Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscard4 Structured version   Visualization version   GIF version

Theorem iscard4 43504
Description: Two ways to express the property of being a cardinal number. (Contributed by RP, 8-Nov-2023.)
Assertion
Ref Expression
iscard4 ((card‘𝐴) = 𝐴𝐴 ∈ ran card)

Proof of Theorem iscard4
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqcom 2742 . 2 ((card‘𝐴) = 𝐴𝐴 = (card‘𝐴))
2 mptrel 5804 . . . . 5 Rel (𝑥 ∈ V ↦ {𝑦 ∈ On ∣ 𝑦𝑥})
3 df-card 9951 . . . . . 6 card = (𝑥 ∈ V ↦ {𝑦 ∈ On ∣ 𝑦𝑥})
43releqi 5756 . . . . 5 (Rel card ↔ Rel (𝑥 ∈ V ↦ {𝑦 ∈ On ∣ 𝑦𝑥}))
52, 4mpbir 231 . . . 4 Rel card
6 relelrnb 5927 . . . 4 (Rel card → (𝐴 ∈ ran card ↔ ∃𝑥 𝑥card𝐴))
75, 6ax-mp 5 . . 3 (𝐴 ∈ ran card ↔ ∃𝑥 𝑥card𝐴)
83funmpt2 6574 . . . . . . 7 Fun card
9 funbrfv 6926 . . . . . . 7 (Fun card → (𝑥card𝐴 → (card‘𝑥) = 𝐴))
108, 9ax-mp 5 . . . . . 6 (𝑥card𝐴 → (card‘𝑥) = 𝐴)
1110eqcomd 2741 . . . . 5 (𝑥card𝐴𝐴 = (card‘𝑥))
1211eximi 1835 . . . 4 (∃𝑥 𝑥card𝐴 → ∃𝑥 𝐴 = (card‘𝑥))
13 cardidm 9971 . . . . . . 7 (card‘(card‘𝑥)) = (card‘𝑥)
14 fveq2 6875 . . . . . . 7 (𝐴 = (card‘𝑥) → (card‘𝐴) = (card‘(card‘𝑥)))
15 id 22 . . . . . . 7 (𝐴 = (card‘𝑥) → 𝐴 = (card‘𝑥))
1613, 14, 153eqtr4a 2796 . . . . . 6 (𝐴 = (card‘𝑥) → (card‘𝐴) = 𝐴)
1716exlimiv 1930 . . . . 5 (∃𝑥 𝐴 = (card‘𝑥) → (card‘𝐴) = 𝐴)
181biimpi 216 . . . . . . . . . . 11 ((card‘𝐴) = 𝐴𝐴 = (card‘𝐴))
19 cardon 9956 . . . . . . . . . . 11 (card‘𝐴) ∈ On
2018, 19eqeltrdi 2842 . . . . . . . . . 10 ((card‘𝐴) = 𝐴𝐴 ∈ On)
21 onenon 9961 . . . . . . . . . 10 (𝐴 ∈ On → 𝐴 ∈ dom card)
2220, 21syl 17 . . . . . . . . 9 ((card‘𝐴) = 𝐴𝐴 ∈ dom card)
23 funfvbrb 7040 . . . . . . . . . 10 (Fun card → (𝐴 ∈ dom card ↔ 𝐴card(card‘𝐴)))
2423biimpd 229 . . . . . . . . 9 (Fun card → (𝐴 ∈ dom card → 𝐴card(card‘𝐴)))
258, 22, 24mpsyl 68 . . . . . . . 8 ((card‘𝐴) = 𝐴𝐴card(card‘𝐴))
26 id 22 . . . . . . . 8 ((card‘𝐴) = 𝐴 → (card‘𝐴) = 𝐴)
2725, 26breqtrd 5145 . . . . . . 7 ((card‘𝐴) = 𝐴𝐴card𝐴)
28 id 22 . . . . . . . . . 10 (𝐴 = (card‘𝐴) → 𝐴 = (card‘𝐴))
2928, 19eqeltrdi 2842 . . . . . . . . 9 (𝐴 = (card‘𝐴) → 𝐴 ∈ On)
3029eqcoms 2743 . . . . . . . 8 ((card‘𝐴) = 𝐴𝐴 ∈ On)
31 sbcbr1g 5176 . . . . . . . . 9 (𝐴 ∈ On → ([𝐴 / 𝑥]𝑥card𝐴𝐴 / 𝑥𝑥card𝐴))
32 csbvarg 4409 . . . . . . . . . 10 (𝐴 ∈ On → 𝐴 / 𝑥𝑥 = 𝐴)
3332breq1d 5129 . . . . . . . . 9 (𝐴 ∈ On → (𝐴 / 𝑥𝑥card𝐴𝐴card𝐴))
3431, 33bitrd 279 . . . . . . . 8 (𝐴 ∈ On → ([𝐴 / 𝑥]𝑥card𝐴𝐴card𝐴))
3530, 34syl 17 . . . . . . 7 ((card‘𝐴) = 𝐴 → ([𝐴 / 𝑥]𝑥card𝐴𝐴card𝐴))
3627, 35mpbird 257 . . . . . 6 ((card‘𝐴) = 𝐴[𝐴 / 𝑥]𝑥card𝐴)
3736spesbcd 3858 . . . . 5 ((card‘𝐴) = 𝐴 → ∃𝑥 𝑥card𝐴)
3817, 37syl 17 . . . 4 (∃𝑥 𝐴 = (card‘𝑥) → ∃𝑥 𝑥card𝐴)
3912, 38impbii 209 . . 3 (∃𝑥 𝑥card𝐴 ↔ ∃𝑥 𝐴 = (card‘𝑥))
40 oncard 9972 . . 3 (∃𝑥 𝐴 = (card‘𝑥) ↔ 𝐴 = (card‘𝐴))
417, 39, 403bitrri 298 . 2 (𝐴 = (card‘𝐴) ↔ 𝐴 ∈ ran card)
421, 41bitri 275 1 ((card‘𝐴) = 𝐴𝐴 ∈ ran card)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wex 1779  wcel 2108  {crab 3415  Vcvv 3459  [wsbc 3765  csb 3874   cint 4922   class class class wbr 5119  cmpt 5201  dom cdm 5654  ran crn 5655  Rel wrel 5659  Oncon0 6352  Fun wfun 6524  cfv 6530  cen 8954  cardccrd 9947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-er 8717  df-en 8958  df-card 9951
This theorem is referenced by:  minregex  43505  minregex2  43506  elrncard  43508  alephiso2  43529
  Copyright terms: Public domain W3C validator