MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ondomon Structured version   Visualization version   GIF version

Theorem ondomon 9585
Description: The collection of ordinal numbers dominated by a set is an ordinal number. (In general, not all collections of ordinal numbers are ordinal.) Theorem 56 of [Suppes] p. 227. This theorem can be proved (with a longer proof) without the Axiom of Choice; see hartogs 8603. (Contributed by NM, 7-Nov-2003.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
ondomon (𝐴𝑉 → {𝑥 ∈ On ∣ 𝑥𝐴} ∈ On)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem ondomon
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onelon 5889 . . . . . . . . . . . 12 ((𝑧 ∈ On ∧ 𝑦𝑧) → 𝑦 ∈ On)
2 vex 3354 . . . . . . . . . . . . 13 𝑧 ∈ V
3 onelss 5907 . . . . . . . . . . . . . 14 (𝑧 ∈ On → (𝑦𝑧𝑦𝑧))
43imp 393 . . . . . . . . . . . . 13 ((𝑧 ∈ On ∧ 𝑦𝑧) → 𝑦𝑧)
5 ssdomg 8153 . . . . . . . . . . . . 13 (𝑧 ∈ V → (𝑦𝑧𝑦𝑧))
62, 4, 5mpsyl 68 . . . . . . . . . . . 12 ((𝑧 ∈ On ∧ 𝑦𝑧) → 𝑦𝑧)
71, 6jca 501 . . . . . . . . . . 11 ((𝑧 ∈ On ∧ 𝑦𝑧) → (𝑦 ∈ On ∧ 𝑦𝑧))
8 domtr 8160 . . . . . . . . . . . . 13 ((𝑦𝑧𝑧𝐴) → 𝑦𝐴)
98anim2i 603 . . . . . . . . . . . 12 ((𝑦 ∈ On ∧ (𝑦𝑧𝑧𝐴)) → (𝑦 ∈ On ∧ 𝑦𝐴))
109anassrs 453 . . . . . . . . . . 11 (((𝑦 ∈ On ∧ 𝑦𝑧) ∧ 𝑧𝐴) → (𝑦 ∈ On ∧ 𝑦𝐴))
117, 10sylan 569 . . . . . . . . . 10 (((𝑧 ∈ On ∧ 𝑦𝑧) ∧ 𝑧𝐴) → (𝑦 ∈ On ∧ 𝑦𝐴))
1211exp31 406 . . . . . . . . 9 (𝑧 ∈ On → (𝑦𝑧 → (𝑧𝐴 → (𝑦 ∈ On ∧ 𝑦𝐴))))
1312com12 32 . . . . . . . 8 (𝑦𝑧 → (𝑧 ∈ On → (𝑧𝐴 → (𝑦 ∈ On ∧ 𝑦𝐴))))
1413impd 396 . . . . . . 7 (𝑦𝑧 → ((𝑧 ∈ On ∧ 𝑧𝐴) → (𝑦 ∈ On ∧ 𝑦𝐴)))
15 breq1 4789 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
1615elrab 3515 . . . . . . 7 (𝑧 ∈ {𝑥 ∈ On ∣ 𝑥𝐴} ↔ (𝑧 ∈ On ∧ 𝑧𝐴))
17 breq1 4789 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
1817elrab 3515 . . . . . . 7 (𝑦 ∈ {𝑥 ∈ On ∣ 𝑥𝐴} ↔ (𝑦 ∈ On ∧ 𝑦𝐴))
1914, 16, 183imtr4g 285 . . . . . 6 (𝑦𝑧 → (𝑧 ∈ {𝑥 ∈ On ∣ 𝑥𝐴} → 𝑦 ∈ {𝑥 ∈ On ∣ 𝑥𝐴}))
2019imp 393 . . . . 5 ((𝑦𝑧𝑧 ∈ {𝑥 ∈ On ∣ 𝑥𝐴}) → 𝑦 ∈ {𝑥 ∈ On ∣ 𝑥𝐴})
2120gen2 1871 . . . 4 𝑦𝑧((𝑦𝑧𝑧 ∈ {𝑥 ∈ On ∣ 𝑥𝐴}) → 𝑦 ∈ {𝑥 ∈ On ∣ 𝑥𝐴})
22 dftr2 4888 . . . 4 (Tr {𝑥 ∈ On ∣ 𝑥𝐴} ↔ ∀𝑦𝑧((𝑦𝑧𝑧 ∈ {𝑥 ∈ On ∣ 𝑥𝐴}) → 𝑦 ∈ {𝑥 ∈ On ∣ 𝑥𝐴}))
2321, 22mpbir 221 . . 3 Tr {𝑥 ∈ On ∣ 𝑥𝐴}
24 ssrab2 3836 . . 3 {𝑥 ∈ On ∣ 𝑥𝐴} ⊆ On
25 ordon 7127 . . 3 Ord On
26 trssord 5881 . . 3 ((Tr {𝑥 ∈ On ∣ 𝑥𝐴} ∧ {𝑥 ∈ On ∣ 𝑥𝐴} ⊆ On ∧ Ord On) → Ord {𝑥 ∈ On ∣ 𝑥𝐴})
2723, 24, 25, 26mp3an 1572 . 2 Ord {𝑥 ∈ On ∣ 𝑥𝐴}
28 elex 3364 . . . . . 6 (𝐴𝑉𝐴 ∈ V)
29 canth2g 8268 . . . . . . . . 9 (𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴)
30 domsdomtr 8249 . . . . . . . . 9 ((𝑥𝐴𝐴 ≺ 𝒫 𝐴) → 𝑥 ≺ 𝒫 𝐴)
3129, 30sylan2 580 . . . . . . . 8 ((𝑥𝐴𝐴 ∈ V) → 𝑥 ≺ 𝒫 𝐴)
3231expcom 398 . . . . . . 7 (𝐴 ∈ V → (𝑥𝐴𝑥 ≺ 𝒫 𝐴))
3332ralrimivw 3116 . . . . . 6 (𝐴 ∈ V → ∀𝑥 ∈ On (𝑥𝐴𝑥 ≺ 𝒫 𝐴))
3428, 33syl 17 . . . . 5 (𝐴𝑉 → ∀𝑥 ∈ On (𝑥𝐴𝑥 ≺ 𝒫 𝐴))
35 ss2rab 3827 . . . . 5 ({𝑥 ∈ On ∣ 𝑥𝐴} ⊆ {𝑥 ∈ On ∣ 𝑥 ≺ 𝒫 𝐴} ↔ ∀𝑥 ∈ On (𝑥𝐴𝑥 ≺ 𝒫 𝐴))
3634, 35sylibr 224 . . . 4 (𝐴𝑉 → {𝑥 ∈ On ∣ 𝑥𝐴} ⊆ {𝑥 ∈ On ∣ 𝑥 ≺ 𝒫 𝐴})
37 pwexg 4980 . . . . . 6 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
38 numth3 9492 . . . . . 6 (𝒫 𝐴 ∈ V → 𝒫 𝐴 ∈ dom card)
39 cardval2 9015 . . . . . 6 (𝒫 𝐴 ∈ dom card → (card‘𝒫 𝐴) = {𝑥 ∈ On ∣ 𝑥 ≺ 𝒫 𝐴})
4037, 38, 393syl 18 . . . . 5 (𝐴𝑉 → (card‘𝒫 𝐴) = {𝑥 ∈ On ∣ 𝑥 ≺ 𝒫 𝐴})
41 fvex 6340 . . . . 5 (card‘𝒫 𝐴) ∈ V
4240, 41syl6eqelr 2859 . . . 4 (𝐴𝑉 → {𝑥 ∈ On ∣ 𝑥 ≺ 𝒫 𝐴} ∈ V)
43 ssexg 4938 . . . 4 (({𝑥 ∈ On ∣ 𝑥𝐴} ⊆ {𝑥 ∈ On ∣ 𝑥 ≺ 𝒫 𝐴} ∧ {𝑥 ∈ On ∣ 𝑥 ≺ 𝒫 𝐴} ∈ V) → {𝑥 ∈ On ∣ 𝑥𝐴} ∈ V)
4436, 42, 43syl2anc 573 . . 3 (𝐴𝑉 → {𝑥 ∈ On ∣ 𝑥𝐴} ∈ V)
45 elong 5872 . . 3 ({𝑥 ∈ On ∣ 𝑥𝐴} ∈ V → ({𝑥 ∈ On ∣ 𝑥𝐴} ∈ On ↔ Ord {𝑥 ∈ On ∣ 𝑥𝐴}))
4644, 45syl 17 . 2 (𝐴𝑉 → ({𝑥 ∈ On ∣ 𝑥𝐴} ∈ On ↔ Ord {𝑥 ∈ On ∣ 𝑥𝐴}))
4727, 46mpbiri 248 1 (𝐴𝑉 → {𝑥 ∈ On ∣ 𝑥𝐴} ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  wal 1629   = wceq 1631  wcel 2145  wral 3061  {crab 3065  Vcvv 3351  wss 3723  𝒫 cpw 4297   class class class wbr 4786  Tr wtr 4886  dom cdm 5249  Ord word 5863  Oncon0 5864  cfv 6029  cdom 8105  csdm 8106  cardccrd 8959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7094  ax-ac2 9485
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5821  df-ord 5867  df-on 5868  df-suc 5870  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-isom 6038  df-riota 6752  df-wrecs 7557  df-recs 7619  df-er 7894  df-en 8108  df-dom 8109  df-sdom 8110  df-card 8963  df-ac 9137
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator