Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscard4 Structured version   Visualization version   GIF version

Theorem iscard4 39974
Description: Two ways to express the property of being a cardinal number. (Contributed by RP, 8-Nov-2023.)
Assertion
Ref Expression
iscard4 ((card‘𝐴) = 𝐴𝐴 ∈ ran card)

Proof of Theorem iscard4
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqcom 2827 . 2 ((card‘𝐴) = 𝐴𝐴 = (card‘𝐴))
2 mptrel 5694 . . . . 5 Rel (𝑥 ∈ V ↦ {𝑦 ∈ On ∣ 𝑦𝑥})
3 df-card 9365 . . . . . 6 card = (𝑥 ∈ V ↦ {𝑦 ∈ On ∣ 𝑦𝑥})
43releqi 5649 . . . . 5 (Rel card ↔ Rel (𝑥 ∈ V ↦ {𝑦 ∈ On ∣ 𝑦𝑥}))
52, 4mpbir 233 . . . 4 Rel card
6 relelrnb 5814 . . . 4 (Rel card → (𝐴 ∈ ran card ↔ ∃𝑥 𝑥card𝐴))
75, 6ax-mp 5 . . 3 (𝐴 ∈ ran card ↔ ∃𝑥 𝑥card𝐴)
83funmpt2 6391 . . . . . . 7 Fun card
9 funbrfv 6713 . . . . . . 7 (Fun card → (𝑥card𝐴 → (card‘𝑥) = 𝐴))
108, 9ax-mp 5 . . . . . 6 (𝑥card𝐴 → (card‘𝑥) = 𝐴)
1110eqcomd 2826 . . . . 5 (𝑥card𝐴𝐴 = (card‘𝑥))
1211eximi 1834 . . . 4 (∃𝑥 𝑥card𝐴 → ∃𝑥 𝐴 = (card‘𝑥))
13 cardidm 9385 . . . . . . 7 (card‘(card‘𝑥)) = (card‘𝑥)
14 fveq2 6667 . . . . . . 7 (𝐴 = (card‘𝑥) → (card‘𝐴) = (card‘(card‘𝑥)))
15 id 22 . . . . . . 7 (𝐴 = (card‘𝑥) → 𝐴 = (card‘𝑥))
1613, 14, 153eqtr4a 2881 . . . . . 6 (𝐴 = (card‘𝑥) → (card‘𝐴) = 𝐴)
1716exlimiv 1930 . . . . 5 (∃𝑥 𝐴 = (card‘𝑥) → (card‘𝐴) = 𝐴)
181biimpi 218 . . . . . . . . . . 11 ((card‘𝐴) = 𝐴𝐴 = (card‘𝐴))
19 cardon 9370 . . . . . . . . . . 11 (card‘𝐴) ∈ On
2018, 19eqeltrdi 2920 . . . . . . . . . 10 ((card‘𝐴) = 𝐴𝐴 ∈ On)
21 onenon 9375 . . . . . . . . . 10 (𝐴 ∈ On → 𝐴 ∈ dom card)
2220, 21syl 17 . . . . . . . . 9 ((card‘𝐴) = 𝐴𝐴 ∈ dom card)
23 funfvbrb 6818 . . . . . . . . . 10 (Fun card → (𝐴 ∈ dom card ↔ 𝐴card(card‘𝐴)))
2423biimpd 231 . . . . . . . . 9 (Fun card → (𝐴 ∈ dom card → 𝐴card(card‘𝐴)))
258, 22, 24mpsyl 68 . . . . . . . 8 ((card‘𝐴) = 𝐴𝐴card(card‘𝐴))
26 id 22 . . . . . . . 8 ((card‘𝐴) = 𝐴 → (card‘𝐴) = 𝐴)
2725, 26breqtrd 5089 . . . . . . 7 ((card‘𝐴) = 𝐴𝐴card𝐴)
28 id 22 . . . . . . . . . 10 (𝐴 = (card‘𝐴) → 𝐴 = (card‘𝐴))
2928, 19eqeltrdi 2920 . . . . . . . . 9 (𝐴 = (card‘𝐴) → 𝐴 ∈ On)
3029eqcoms 2828 . . . . . . . 8 ((card‘𝐴) = 𝐴𝐴 ∈ On)
31 sbcbr1g 5120 . . . . . . . . 9 (𝐴 ∈ On → ([𝐴 / 𝑥]𝑥card𝐴𝐴 / 𝑥𝑥card𝐴))
32 csbvarg 4380 . . . . . . . . . 10 (𝐴 ∈ On → 𝐴 / 𝑥𝑥 = 𝐴)
3332breq1d 5073 . . . . . . . . 9 (𝐴 ∈ On → (𝐴 / 𝑥𝑥card𝐴𝐴card𝐴))
3431, 33bitrd 281 . . . . . . . 8 (𝐴 ∈ On → ([𝐴 / 𝑥]𝑥card𝐴𝐴card𝐴))
3530, 34syl 17 . . . . . . 7 ((card‘𝐴) = 𝐴 → ([𝐴 / 𝑥]𝑥card𝐴𝐴card𝐴))
3627, 35mpbird 259 . . . . . 6 ((card‘𝐴) = 𝐴[𝐴 / 𝑥]𝑥card𝐴)
3736spesbcd 3863 . . . . 5 ((card‘𝐴) = 𝐴 → ∃𝑥 𝑥card𝐴)
3817, 37syl 17 . . . 4 (∃𝑥 𝐴 = (card‘𝑥) → ∃𝑥 𝑥card𝐴)
3912, 38impbii 211 . . 3 (∃𝑥 𝑥card𝐴 ↔ ∃𝑥 𝐴 = (card‘𝑥))
40 oncard 9386 . . 3 (∃𝑥 𝐴 = (card‘𝑥) ↔ 𝐴 = (card‘𝐴))
417, 39, 403bitrri 300 . 2 (𝐴 = (card‘𝐴) ↔ 𝐴 ∈ ran card)
421, 41bitri 277 1 ((card‘𝐴) = 𝐴𝐴 ∈ ran card)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1536  wex 1779  wcel 2113  {crab 3141  Vcvv 3493  [wsbc 3770  csb 3880   cint 4873   class class class wbr 5063  cmpt 5143  dom cdm 5552  ran crn 5553  Rel wrel 5557  Oncon0 6188  Fun wfun 6346  cfv 6352  cen 8503  cardccrd 9361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5327  ax-un 7458
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-ral 3142  df-rex 3143  df-rab 3146  df-v 3495  df-sbc 3771  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4465  df-pw 4538  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4836  df-int 4874  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5457  df-eprel 5462  df-po 5471  df-so 5472  df-fr 5511  df-we 5513  df-xp 5558  df-rel 5559  df-cnv 5560  df-co 5561  df-dm 5562  df-rn 5563  df-res 5564  df-ima 5565  df-ord 6191  df-on 6192  df-iota 6311  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-er 8286  df-en 8507  df-card 9365
This theorem is referenced by:  elrncard  39976  alephiso2  39991
  Copyright terms: Public domain W3C validator