MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ondomon Structured version   Visualization version   GIF version

Theorem ondomon 10454
Description: The class of ordinals dominated by a given set is an ordinal. Theorem 56 of [Suppes] p. 227. This theorem can be proved without the axiom of choice, see hartogs 9430. (Contributed by NM, 7-Nov-2003.) (Proof modification is discouraged.) Use hartogs 9430 instead. (New usage is discouraged.)
Assertion
Ref Expression
ondomon (𝐴𝑉 → {𝑥 ∈ On ∣ 𝑥𝐴} ∈ On)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem ondomon
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onelon 6331 . . . . . . . . . . . 12 ((𝑧 ∈ On ∧ 𝑦𝑧) → 𝑦 ∈ On)
2 vex 3440 . . . . . . . . . . . . 13 𝑧 ∈ V
3 onelss 6348 . . . . . . . . . . . . . 14 (𝑧 ∈ On → (𝑦𝑧𝑦𝑧))
43imp 406 . . . . . . . . . . . . 13 ((𝑧 ∈ On ∧ 𝑦𝑧) → 𝑦𝑧)
5 ssdomg 8922 . . . . . . . . . . . . 13 (𝑧 ∈ V → (𝑦𝑧𝑦𝑧))
62, 4, 5mpsyl 68 . . . . . . . . . . . 12 ((𝑧 ∈ On ∧ 𝑦𝑧) → 𝑦𝑧)
71, 6jca 511 . . . . . . . . . . 11 ((𝑧 ∈ On ∧ 𝑦𝑧) → (𝑦 ∈ On ∧ 𝑦𝑧))
8 domtr 8929 . . . . . . . . . . . . 13 ((𝑦𝑧𝑧𝐴) → 𝑦𝐴)
98anim2i 617 . . . . . . . . . . . 12 ((𝑦 ∈ On ∧ (𝑦𝑧𝑧𝐴)) → (𝑦 ∈ On ∧ 𝑦𝐴))
109anassrs 467 . . . . . . . . . . 11 (((𝑦 ∈ On ∧ 𝑦𝑧) ∧ 𝑧𝐴) → (𝑦 ∈ On ∧ 𝑦𝐴))
117, 10sylan 580 . . . . . . . . . 10 (((𝑧 ∈ On ∧ 𝑦𝑧) ∧ 𝑧𝐴) → (𝑦 ∈ On ∧ 𝑦𝐴))
1211exp31 419 . . . . . . . . 9 (𝑧 ∈ On → (𝑦𝑧 → (𝑧𝐴 → (𝑦 ∈ On ∧ 𝑦𝐴))))
1312com12 32 . . . . . . . 8 (𝑦𝑧 → (𝑧 ∈ On → (𝑧𝐴 → (𝑦 ∈ On ∧ 𝑦𝐴))))
1413impd 410 . . . . . . 7 (𝑦𝑧 → ((𝑧 ∈ On ∧ 𝑧𝐴) → (𝑦 ∈ On ∧ 𝑦𝐴)))
15 breq1 5092 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
1615elrab 3642 . . . . . . 7 (𝑧 ∈ {𝑥 ∈ On ∣ 𝑥𝐴} ↔ (𝑧 ∈ On ∧ 𝑧𝐴))
17 breq1 5092 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
1817elrab 3642 . . . . . . 7 (𝑦 ∈ {𝑥 ∈ On ∣ 𝑥𝐴} ↔ (𝑦 ∈ On ∧ 𝑦𝐴))
1914, 16, 183imtr4g 296 . . . . . 6 (𝑦𝑧 → (𝑧 ∈ {𝑥 ∈ On ∣ 𝑥𝐴} → 𝑦 ∈ {𝑥 ∈ On ∣ 𝑥𝐴}))
2019imp 406 . . . . 5 ((𝑦𝑧𝑧 ∈ {𝑥 ∈ On ∣ 𝑥𝐴}) → 𝑦 ∈ {𝑥 ∈ On ∣ 𝑥𝐴})
2120gen2 1797 . . . 4 𝑦𝑧((𝑦𝑧𝑧 ∈ {𝑥 ∈ On ∣ 𝑥𝐴}) → 𝑦 ∈ {𝑥 ∈ On ∣ 𝑥𝐴})
22 dftr2 5198 . . . 4 (Tr {𝑥 ∈ On ∣ 𝑥𝐴} ↔ ∀𝑦𝑧((𝑦𝑧𝑧 ∈ {𝑥 ∈ On ∣ 𝑥𝐴}) → 𝑦 ∈ {𝑥 ∈ On ∣ 𝑥𝐴}))
2321, 22mpbir 231 . . 3 Tr {𝑥 ∈ On ∣ 𝑥𝐴}
24 ssrab2 4027 . . 3 {𝑥 ∈ On ∣ 𝑥𝐴} ⊆ On
25 ordon 7710 . . 3 Ord On
26 trssord 6323 . . 3 ((Tr {𝑥 ∈ On ∣ 𝑥𝐴} ∧ {𝑥 ∈ On ∣ 𝑥𝐴} ⊆ On ∧ Ord On) → Ord {𝑥 ∈ On ∣ 𝑥𝐴})
2723, 24, 25, 26mp3an 1463 . 2 Ord {𝑥 ∈ On ∣ 𝑥𝐴}
28 elex 3457 . . . . . 6 (𝐴𝑉𝐴 ∈ V)
29 canth2g 9044 . . . . . . . . 9 (𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴)
30 domsdomtr 9025 . . . . . . . . 9 ((𝑥𝐴𝐴 ≺ 𝒫 𝐴) → 𝑥 ≺ 𝒫 𝐴)
3129, 30sylan2 593 . . . . . . . 8 ((𝑥𝐴𝐴 ∈ V) → 𝑥 ≺ 𝒫 𝐴)
3231expcom 413 . . . . . . 7 (𝐴 ∈ V → (𝑥𝐴𝑥 ≺ 𝒫 𝐴))
3332ralrimivw 3128 . . . . . 6 (𝐴 ∈ V → ∀𝑥 ∈ On (𝑥𝐴𝑥 ≺ 𝒫 𝐴))
3428, 33syl 17 . . . . 5 (𝐴𝑉 → ∀𝑥 ∈ On (𝑥𝐴𝑥 ≺ 𝒫 𝐴))
35 ss2rab 4016 . . . . 5 ({𝑥 ∈ On ∣ 𝑥𝐴} ⊆ {𝑥 ∈ On ∣ 𝑥 ≺ 𝒫 𝐴} ↔ ∀𝑥 ∈ On (𝑥𝐴𝑥 ≺ 𝒫 𝐴))
3634, 35sylibr 234 . . . 4 (𝐴𝑉 → {𝑥 ∈ On ∣ 𝑥𝐴} ⊆ {𝑥 ∈ On ∣ 𝑥 ≺ 𝒫 𝐴})
37 pwexg 5314 . . . . . 6 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
38 numth3 10361 . . . . . 6 (𝒫 𝐴 ∈ V → 𝒫 𝐴 ∈ dom card)
39 cardval2 9884 . . . . . 6 (𝒫 𝐴 ∈ dom card → (card‘𝒫 𝐴) = {𝑥 ∈ On ∣ 𝑥 ≺ 𝒫 𝐴})
4037, 38, 393syl 18 . . . . 5 (𝐴𝑉 → (card‘𝒫 𝐴) = {𝑥 ∈ On ∣ 𝑥 ≺ 𝒫 𝐴})
41 fvex 6835 . . . . 5 (card‘𝒫 𝐴) ∈ V
4240, 41eqeltrrdi 2840 . . . 4 (𝐴𝑉 → {𝑥 ∈ On ∣ 𝑥 ≺ 𝒫 𝐴} ∈ V)
43 ssexg 5259 . . . 4 (({𝑥 ∈ On ∣ 𝑥𝐴} ⊆ {𝑥 ∈ On ∣ 𝑥 ≺ 𝒫 𝐴} ∧ {𝑥 ∈ On ∣ 𝑥 ≺ 𝒫 𝐴} ∈ V) → {𝑥 ∈ On ∣ 𝑥𝐴} ∈ V)
4436, 42, 43syl2anc 584 . . 3 (𝐴𝑉 → {𝑥 ∈ On ∣ 𝑥𝐴} ∈ V)
45 elong 6314 . . 3 ({𝑥 ∈ On ∣ 𝑥𝐴} ∈ V → ({𝑥 ∈ On ∣ 𝑥𝐴} ∈ On ↔ Ord {𝑥 ∈ On ∣ 𝑥𝐴}))
4644, 45syl 17 . 2 (𝐴𝑉 → ({𝑥 ∈ On ∣ 𝑥𝐴} ∈ On ↔ Ord {𝑥 ∈ On ∣ 𝑥𝐴}))
4727, 46mpbiri 258 1 (𝐴𝑉 → {𝑥 ∈ On ∣ 𝑥𝐴} ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539   = wceq 1541  wcel 2111  wral 3047  {crab 3395  Vcvv 3436  wss 3897  𝒫 cpw 4547   class class class wbr 5089  Tr wtr 5196  dom cdm 5614  Ord word 6305  Oncon0 6306  cfv 6481  cdom 8867  csdm 8868  cardccrd 9828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-ac2 10354
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-card 9832  df-ac 10007
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator