Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscard4 Structured version   Visualization version   GIF version

Theorem iscard4 43529
Description: Two ways to express the property of being a cardinal number. (Contributed by RP, 8-Nov-2023.)
Assertion
Ref Expression
iscard4 ((card‘𝐴) = 𝐴𝐴 ∈ ran card)

Proof of Theorem iscard4
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqcom 2737 . 2 ((card‘𝐴) = 𝐴𝐴 = (card‘𝐴))
2 mptrel 5791 . . . . 5 Rel (𝑥 ∈ V ↦ {𝑦 ∈ On ∣ 𝑦𝑥})
3 df-card 9899 . . . . . 6 card = (𝑥 ∈ V ↦ {𝑦 ∈ On ∣ 𝑦𝑥})
43releqi 5743 . . . . 5 (Rel card ↔ Rel (𝑥 ∈ V ↦ {𝑦 ∈ On ∣ 𝑦𝑥}))
52, 4mpbir 231 . . . 4 Rel card
6 relelrnb 5914 . . . 4 (Rel card → (𝐴 ∈ ran card ↔ ∃𝑥 𝑥card𝐴))
75, 6ax-mp 5 . . 3 (𝐴 ∈ ran card ↔ ∃𝑥 𝑥card𝐴)
83funmpt2 6558 . . . . . . 7 Fun card
9 funbrfv 6912 . . . . . . 7 (Fun card → (𝑥card𝐴 → (card‘𝑥) = 𝐴))
108, 9ax-mp 5 . . . . . 6 (𝑥card𝐴 → (card‘𝑥) = 𝐴)
1110eqcomd 2736 . . . . 5 (𝑥card𝐴𝐴 = (card‘𝑥))
1211eximi 1835 . . . 4 (∃𝑥 𝑥card𝐴 → ∃𝑥 𝐴 = (card‘𝑥))
13 cardidm 9919 . . . . . . 7 (card‘(card‘𝑥)) = (card‘𝑥)
14 fveq2 6861 . . . . . . 7 (𝐴 = (card‘𝑥) → (card‘𝐴) = (card‘(card‘𝑥)))
15 id 22 . . . . . . 7 (𝐴 = (card‘𝑥) → 𝐴 = (card‘𝑥))
1613, 14, 153eqtr4a 2791 . . . . . 6 (𝐴 = (card‘𝑥) → (card‘𝐴) = 𝐴)
1716exlimiv 1930 . . . . 5 (∃𝑥 𝐴 = (card‘𝑥) → (card‘𝐴) = 𝐴)
181biimpi 216 . . . . . . . . . . 11 ((card‘𝐴) = 𝐴𝐴 = (card‘𝐴))
19 cardon 9904 . . . . . . . . . . 11 (card‘𝐴) ∈ On
2018, 19eqeltrdi 2837 . . . . . . . . . 10 ((card‘𝐴) = 𝐴𝐴 ∈ On)
21 onenon 9909 . . . . . . . . . 10 (𝐴 ∈ On → 𝐴 ∈ dom card)
2220, 21syl 17 . . . . . . . . 9 ((card‘𝐴) = 𝐴𝐴 ∈ dom card)
23 funfvbrb 7026 . . . . . . . . . 10 (Fun card → (𝐴 ∈ dom card ↔ 𝐴card(card‘𝐴)))
2423biimpd 229 . . . . . . . . 9 (Fun card → (𝐴 ∈ dom card → 𝐴card(card‘𝐴)))
258, 22, 24mpsyl 68 . . . . . . . 8 ((card‘𝐴) = 𝐴𝐴card(card‘𝐴))
26 id 22 . . . . . . . 8 ((card‘𝐴) = 𝐴 → (card‘𝐴) = 𝐴)
2725, 26breqtrd 5136 . . . . . . 7 ((card‘𝐴) = 𝐴𝐴card𝐴)
28 id 22 . . . . . . . . . 10 (𝐴 = (card‘𝐴) → 𝐴 = (card‘𝐴))
2928, 19eqeltrdi 2837 . . . . . . . . 9 (𝐴 = (card‘𝐴) → 𝐴 ∈ On)
3029eqcoms 2738 . . . . . . . 8 ((card‘𝐴) = 𝐴𝐴 ∈ On)
31 sbcbr1g 5167 . . . . . . . . 9 (𝐴 ∈ On → ([𝐴 / 𝑥]𝑥card𝐴𝐴 / 𝑥𝑥card𝐴))
32 csbvarg 4400 . . . . . . . . . 10 (𝐴 ∈ On → 𝐴 / 𝑥𝑥 = 𝐴)
3332breq1d 5120 . . . . . . . . 9 (𝐴 ∈ On → (𝐴 / 𝑥𝑥card𝐴𝐴card𝐴))
3431, 33bitrd 279 . . . . . . . 8 (𝐴 ∈ On → ([𝐴 / 𝑥]𝑥card𝐴𝐴card𝐴))
3530, 34syl 17 . . . . . . 7 ((card‘𝐴) = 𝐴 → ([𝐴 / 𝑥]𝑥card𝐴𝐴card𝐴))
3627, 35mpbird 257 . . . . . 6 ((card‘𝐴) = 𝐴[𝐴 / 𝑥]𝑥card𝐴)
3736spesbcd 3849 . . . . 5 ((card‘𝐴) = 𝐴 → ∃𝑥 𝑥card𝐴)
3817, 37syl 17 . . . 4 (∃𝑥 𝐴 = (card‘𝑥) → ∃𝑥 𝑥card𝐴)
3912, 38impbii 209 . . 3 (∃𝑥 𝑥card𝐴 ↔ ∃𝑥 𝐴 = (card‘𝑥))
40 oncard 9920 . . 3 (∃𝑥 𝐴 = (card‘𝑥) ↔ 𝐴 = (card‘𝐴))
417, 39, 403bitrri 298 . 2 (𝐴 = (card‘𝐴) ↔ 𝐴 ∈ ran card)
421, 41bitri 275 1 ((card‘𝐴) = 𝐴𝐴 ∈ ran card)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wex 1779  wcel 2109  {crab 3408  Vcvv 3450  [wsbc 3756  csb 3865   cint 4913   class class class wbr 5110  cmpt 5191  dom cdm 5641  ran crn 5642  Rel wrel 5646  Oncon0 6335  Fun wfun 6508  cfv 6514  cen 8918  cardccrd 9895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-er 8674  df-en 8922  df-card 9899
This theorem is referenced by:  minregex  43530  minregex2  43531  elrncard  43533  alephiso2  43554
  Copyright terms: Public domain W3C validator