| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | eqcom 2743 | . 2
⊢
((card‘𝐴) =
𝐴 ↔ 𝐴 = (card‘𝐴)) | 
| 2 |  | mptrel 5834 | . . . . 5
⊢ Rel
(𝑥 ∈ V ↦ ∩ {𝑦
∈ On ∣ 𝑦 ≈
𝑥}) | 
| 3 |  | df-card 9980 | . . . . . 6
⊢ card =
(𝑥 ∈ V ↦ ∩ {𝑦
∈ On ∣ 𝑦 ≈
𝑥}) | 
| 4 | 3 | releqi 5786 | . . . . 5
⊢ (Rel card
↔ Rel (𝑥 ∈ V
↦ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑥})) | 
| 5 | 2, 4 | mpbir 231 | . . . 4
⊢ Rel
card | 
| 6 |  | relelrnb 5957 | . . . 4
⊢ (Rel card
→ (𝐴 ∈ ran card
↔ ∃𝑥 𝑥card𝐴)) | 
| 7 | 5, 6 | ax-mp 5 | . . 3
⊢ (𝐴 ∈ ran card ↔
∃𝑥 𝑥card𝐴) | 
| 8 | 3 | funmpt2 6604 | . . . . . . 7
⊢ Fun
card | 
| 9 |  | funbrfv 6956 | . . . . . . 7
⊢ (Fun card
→ (𝑥card𝐴 → (card‘𝑥) = 𝐴)) | 
| 10 | 8, 9 | ax-mp 5 | . . . . . 6
⊢ (𝑥card𝐴 → (card‘𝑥) = 𝐴) | 
| 11 | 10 | eqcomd 2742 | . . . . 5
⊢ (𝑥card𝐴 → 𝐴 = (card‘𝑥)) | 
| 12 | 11 | eximi 1834 | . . . 4
⊢
(∃𝑥 𝑥card𝐴 → ∃𝑥 𝐴 = (card‘𝑥)) | 
| 13 |  | cardidm 10000 | . . . . . . 7
⊢
(card‘(card‘𝑥)) = (card‘𝑥) | 
| 14 |  | fveq2 6905 | . . . . . . 7
⊢ (𝐴 = (card‘𝑥) → (card‘𝐴) =
(card‘(card‘𝑥))) | 
| 15 |  | id 22 | . . . . . . 7
⊢ (𝐴 = (card‘𝑥) → 𝐴 = (card‘𝑥)) | 
| 16 | 13, 14, 15 | 3eqtr4a 2802 | . . . . . 6
⊢ (𝐴 = (card‘𝑥) → (card‘𝐴) = 𝐴) | 
| 17 | 16 | exlimiv 1929 | . . . . 5
⊢
(∃𝑥 𝐴 = (card‘𝑥) → (card‘𝐴) = 𝐴) | 
| 18 | 1 | biimpi 216 | . . . . . . . . . . 11
⊢
((card‘𝐴) =
𝐴 → 𝐴 = (card‘𝐴)) | 
| 19 |  | cardon 9985 | . . . . . . . . . . 11
⊢
(card‘𝐴)
∈ On | 
| 20 | 18, 19 | eqeltrdi 2848 | . . . . . . . . . 10
⊢
((card‘𝐴) =
𝐴 → 𝐴 ∈ On) | 
| 21 |  | onenon 9990 | . . . . . . . . . 10
⊢ (𝐴 ∈ On → 𝐴 ∈ dom
card) | 
| 22 | 20, 21 | syl 17 | . . . . . . . . 9
⊢
((card‘𝐴) =
𝐴 → 𝐴 ∈ dom card) | 
| 23 |  | funfvbrb 7070 | . . . . . . . . . 10
⊢ (Fun card
→ (𝐴 ∈ dom card
↔ 𝐴card(card‘𝐴))) | 
| 24 | 23 | biimpd 229 | . . . . . . . . 9
⊢ (Fun card
→ (𝐴 ∈ dom card
→ 𝐴card(card‘𝐴))) | 
| 25 | 8, 22, 24 | mpsyl 68 | . . . . . . . 8
⊢
((card‘𝐴) =
𝐴 → 𝐴card(card‘𝐴)) | 
| 26 |  | id 22 | . . . . . . . 8
⊢
((card‘𝐴) =
𝐴 → (card‘𝐴) = 𝐴) | 
| 27 | 25, 26 | breqtrd 5168 | . . . . . . 7
⊢
((card‘𝐴) =
𝐴 → 𝐴card𝐴) | 
| 28 |  | id 22 | . . . . . . . . . 10
⊢ (𝐴 = (card‘𝐴) → 𝐴 = (card‘𝐴)) | 
| 29 | 28, 19 | eqeltrdi 2848 | . . . . . . . . 9
⊢ (𝐴 = (card‘𝐴) → 𝐴 ∈ On) | 
| 30 | 29 | eqcoms 2744 | . . . . . . . 8
⊢
((card‘𝐴) =
𝐴 → 𝐴 ∈ On) | 
| 31 |  | sbcbr1g 5199 | . . . . . . . . 9
⊢ (𝐴 ∈ On → ([𝐴 / 𝑥]𝑥card𝐴 ↔ ⦋𝐴 / 𝑥⦌𝑥card𝐴)) | 
| 32 |  | csbvarg 4433 | . . . . . . . . . 10
⊢ (𝐴 ∈ On →
⦋𝐴 / 𝑥⦌𝑥 = 𝐴) | 
| 33 | 32 | breq1d 5152 | . . . . . . . . 9
⊢ (𝐴 ∈ On →
(⦋𝐴 / 𝑥⦌𝑥card𝐴 ↔ 𝐴card𝐴)) | 
| 34 | 31, 33 | bitrd 279 | . . . . . . . 8
⊢ (𝐴 ∈ On → ([𝐴 / 𝑥]𝑥card𝐴 ↔ 𝐴card𝐴)) | 
| 35 | 30, 34 | syl 17 | . . . . . . 7
⊢
((card‘𝐴) =
𝐴 → ([𝐴 / 𝑥]𝑥card𝐴 ↔ 𝐴card𝐴)) | 
| 36 | 27, 35 | mpbird 257 | . . . . . 6
⊢
((card‘𝐴) =
𝐴 → [𝐴 / 𝑥]𝑥card𝐴) | 
| 37 | 36 | spesbcd 3882 | . . . . 5
⊢
((card‘𝐴) =
𝐴 → ∃𝑥 𝑥card𝐴) | 
| 38 | 17, 37 | syl 17 | . . . 4
⊢
(∃𝑥 𝐴 = (card‘𝑥) → ∃𝑥 𝑥card𝐴) | 
| 39 | 12, 38 | impbii 209 | . . 3
⊢
(∃𝑥 𝑥card𝐴 ↔ ∃𝑥 𝐴 = (card‘𝑥)) | 
| 40 |  | oncard 10001 | . . 3
⊢
(∃𝑥 𝐴 = (card‘𝑥) ↔ 𝐴 = (card‘𝐴)) | 
| 41 | 7, 39, 40 | 3bitrri 298 | . 2
⊢ (𝐴 = (card‘𝐴) ↔ 𝐴 ∈ ran card) | 
| 42 | 1, 41 | bitri 275 | 1
⊢
((card‘𝐴) =
𝐴 ↔ 𝐴 ∈ ran card) |