↔ ∃𝑥 𝐴 = (card‘𝑥)) |
40 | | oncard 9649 |
. . 3
⊢
(∃𝑥 𝐴 = (card‘𝑥) ↔ 𝐴 = (card‘𝐴)) |
41 | 7, 39, 40 | 3bitrri 297 |
. 2
⊢ (𝐴 = (card‘𝐴) ↔ 𝐴 ∈ ran card) |
42 | 1, 41 | bitri 274 |
1
⊢
((card‘𝐴) =
𝐴 ↔ 𝐴 ∈ ran card) |