MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrlimcnp Structured version   Visualization version   GIF version

Theorem xrlimcnp 26906
Description: Relate a limit of a real-valued sequence at infinity to the continuity of the corresponding extended real function at +∞. Since any 𝑟 limit can be written in the form on the left side of the implication, this shows that real limits are a special case of topological continuity at a point. (Contributed by Mario Carneiro, 8-Sep-2015.)
Hypotheses
Ref Expression
xrlimcnp.a (𝜑𝐴 = (𝐵 ∪ {+∞}))
xrlimcnp.b (𝜑𝐵 ⊆ ℝ)
xrlimcnp.r ((𝜑𝑥𝐴) → 𝑅 ∈ ℂ)
xrlimcnp.c (𝑥 = +∞ → 𝑅 = 𝐶)
xrlimcnp.j 𝐽 = (TopOpen‘ℂfld)
xrlimcnp.k 𝐾 = ((ordTop‘ ≤ ) ↾t 𝐴)
Assertion
Ref Expression
xrlimcnp (𝜑 → ((𝑥𝐵𝑅) ⇝𝑟 𝐶 ↔ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)))
Distinct variable groups:   𝑥,𝐵   𝜑,𝑥   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝑅(𝑥)   𝐽(𝑥)   𝐾(𝑥)

Proof of Theorem xrlimcnp
Dummy variables 𝑘 𝑟 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrlimcnp.r . . . . 5 ((𝜑𝑥𝐴) → 𝑅 ∈ ℂ)
21fmpttd 7048 . . . 4 (𝜑 → (𝑥𝐴𝑅):𝐴⟶ℂ)
32adantr 480 . . 3 ((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) → (𝑥𝐴𝑅):𝐴⟶ℂ)
4 eqid 2731 . . . . . . . 8 (𝑥𝐴𝑅) = (𝑥𝐴𝑅)
5 xrlimcnp.c . . . . . . . 8 (𝑥 = +∞ → 𝑅 = 𝐶)
6 ssun2 4129 . . . . . . . . . 10 {+∞} ⊆ (𝐵 ∪ {+∞})
7 pnfex 11165 . . . . . . . . . . 11 +∞ ∈ V
87snid 4615 . . . . . . . . . 10 +∞ ∈ {+∞}
96, 8sselii 3931 . . . . . . . . 9 +∞ ∈ (𝐵 ∪ {+∞})
10 xrlimcnp.a . . . . . . . . 9 (𝜑𝐴 = (𝐵 ∪ {+∞}))
119, 10eleqtrrid 2838 . . . . . . . 8 (𝜑 → +∞ ∈ 𝐴)
125eleq1d 2816 . . . . . . . . 9 (𝑥 = +∞ → (𝑅 ∈ ℂ ↔ 𝐶 ∈ ℂ))
131ralrimiva 3124 . . . . . . . . 9 (𝜑 → ∀𝑥𝐴 𝑅 ∈ ℂ)
1412, 13, 11rspcdva 3578 . . . . . . . 8 (𝜑𝐶 ∈ ℂ)
154, 5, 11, 14fvmptd3 6952 . . . . . . 7 (𝜑 → ((𝑥𝐴𝑅)‘+∞) = 𝐶)
1615ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) ∧ 𝑦𝐽) → ((𝑥𝐴𝑅)‘+∞) = 𝐶)
1716eleq1d 2816 . . . . 5 (((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) ∧ 𝑦𝐽) → (((𝑥𝐴𝑅)‘+∞) ∈ 𝑦𝐶𝑦))
18 cnxmet 24688 . . . . . . . 8 (abs ∘ − ) ∈ (∞Met‘ℂ)
19 xrlimcnp.j . . . . . . . . . 10 𝐽 = (TopOpen‘ℂfld)
2019cnfldtopn 24697 . . . . . . . . 9 𝐽 = (MetOpen‘(abs ∘ − ))
2120mopni2 24409 . . . . . . . 8 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑦𝐽𝐶𝑦) → ∃𝑟 ∈ ℝ+ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)
2218, 21mp3an1 1450 . . . . . . 7 ((𝑦𝐽𝐶𝑦) → ∃𝑟 ∈ ℝ+ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)
23 ssun1 4128 . . . . . . . . . . . . 13 𝐵 ⊆ (𝐵 ∪ {+∞})
2423, 10sseqtrrid 3978 . . . . . . . . . . . 12 (𝜑𝐵𝐴)
25 ssralv 4003 . . . . . . . . . . . 12 (𝐵𝐴 → (∀𝑥𝐴 𝑅 ∈ ℂ → ∀𝑥𝐵 𝑅 ∈ ℂ))
2624, 13, 25sylc 65 . . . . . . . . . . 11 (𝜑 → ∀𝑥𝐵 𝑅 ∈ ℂ)
2726ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) → ∀𝑥𝐵 𝑅 ∈ ℂ)
28 simprl 770 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) → 𝑟 ∈ ℝ+)
29 simplr 768 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) → (𝑥𝐵𝑅) ⇝𝑟 𝐶)
3027, 28, 29rlimi 15420 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) → ∃𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))
31 letop 23122 . . . . . . . . . . . . . 14 (ordTop‘ ≤ ) ∈ Top
32 xrlimcnp.b . . . . . . . . . . . . . . . . . . 19 (𝜑𝐵 ⊆ ℝ)
33 ressxr 11156 . . . . . . . . . . . . . . . . . . 19 ℝ ⊆ ℝ*
3432, 33sstrdi 3947 . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ⊆ ℝ*)
35 pnfxr 11166 . . . . . . . . . . . . . . . . . . . 20 +∞ ∈ ℝ*
3635a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → +∞ ∈ ℝ*)
3736snssd 4761 . . . . . . . . . . . . . . . . . 18 (𝜑 → {+∞} ⊆ ℝ*)
3834, 37unssd 4142 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐵 ∪ {+∞}) ⊆ ℝ*)
3910, 38eqsstrd 3969 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ⊆ ℝ*)
40 xrex 12885 . . . . . . . . . . . . . . . . 17 * ∈ V
4140ssex 5259 . . . . . . . . . . . . . . . 16 (𝐴 ⊆ ℝ*𝐴 ∈ V)
4239, 41syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ V)
4342ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → 𝐴 ∈ V)
44 iocpnfordt 23131 . . . . . . . . . . . . . . 15 (𝑘(,]+∞) ∈ (ordTop‘ ≤ )
4544a1i 11 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → (𝑘(,]+∞) ∈ (ordTop‘ ≤ ))
46 elrestr 17332 . . . . . . . . . . . . . 14 (((ordTop‘ ≤ ) ∈ Top ∧ 𝐴 ∈ V ∧ (𝑘(,]+∞) ∈ (ordTop‘ ≤ )) → ((𝑘(,]+∞) ∩ 𝐴) ∈ ((ordTop‘ ≤ ) ↾t 𝐴))
4731, 43, 45, 46mp3an2i 1468 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → ((𝑘(,]+∞) ∩ 𝐴) ∈ ((ordTop‘ ≤ ) ↾t 𝐴))
48 xrlimcnp.k . . . . . . . . . . . . 13 𝐾 = ((ordTop‘ ≤ ) ↾t 𝐴)
4947, 48eleqtrrdi 2842 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → ((𝑘(,]+∞) ∩ 𝐴) ∈ 𝐾)
50 simprl 770 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → 𝑘 ∈ ℝ)
5150rexrd 11162 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → 𝑘 ∈ ℝ*)
5235a1i 11 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → +∞ ∈ ℝ*)
5350ltpnfd 13020 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → 𝑘 < +∞)
54 ubioc1 13299 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑘 < +∞) → +∞ ∈ (𝑘(,]+∞))
5551, 52, 53, 54syl3anc 1373 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → +∞ ∈ (𝑘(,]+∞))
5611ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → +∞ ∈ 𝐴)
5755, 56elind 4150 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → +∞ ∈ ((𝑘(,]+∞) ∩ 𝐴))
58 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → 𝑘 ∈ ℝ)
5958rexrd 11162 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → 𝑘 ∈ ℝ*)
60 elioc1 13287 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑘 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑥 ∈ (𝑘(,]+∞) ↔ (𝑥 ∈ ℝ*𝑘 < 𝑥𝑥 ≤ +∞)))
6159, 35, 60sylancl 586 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → (𝑥 ∈ (𝑘(,]+∞) ↔ (𝑥 ∈ ℝ*𝑘 < 𝑥𝑥 ≤ +∞)))
62 simp2 1137 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℝ*𝑘 < 𝑥𝑥 ≤ +∞) → 𝑘 < 𝑥)
6361, 62biimtrdi 253 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → (𝑥 ∈ (𝑘(,]+∞) → 𝑘 < 𝑥))
6432ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) → 𝐵 ⊆ ℝ)
6564sselda 3934 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → 𝑥 ∈ ℝ)
66 ltle 11201 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑘 < 𝑥𝑘𝑥))
6758, 65, 66syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → (𝑘 < 𝑥𝑘𝑥))
6863, 67syld 47 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → (𝑥 ∈ (𝑘(,]+∞) → 𝑘𝑥))
6918a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → (abs ∘ − ) ∈ (∞Met‘ℂ))
70 simprl 770 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) → 𝑟 ∈ ℝ+)
7170ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → 𝑟 ∈ ℝ+)
72 rpxr 12900 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
7371, 72syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → 𝑟 ∈ ℝ*)
7414ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → 𝐶 ∈ ℂ)
7526ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) → ∀𝑥𝐵 𝑅 ∈ ℂ)
7675r19.21bi 3224 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → 𝑅 ∈ ℂ)
77 elbl3 24308 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑟 ∈ ℝ*) ∧ (𝐶 ∈ ℂ ∧ 𝑅 ∈ ℂ)) → (𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ (𝑅(abs ∘ − )𝐶) < 𝑟))
7869, 73, 74, 76, 77syl22anc 838 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → (𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ (𝑅(abs ∘ − )𝐶) < 𝑟))
79 eqid 2731 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (abs ∘ − ) = (abs ∘ − )
8079cnmetdval 24686 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑅 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝑅(abs ∘ − )𝐶) = (abs‘(𝑅𝐶)))
8176, 74, 80syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → (𝑅(abs ∘ − )𝐶) = (abs‘(𝑅𝐶)))
8281breq1d 5101 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → ((𝑅(abs ∘ − )𝐶) < 𝑟 ↔ (abs‘(𝑅𝐶)) < 𝑟))
8378, 82bitrd 279 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → (𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ (abs‘(𝑅𝐶)) < 𝑟))
8483biimprd 248 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → ((abs‘(𝑅𝐶)) < 𝑟𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
8568, 84imim12d 81 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → ((𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟) → (𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟))))
8685ralimdva 3144 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) → (∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟) → ∀𝑥𝐵 (𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟))))
8786impr 454 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → ∀𝑥𝐵 (𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
8814ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → 𝐶 ∈ ℂ)
89 simplrl 776 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → 𝑟 ∈ ℝ+)
90 blcntr 24329 . . . . . . . . . . . . . . . . . . . . 21 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐶 ∈ ℂ ∧ 𝑟 ∈ ℝ+) → 𝐶 ∈ (𝐶(ball‘(abs ∘ − ))𝑟))
9118, 88, 89, 90mp3an2i 1468 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → 𝐶 ∈ (𝐶(ball‘(abs ∘ − ))𝑟))
9291a1d 25 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → (+∞ ∈ (𝑘(,]+∞) → 𝐶 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
93 eleq1 2819 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = +∞ → (𝑥 ∈ (𝑘(,]+∞) ↔ +∞ ∈ (𝑘(,]+∞)))
945eleq1d 2816 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = +∞ → (𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ 𝐶 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
9593, 94imbi12d 344 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = +∞ → ((𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) ↔ (+∞ ∈ (𝑘(,]+∞) → 𝐶 ∈ (𝐶(ball‘(abs ∘ − ))𝑟))))
967, 95ralsn 4634 . . . . . . . . . . . . . . . . . . 19 (∀𝑥 ∈ {+∞} (𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) ↔ (+∞ ∈ (𝑘(,]+∞) → 𝐶 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
9792, 96sylibr 234 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → ∀𝑥 ∈ {+∞} (𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
98 ralunb 4147 . . . . . . . . . . . . . . . . . 18 (∀𝑥 ∈ (𝐵 ∪ {+∞})(𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) ↔ (∀𝑥𝐵 (𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) ∧ ∀𝑥 ∈ {+∞} (𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟))))
9987, 97, 98sylanbrc 583 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → ∀𝑥 ∈ (𝐵 ∪ {+∞})(𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
10010ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → 𝐴 = (𝐵 ∪ {+∞}))
10199, 100raleqtrrdv 3296 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → ∀𝑥𝐴 (𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
102 ss2rab 4021 . . . . . . . . . . . . . . . 16 ({𝑥𝐴𝑥 ∈ (𝑘(,]+∞)} ⊆ {𝑥𝐴𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)} ↔ ∀𝑥𝐴 (𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
103101, 102sylibr 234 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → {𝑥𝐴𝑥 ∈ (𝑘(,]+∞)} ⊆ {𝑥𝐴𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)})
104 incom 4159 . . . . . . . . . . . . . . . 16 ((𝑘(,]+∞) ∩ 𝐴) = (𝐴 ∩ (𝑘(,]+∞))
105 dfin5 3910 . . . . . . . . . . . . . . . 16 (𝐴 ∩ (𝑘(,]+∞)) = {𝑥𝐴𝑥 ∈ (𝑘(,]+∞)}
106104, 105eqtri 2754 . . . . . . . . . . . . . . 15 ((𝑘(,]+∞) ∩ 𝐴) = {𝑥𝐴𝑥 ∈ (𝑘(,]+∞)}
1074mptpreima 6185 . . . . . . . . . . . . . . 15 ((𝑥𝐴𝑅) “ (𝐶(ball‘(abs ∘ − ))𝑟)) = {𝑥𝐴𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)}
108103, 106, 1073sstr4g 3988 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → ((𝑘(,]+∞) ∩ 𝐴) ⊆ ((𝑥𝐴𝑅) “ (𝐶(ball‘(abs ∘ − ))𝑟)))
109 funmpt 6519 . . . . . . . . . . . . . . 15 Fun (𝑥𝐴𝑅)
110 inss2 4188 . . . . . . . . . . . . . . . 16 ((𝑘(,]+∞) ∩ 𝐴) ⊆ 𝐴
1112ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → (𝑥𝐴𝑅):𝐴⟶ℂ)
112111fdmd 6661 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → dom (𝑥𝐴𝑅) = 𝐴)
113110, 112sseqtrrid 3978 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → ((𝑘(,]+∞) ∩ 𝐴) ⊆ dom (𝑥𝐴𝑅))
114 funimass3 6987 . . . . . . . . . . . . . . 15 ((Fun (𝑥𝐴𝑅) ∧ ((𝑘(,]+∞) ∩ 𝐴) ⊆ dom (𝑥𝐴𝑅)) → (((𝑥𝐴𝑅) “ ((𝑘(,]+∞) ∩ 𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ ((𝑘(,]+∞) ∩ 𝐴) ⊆ ((𝑥𝐴𝑅) “ (𝐶(ball‘(abs ∘ − ))𝑟))))
115109, 113, 114sylancr 587 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → (((𝑥𝐴𝑅) “ ((𝑘(,]+∞) ∩ 𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ ((𝑘(,]+∞) ∩ 𝐴) ⊆ ((𝑥𝐴𝑅) “ (𝐶(ball‘(abs ∘ − ))𝑟))))
116108, 115mpbird 257 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → ((𝑥𝐴𝑅) “ ((𝑘(,]+∞) ∩ 𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟))
117 simplrr 777 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)
118116, 117sstrd 3945 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → ((𝑥𝐴𝑅) “ ((𝑘(,]+∞) ∩ 𝐴)) ⊆ 𝑦)
119 eleq2 2820 . . . . . . . . . . . . . 14 (𝑧 = ((𝑘(,]+∞) ∩ 𝐴) → (+∞ ∈ 𝑧 ↔ +∞ ∈ ((𝑘(,]+∞) ∩ 𝐴)))
120 imaeq2 6005 . . . . . . . . . . . . . . 15 (𝑧 = ((𝑘(,]+∞) ∩ 𝐴) → ((𝑥𝐴𝑅) “ 𝑧) = ((𝑥𝐴𝑅) “ ((𝑘(,]+∞) ∩ 𝐴)))
121120sseq1d 3966 . . . . . . . . . . . . . 14 (𝑧 = ((𝑘(,]+∞) ∩ 𝐴) → (((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦 ↔ ((𝑥𝐴𝑅) “ ((𝑘(,]+∞) ∩ 𝐴)) ⊆ 𝑦))
122119, 121anbi12d 632 . . . . . . . . . . . . 13 (𝑧 = ((𝑘(,]+∞) ∩ 𝐴) → ((+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦) ↔ (+∞ ∈ ((𝑘(,]+∞) ∩ 𝐴) ∧ ((𝑥𝐴𝑅) “ ((𝑘(,]+∞) ∩ 𝐴)) ⊆ 𝑦)))
123122rspcev 3577 . . . . . . . . . . . 12 ((((𝑘(,]+∞) ∩ 𝐴) ∈ 𝐾 ∧ (+∞ ∈ ((𝑘(,]+∞) ∩ 𝐴) ∧ ((𝑥𝐴𝑅) “ ((𝑘(,]+∞) ∩ 𝐴)) ⊆ 𝑦)) → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦))
12449, 57, 118, 123syl12anc 836 . . . . . . . . . . 11 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦))
125124rexlimdvaa 3134 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) → (∃𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟) → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦)))
126125adantlr 715 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) → (∃𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟) → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦)))
12730, 126mpd 15 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦))
128127rexlimdvaa 3134 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) → (∃𝑟 ∈ ℝ+ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦 → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦)))
12922, 128syl5 34 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) → ((𝑦𝐽𝐶𝑦) → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦)))
130129expdimp 452 . . . . 5 (((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) ∧ 𝑦𝐽) → (𝐶𝑦 → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦)))
13117, 130sylbid 240 . . . 4 (((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) ∧ 𝑦𝐽) → (((𝑥𝐴𝑅)‘+∞) ∈ 𝑦 → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦)))
132131ralrimiva 3124 . . 3 ((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) → ∀𝑦𝐽 (((𝑥𝐴𝑅)‘+∞) ∈ 𝑦 → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦)))
133 letopon 23121 . . . . . . 7 (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)
134 resttopon 23077 . . . . . . 7 (((ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) ∧ 𝐴 ⊆ ℝ*) → ((ordTop‘ ≤ ) ↾t 𝐴) ∈ (TopOn‘𝐴))
135133, 39, 134sylancr 587 . . . . . 6 (𝜑 → ((ordTop‘ ≤ ) ↾t 𝐴) ∈ (TopOn‘𝐴))
13648, 135eqeltrid 2835 . . . . 5 (𝜑𝐾 ∈ (TopOn‘𝐴))
13719cnfldtopon 24698 . . . . . 6 𝐽 ∈ (TopOn‘ℂ)
138137a1i 11 . . . . 5 (𝜑𝐽 ∈ (TopOn‘ℂ))
139 iscnp 23153 . . . . 5 ((𝐾 ∈ (TopOn‘𝐴) ∧ 𝐽 ∈ (TopOn‘ℂ) ∧ +∞ ∈ 𝐴) → ((𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞) ↔ ((𝑥𝐴𝑅):𝐴⟶ℂ ∧ ∀𝑦𝐽 (((𝑥𝐴𝑅)‘+∞) ∈ 𝑦 → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦)))))
140136, 138, 11, 139syl3anc 1373 . . . 4 (𝜑 → ((𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞) ↔ ((𝑥𝐴𝑅):𝐴⟶ℂ ∧ ∀𝑦𝐽 (((𝑥𝐴𝑅)‘+∞) ∈ 𝑦 → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦)))))
141140adantr 480 . . 3 ((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) → ((𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞) ↔ ((𝑥𝐴𝑅):𝐴⟶ℂ ∧ ∀𝑦𝐽 (((𝑥𝐴𝑅)‘+∞) ∈ 𝑦 → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦)))))
1423, 132, 141mpbir2and 713 . 2 ((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) → (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞))
143 simplr 768 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞))
14414ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → 𝐶 ∈ ℂ)
14572adantl 481 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ*)
14620blopn 24416 . . . . . . . 8 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐶 ∈ ℂ ∧ 𝑟 ∈ ℝ*) → (𝐶(ball‘(abs ∘ − ))𝑟) ∈ 𝐽)
14718, 144, 145, 146mp3an2i 1468 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → (𝐶(ball‘(abs ∘ − ))𝑟) ∈ 𝐽)
14815ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → ((𝑥𝐴𝑅)‘+∞) = 𝐶)
149 simpr 484 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ+)
15018, 144, 149, 90mp3an2i 1468 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → 𝐶 ∈ (𝐶(ball‘(abs ∘ − ))𝑟))
151148, 150eqeltrd 2831 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → ((𝑥𝐴𝑅)‘+∞) ∈ (𝐶(ball‘(abs ∘ − ))𝑟))
152 cnpimaex 23172 . . . . . . 7 (((𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞) ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ∈ 𝐽 ∧ ((𝑥𝐴𝑅)‘+∞) ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟)))
153143, 147, 151, 152syl3anc 1373 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟)))
154 vex 3440 . . . . . . . . 9 𝑤 ∈ V
155154inex1 5255 . . . . . . . 8 (𝑤𝐴) ∈ V
156155a1i 11 . . . . . . 7 ((((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑤 ∈ (ordTop‘ ≤ )) → (𝑤𝐴) ∈ V)
15748eleq2i 2823 . . . . . . . 8 (𝑧𝐾𝑧 ∈ ((ordTop‘ ≤ ) ↾t 𝐴))
15842ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → 𝐴 ∈ V)
159 elrest 17331 . . . . . . . . 9 (((ordTop‘ ≤ ) ∈ Top ∧ 𝐴 ∈ V) → (𝑧 ∈ ((ordTop‘ ≤ ) ↾t 𝐴) ↔ ∃𝑤 ∈ (ordTop‘ ≤ )𝑧 = (𝑤𝐴)))
16031, 158, 159sylancr 587 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → (𝑧 ∈ ((ordTop‘ ≤ ) ↾t 𝐴) ↔ ∃𝑤 ∈ (ordTop‘ ≤ )𝑧 = (𝑤𝐴)))
161157, 160bitrid 283 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → (𝑧𝐾 ↔ ∃𝑤 ∈ (ordTop‘ ≤ )𝑧 = (𝑤𝐴)))
162 eleq2 2820 . . . . . . . . 9 (𝑧 = (𝑤𝐴) → (+∞ ∈ 𝑧 ↔ +∞ ∈ (𝑤𝐴)))
163 imaeq2 6005 . . . . . . . . . 10 (𝑧 = (𝑤𝐴) → ((𝑥𝐴𝑅) “ 𝑧) = ((𝑥𝐴𝑅) “ (𝑤𝐴)))
164163sseq1d 3966 . . . . . . . . 9 (𝑧 = (𝑤𝐴) → (((𝑥𝐴𝑅) “ 𝑧) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ ((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟)))
165162, 164anbi12d 632 . . . . . . . 8 (𝑧 = (𝑤𝐴) → ((+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟)) ↔ (+∞ ∈ (𝑤𝐴) ∧ ((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟))))
166165adantl 481 . . . . . . 7 ((((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑧 = (𝑤𝐴)) → ((+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟)) ↔ (+∞ ∈ (𝑤𝐴) ∧ ((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟))))
167156, 161, 166rexxfr2d 5349 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → (∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟)) ↔ ∃𝑤 ∈ (ordTop‘ ≤ )(+∞ ∈ (𝑤𝐴) ∧ ((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟))))
168153, 167mpbid 232 . . . . 5 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → ∃𝑤 ∈ (ordTop‘ ≤ )(+∞ ∈ (𝑤𝐴) ∧ ((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟)))
169 elinel1 4151 . . . . . . . . . . 11 (+∞ ∈ (𝑤𝐴) → +∞ ∈ 𝑤)
170 pnfnei 23136 . . . . . . . . . . 11 ((𝑤 ∈ (ordTop‘ ≤ ) ∧ +∞ ∈ 𝑤) → ∃𝑘 ∈ ℝ (𝑘(,]+∞) ⊆ 𝑤)
171169, 170sylan2 593 . . . . . . . . . 10 ((𝑤 ∈ (ordTop‘ ≤ ) ∧ +∞ ∈ (𝑤𝐴)) → ∃𝑘 ∈ ℝ (𝑘(,]+∞) ⊆ 𝑤)
172 df-ima 5629 . . . . . . . . . . . . . . . 16 ((𝑥𝐴𝑅) “ (𝑤𝐴)) = ran ((𝑥𝐴𝑅) ↾ (𝑤𝐴))
173 inss2 4188 . . . . . . . . . . . . . . . . . 18 (𝑤𝐴) ⊆ 𝐴
174 resmpt 5986 . . . . . . . . . . . . . . . . . 18 ((𝑤𝐴) ⊆ 𝐴 → ((𝑥𝐴𝑅) ↾ (𝑤𝐴)) = (𝑥 ∈ (𝑤𝐴) ↦ 𝑅))
175173, 174ax-mp 5 . . . . . . . . . . . . . . . . 17 ((𝑥𝐴𝑅) ↾ (𝑤𝐴)) = (𝑥 ∈ (𝑤𝐴) ↦ 𝑅)
176175rneqi 5877 . . . . . . . . . . . . . . . 16 ran ((𝑥𝐴𝑅) ↾ (𝑤𝐴)) = ran (𝑥 ∈ (𝑤𝐴) ↦ 𝑅)
177172, 176eqtri 2754 . . . . . . . . . . . . . . 15 ((𝑥𝐴𝑅) “ (𝑤𝐴)) = ran (𝑥 ∈ (𝑤𝐴) ↦ 𝑅)
178177sseq1i 3963 . . . . . . . . . . . . . 14 (((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ ran (𝑥 ∈ (𝑤𝐴) ↦ 𝑅) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟))
179 dfss3 3923 . . . . . . . . . . . . . 14 (ran (𝑥 ∈ (𝑤𝐴) ↦ 𝑅) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ ∀𝑧 ∈ ran (𝑥 ∈ (𝑤𝐴) ↦ 𝑅)𝑧 ∈ (𝐶(ball‘(abs ∘ − ))𝑟))
180178, 179bitri 275 . . . . . . . . . . . . 13 (((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ ∀𝑧 ∈ ran (𝑥 ∈ (𝑤𝐴) ↦ 𝑅)𝑧 ∈ (𝐶(ball‘(abs ∘ − ))𝑟))
18113adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑟 ∈ ℝ+) → ∀𝑥𝐴 𝑅 ∈ ℂ)
182 ssralv 4003 . . . . . . . . . . . . . . . 16 ((𝑤𝐴) ⊆ 𝐴 → (∀𝑥𝐴 𝑅 ∈ ℂ → ∀𝑥 ∈ (𝑤𝐴)𝑅 ∈ ℂ))
183173, 181, 182mpsyl 68 . . . . . . . . . . . . . . 15 ((𝜑𝑟 ∈ ℝ+) → ∀𝑥 ∈ (𝑤𝐴)𝑅 ∈ ℂ)
184 eqid 2731 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝑤𝐴) ↦ 𝑅) = (𝑥 ∈ (𝑤𝐴) ↦ 𝑅)
185 eleq1 2819 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑅 → (𝑧 ∈ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
186184, 185ralrnmptw 7027 . . . . . . . . . . . . . . 15 (∀𝑥 ∈ (𝑤𝐴)𝑅 ∈ ℂ → (∀𝑧 ∈ ran (𝑥 ∈ (𝑤𝐴) ↦ 𝑅)𝑧 ∈ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ ∀𝑥 ∈ (𝑤𝐴)𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
187183, 186syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑟 ∈ ℝ+) → (∀𝑧 ∈ ran (𝑥 ∈ (𝑤𝐴) ↦ 𝑅)𝑧 ∈ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ ∀𝑥 ∈ (𝑤𝐴)𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
188187biimpd 229 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ ℝ+) → (∀𝑧 ∈ ran (𝑥 ∈ (𝑤𝐴) ↦ 𝑅)𝑧 ∈ (𝐶(ball‘(abs ∘ − ))𝑟) → ∀𝑥 ∈ (𝑤𝐴)𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
189180, 188biimtrid 242 . . . . . . . . . . . 12 ((𝜑𝑟 ∈ ℝ+) → (((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟) → ∀𝑥 ∈ (𝑤𝐴)𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
190 simplrr 777 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → (𝑘(,]+∞) ⊆ 𝑤)
19134ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝐵 ⊆ ℝ*)
192 simprl 770 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝑥𝐵)
193191, 192sseldd 3935 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝑥 ∈ ℝ*)
194 simprr 772 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝑘 < 𝑥)
195 pnfge 13029 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 ∈ ℝ*𝑥 ≤ +∞)
196193, 195syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝑥 ≤ +∞)
197 simplrl 776 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝑘 ∈ ℝ)
198197rexrd 11162 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝑘 ∈ ℝ*)
199198, 35, 60sylancl 586 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → (𝑥 ∈ (𝑘(,]+∞) ↔ (𝑥 ∈ ℝ*𝑘 < 𝑥𝑥 ≤ +∞)))
200193, 194, 196, 199mpbir3and 1343 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝑥 ∈ (𝑘(,]+∞))
201190, 200sseldd 3935 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝑥𝑤)
20224ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) → 𝐵𝐴)
203202sselda 3934 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ 𝑥𝐵) → 𝑥𝐴)
204203adantrr 717 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝑥𝐴)
205201, 204elind 4150 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝑥 ∈ (𝑤𝐴))
206205ex 412 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) → ((𝑥𝐵𝑘 < 𝑥) → 𝑥 ∈ (𝑤𝐴)))
207206imim1d 82 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) → ((𝑥 ∈ (𝑤𝐴) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) → ((𝑥𝐵𝑘 < 𝑥) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟))))
20818a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → (abs ∘ − ) ∈ (∞Met‘ℂ))
20972adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ*)
210209ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝑟 ∈ ℝ*)
21114ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝐶 ∈ ℂ)
21226ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) → ∀𝑥𝐵 𝑅 ∈ ℂ)
213212r19.21bi 3224 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ 𝑥𝐵) → 𝑅 ∈ ℂ)
214213adantrr 717 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝑅 ∈ ℂ)
215208, 210, 211, 214, 77syl22anc 838 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → (𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ (𝑅(abs ∘ − )𝐶) < 𝑟))
216214, 211, 80syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → (𝑅(abs ∘ − )𝐶) = (abs‘(𝑅𝐶)))
217216breq1d 5101 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → ((𝑅(abs ∘ − )𝐶) < 𝑟 ↔ (abs‘(𝑅𝐶)) < 𝑟))
218215, 217bitrd 279 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → (𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ (abs‘(𝑅𝐶)) < 𝑟))
219218pm5.74da 803 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) → (((𝑥𝐵𝑘 < 𝑥) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) ↔ ((𝑥𝐵𝑘 < 𝑥) → (abs‘(𝑅𝐶)) < 𝑟)))
220207, 219sylibd 239 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) → ((𝑥 ∈ (𝑤𝐴) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) → ((𝑥𝐵𝑘 < 𝑥) → (abs‘(𝑅𝐶)) < 𝑟)))
221220exp4a 431 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) → ((𝑥 ∈ (𝑤𝐴) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) → (𝑥𝐵 → (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟))))
222221ralimdv2 3141 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) → (∀𝑥 ∈ (𝑤𝐴)𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟) → ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟)))
223222imp 406 . . . . . . . . . . . . . . . 16 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ ∀𝑥 ∈ (𝑤𝐴)𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) → ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟))
224223an32s 652 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ ∀𝑥 ∈ (𝑤𝐴)𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) → ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟))
225224expr 456 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ ∀𝑥 ∈ (𝑤𝐴)𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) ∧ 𝑘 ∈ ℝ) → ((𝑘(,]+∞) ⊆ 𝑤 → ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟)))
226225reximdva 3145 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ ∀𝑥 ∈ (𝑤𝐴)𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) → (∃𝑘 ∈ ℝ (𝑘(,]+∞) ⊆ 𝑤 → ∃𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟)))
227226ex 412 . . . . . . . . . . . 12 ((𝜑𝑟 ∈ ℝ+) → (∀𝑥 ∈ (𝑤𝐴)𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟) → (∃𝑘 ∈ ℝ (𝑘(,]+∞) ⊆ 𝑤 → ∃𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟))))
228189, 227syld 47 . . . . . . . . . . 11 ((𝜑𝑟 ∈ ℝ+) → (((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟) → (∃𝑘 ∈ ℝ (𝑘(,]+∞) ⊆ 𝑤 → ∃𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟))))
229228com23 86 . . . . . . . . . 10 ((𝜑𝑟 ∈ ℝ+) → (∃𝑘 ∈ ℝ (𝑘(,]+∞) ⊆ 𝑤 → (((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟) → ∃𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟))))
230171, 229syl5 34 . . . . . . . . 9 ((𝜑𝑟 ∈ ℝ+) → ((𝑤 ∈ (ordTop‘ ≤ ) ∧ +∞ ∈ (𝑤𝐴)) → (((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟) → ∃𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟))))
231230impl 455 . . . . . . . 8 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑤 ∈ (ordTop‘ ≤ )) ∧ +∞ ∈ (𝑤𝐴)) → (((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟) → ∃𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟)))
232231expimpd 453 . . . . . . 7 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑤 ∈ (ordTop‘ ≤ )) → ((+∞ ∈ (𝑤𝐴) ∧ ((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟)) → ∃𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟)))
233232rexlimdva 3133 . . . . . 6 ((𝜑𝑟 ∈ ℝ+) → (∃𝑤 ∈ (ordTop‘ ≤ )(+∞ ∈ (𝑤𝐴) ∧ ((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟)) → ∃𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟)))
234233adantlr 715 . . . . 5 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → (∃𝑤 ∈ (ordTop‘ ≤ )(+∞ ∈ (𝑤𝐴) ∧ ((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟)) → ∃𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟)))
235168, 234mpd 15 . . . 4 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → ∃𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟))
236235ralrimiva 3124 . . 3 ((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) → ∀𝑟 ∈ ℝ+𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟))
23726, 32, 14rlim2lt 15404 . . . 4 (𝜑 → ((𝑥𝐵𝑅) ⇝𝑟 𝐶 ↔ ∀𝑟 ∈ ℝ+𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟)))
238237adantr 480 . . 3 ((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) → ((𝑥𝐵𝑅) ⇝𝑟 𝐶 ↔ ∀𝑟 ∈ ℝ+𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟)))
239236, 238mpbird 257 . 2 ((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) → (𝑥𝐵𝑅) ⇝𝑟 𝐶)
240142, 239impbida 800 1 (𝜑 → ((𝑥𝐵𝑅) ⇝𝑟 𝐶 ↔ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wrex 3056  {crab 3395  Vcvv 3436  cun 3900  cin 3901  wss 3902  {csn 4576   class class class wbr 5091  cmpt 5172  ccnv 5615  dom cdm 5616  ran crn 5617  cres 5618  cima 5619  ccom 5620  Fun wfun 6475  wf 6477  cfv 6481  (class class class)co 7346  cc 11004  cr 11005  +∞cpnf 11143  *cxr 11145   < clt 11146  cle 11147  cmin 11344  +crp 12890  (,]cioc 13246  abscabs 15141  𝑟 crli 15392  t crest 17324  TopOpenctopn 17325  ordTopcordt 17403  ∞Metcxmet 21277  ballcbl 21279  fldccnfld 21292  Topctop 22809  TopOnctopon 22826   CnP ccnp 23141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fi 9295  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ioc 13250  df-ico 13251  df-icc 13252  df-fz 13408  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-rlim 15396  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-mulr 17175  df-starv 17176  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-rest 17326  df-topn 17327  df-topgen 17347  df-ordt 17405  df-ps 18472  df-tsr 18473  df-psmet 21284  df-xmet 21285  df-met 21286  df-bl 21287  df-mopn 21288  df-cnfld 21293  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-cnp 23144  df-xms 24236  df-ms 24237
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator