MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ondomon Structured version   Visualization version   GIF version

Theorem ondomon 9700
Description: The collection of ordinal numbers dominated by a set is an ordinal number. (In general, not all collections of ordinal numbers are ordinal.) Theorem 56 of [Suppes] p. 227. This theorem can be proved (with a longer proof) without the Axiom of Choice; see hartogs 8718. (Contributed by NM, 7-Nov-2003.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
ondomon (𝐴𝑉 → {𝑥 ∈ On ∣ 𝑥𝐴} ∈ On)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem ondomon
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onelon 5988 . . . . . . . . . . . 12 ((𝑧 ∈ On ∧ 𝑦𝑧) → 𝑦 ∈ On)
2 vex 3417 . . . . . . . . . . . . 13 𝑧 ∈ V
3 onelss 6005 . . . . . . . . . . . . . 14 (𝑧 ∈ On → (𝑦𝑧𝑦𝑧))
43imp 397 . . . . . . . . . . . . 13 ((𝑧 ∈ On ∧ 𝑦𝑧) → 𝑦𝑧)
5 ssdomg 8268 . . . . . . . . . . . . 13 (𝑧 ∈ V → (𝑦𝑧𝑦𝑧))
62, 4, 5mpsyl 68 . . . . . . . . . . . 12 ((𝑧 ∈ On ∧ 𝑦𝑧) → 𝑦𝑧)
71, 6jca 509 . . . . . . . . . . 11 ((𝑧 ∈ On ∧ 𝑦𝑧) → (𝑦 ∈ On ∧ 𝑦𝑧))
8 domtr 8275 . . . . . . . . . . . . 13 ((𝑦𝑧𝑧𝐴) → 𝑦𝐴)
98anim2i 612 . . . . . . . . . . . 12 ((𝑦 ∈ On ∧ (𝑦𝑧𝑧𝐴)) → (𝑦 ∈ On ∧ 𝑦𝐴))
109anassrs 461 . . . . . . . . . . 11 (((𝑦 ∈ On ∧ 𝑦𝑧) ∧ 𝑧𝐴) → (𝑦 ∈ On ∧ 𝑦𝐴))
117, 10sylan 577 . . . . . . . . . 10 (((𝑧 ∈ On ∧ 𝑦𝑧) ∧ 𝑧𝐴) → (𝑦 ∈ On ∧ 𝑦𝐴))
1211exp31 412 . . . . . . . . 9 (𝑧 ∈ On → (𝑦𝑧 → (𝑧𝐴 → (𝑦 ∈ On ∧ 𝑦𝐴))))
1312com12 32 . . . . . . . 8 (𝑦𝑧 → (𝑧 ∈ On → (𝑧𝐴 → (𝑦 ∈ On ∧ 𝑦𝐴))))
1413impd 400 . . . . . . 7 (𝑦𝑧 → ((𝑧 ∈ On ∧ 𝑧𝐴) → (𝑦 ∈ On ∧ 𝑦𝐴)))
15 breq1 4876 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
1615elrab 3585 . . . . . . 7 (𝑧 ∈ {𝑥 ∈ On ∣ 𝑥𝐴} ↔ (𝑧 ∈ On ∧ 𝑧𝐴))
17 breq1 4876 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
1817elrab 3585 . . . . . . 7 (𝑦 ∈ {𝑥 ∈ On ∣ 𝑥𝐴} ↔ (𝑦 ∈ On ∧ 𝑦𝐴))
1914, 16, 183imtr4g 288 . . . . . 6 (𝑦𝑧 → (𝑧 ∈ {𝑥 ∈ On ∣ 𝑥𝐴} → 𝑦 ∈ {𝑥 ∈ On ∣ 𝑥𝐴}))
2019imp 397 . . . . 5 ((𝑦𝑧𝑧 ∈ {𝑥 ∈ On ∣ 𝑥𝐴}) → 𝑦 ∈ {𝑥 ∈ On ∣ 𝑥𝐴})
2120gen2 1897 . . . 4 𝑦𝑧((𝑦𝑧𝑧 ∈ {𝑥 ∈ On ∣ 𝑥𝐴}) → 𝑦 ∈ {𝑥 ∈ On ∣ 𝑥𝐴})
22 dftr2 4977 . . . 4 (Tr {𝑥 ∈ On ∣ 𝑥𝐴} ↔ ∀𝑦𝑧((𝑦𝑧𝑧 ∈ {𝑥 ∈ On ∣ 𝑥𝐴}) → 𝑦 ∈ {𝑥 ∈ On ∣ 𝑥𝐴}))
2321, 22mpbir 223 . . 3 Tr {𝑥 ∈ On ∣ 𝑥𝐴}
24 ssrab2 3912 . . 3 {𝑥 ∈ On ∣ 𝑥𝐴} ⊆ On
25 ordon 7244 . . 3 Ord On
26 trssord 5980 . . 3 ((Tr {𝑥 ∈ On ∣ 𝑥𝐴} ∧ {𝑥 ∈ On ∣ 𝑥𝐴} ⊆ On ∧ Ord On) → Ord {𝑥 ∈ On ∣ 𝑥𝐴})
2723, 24, 25, 26mp3an 1591 . 2 Ord {𝑥 ∈ On ∣ 𝑥𝐴}
28 elex 3429 . . . . . 6 (𝐴𝑉𝐴 ∈ V)
29 canth2g 8383 . . . . . . . . 9 (𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴)
30 domsdomtr 8364 . . . . . . . . 9 ((𝑥𝐴𝐴 ≺ 𝒫 𝐴) → 𝑥 ≺ 𝒫 𝐴)
3129, 30sylan2 588 . . . . . . . 8 ((𝑥𝐴𝐴 ∈ V) → 𝑥 ≺ 𝒫 𝐴)
3231expcom 404 . . . . . . 7 (𝐴 ∈ V → (𝑥𝐴𝑥 ≺ 𝒫 𝐴))
3332ralrimivw 3176 . . . . . 6 (𝐴 ∈ V → ∀𝑥 ∈ On (𝑥𝐴𝑥 ≺ 𝒫 𝐴))
3428, 33syl 17 . . . . 5 (𝐴𝑉 → ∀𝑥 ∈ On (𝑥𝐴𝑥 ≺ 𝒫 𝐴))
35 ss2rab 3903 . . . . 5 ({𝑥 ∈ On ∣ 𝑥𝐴} ⊆ {𝑥 ∈ On ∣ 𝑥 ≺ 𝒫 𝐴} ↔ ∀𝑥 ∈ On (𝑥𝐴𝑥 ≺ 𝒫 𝐴))
3634, 35sylibr 226 . . . 4 (𝐴𝑉 → {𝑥 ∈ On ∣ 𝑥𝐴} ⊆ {𝑥 ∈ On ∣ 𝑥 ≺ 𝒫 𝐴})
37 pwexg 5078 . . . . . 6 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
38 numth3 9607 . . . . . 6 (𝒫 𝐴 ∈ V → 𝒫 𝐴 ∈ dom card)
39 cardval2 9130 . . . . . 6 (𝒫 𝐴 ∈ dom card → (card‘𝒫 𝐴) = {𝑥 ∈ On ∣ 𝑥 ≺ 𝒫 𝐴})
4037, 38, 393syl 18 . . . . 5 (𝐴𝑉 → (card‘𝒫 𝐴) = {𝑥 ∈ On ∣ 𝑥 ≺ 𝒫 𝐴})
41 fvex 6446 . . . . 5 (card‘𝒫 𝐴) ∈ V
4240, 41syl6eqelr 2915 . . . 4 (𝐴𝑉 → {𝑥 ∈ On ∣ 𝑥 ≺ 𝒫 𝐴} ∈ V)
43 ssexg 5029 . . . 4 (({𝑥 ∈ On ∣ 𝑥𝐴} ⊆ {𝑥 ∈ On ∣ 𝑥 ≺ 𝒫 𝐴} ∧ {𝑥 ∈ On ∣ 𝑥 ≺ 𝒫 𝐴} ∈ V) → {𝑥 ∈ On ∣ 𝑥𝐴} ∈ V)
4436, 42, 43syl2anc 581 . . 3 (𝐴𝑉 → {𝑥 ∈ On ∣ 𝑥𝐴} ∈ V)
45 elong 5971 . . 3 ({𝑥 ∈ On ∣ 𝑥𝐴} ∈ V → ({𝑥 ∈ On ∣ 𝑥𝐴} ∈ On ↔ Ord {𝑥 ∈ On ∣ 𝑥𝐴}))
4644, 45syl 17 . 2 (𝐴𝑉 → ({𝑥 ∈ On ∣ 𝑥𝐴} ∈ On ↔ Ord {𝑥 ∈ On ∣ 𝑥𝐴}))
4727, 46mpbiri 250 1 (𝐴𝑉 → {𝑥 ∈ On ∣ 𝑥𝐴} ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  wal 1656   = wceq 1658  wcel 2166  wral 3117  {crab 3121  Vcvv 3414  wss 3798  𝒫 cpw 4378   class class class wbr 4873  Tr wtr 4975  dom cdm 5342  Ord word 5962  Oncon0 5963  cfv 6123  cdom 8220  csdm 8221  cardccrd 9074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-ac2 9600
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-se 5302  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-isom 6132  df-riota 6866  df-wrecs 7672  df-recs 7734  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-card 9078  df-ac 9252
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator