MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrlimcnp Structured version   Visualization version   GIF version

Theorem xrlimcnp 26128
Description: Relate a limit of a real-valued sequence at infinity to the continuity of the corresponding extended real function at +∞. Since any 𝑟 limit can be written in the form on the left side of the implication, this shows that real limits are a special case of topological continuity at a point. (Contributed by Mario Carneiro, 8-Sep-2015.)
Hypotheses
Ref Expression
xrlimcnp.a (𝜑𝐴 = (𝐵 ∪ {+∞}))
xrlimcnp.b (𝜑𝐵 ⊆ ℝ)
xrlimcnp.r ((𝜑𝑥𝐴) → 𝑅 ∈ ℂ)
xrlimcnp.c (𝑥 = +∞ → 𝑅 = 𝐶)
xrlimcnp.j 𝐽 = (TopOpen‘ℂfld)
xrlimcnp.k 𝐾 = ((ordTop‘ ≤ ) ↾t 𝐴)
Assertion
Ref Expression
xrlimcnp (𝜑 → ((𝑥𝐵𝑅) ⇝𝑟 𝐶 ↔ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)))
Distinct variable groups:   𝑥,𝐵   𝜑,𝑥   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝑅(𝑥)   𝐽(𝑥)   𝐾(𝑥)

Proof of Theorem xrlimcnp
Dummy variables 𝑘 𝑟 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrlimcnp.r . . . . 5 ((𝜑𝑥𝐴) → 𝑅 ∈ ℂ)
21fmpttd 6981 . . . 4 (𝜑 → (𝑥𝐴𝑅):𝐴⟶ℂ)
32adantr 481 . . 3 ((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) → (𝑥𝐴𝑅):𝐴⟶ℂ)
4 eqid 2738 . . . . . . . 8 (𝑥𝐴𝑅) = (𝑥𝐴𝑅)
5 xrlimcnp.c . . . . . . . 8 (𝑥 = +∞ → 𝑅 = 𝐶)
6 ssun2 4106 . . . . . . . . . 10 {+∞} ⊆ (𝐵 ∪ {+∞})
7 pnfex 11038 . . . . . . . . . . 11 +∞ ∈ V
87snid 4597 . . . . . . . . . 10 +∞ ∈ {+∞}
96, 8sselii 3917 . . . . . . . . 9 +∞ ∈ (𝐵 ∪ {+∞})
10 xrlimcnp.a . . . . . . . . 9 (𝜑𝐴 = (𝐵 ∪ {+∞}))
119, 10eleqtrrid 2846 . . . . . . . 8 (𝜑 → +∞ ∈ 𝐴)
125eleq1d 2823 . . . . . . . . 9 (𝑥 = +∞ → (𝑅 ∈ ℂ ↔ 𝐶 ∈ ℂ))
131ralrimiva 3108 . . . . . . . . 9 (𝜑 → ∀𝑥𝐴 𝑅 ∈ ℂ)
1412, 13, 11rspcdva 3561 . . . . . . . 8 (𝜑𝐶 ∈ ℂ)
154, 5, 11, 14fvmptd3 6890 . . . . . . 7 (𝜑 → ((𝑥𝐴𝑅)‘+∞) = 𝐶)
1615ad2antrr 723 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) ∧ 𝑦𝐽) → ((𝑥𝐴𝑅)‘+∞) = 𝐶)
1716eleq1d 2823 . . . . 5 (((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) ∧ 𝑦𝐽) → (((𝑥𝐴𝑅)‘+∞) ∈ 𝑦𝐶𝑦))
18 cnxmet 23946 . . . . . . . 8 (abs ∘ − ) ∈ (∞Met‘ℂ)
19 xrlimcnp.j . . . . . . . . . 10 𝐽 = (TopOpen‘ℂfld)
2019cnfldtopn 23955 . . . . . . . . 9 𝐽 = (MetOpen‘(abs ∘ − ))
2120mopni2 23659 . . . . . . . 8 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑦𝐽𝐶𝑦) → ∃𝑟 ∈ ℝ+ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)
2218, 21mp3an1 1447 . . . . . . 7 ((𝑦𝐽𝐶𝑦) → ∃𝑟 ∈ ℝ+ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)
23 ssun1 4105 . . . . . . . . . . . . 13 𝐵 ⊆ (𝐵 ∪ {+∞})
2423, 10sseqtrrid 3973 . . . . . . . . . . . 12 (𝜑𝐵𝐴)
25 ssralv 3986 . . . . . . . . . . . 12 (𝐵𝐴 → (∀𝑥𝐴 𝑅 ∈ ℂ → ∀𝑥𝐵 𝑅 ∈ ℂ))
2624, 13, 25sylc 65 . . . . . . . . . . 11 (𝜑 → ∀𝑥𝐵 𝑅 ∈ ℂ)
2726ad2antrr 723 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) → ∀𝑥𝐵 𝑅 ∈ ℂ)
28 simprl 768 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) → 𝑟 ∈ ℝ+)
29 simplr 766 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) → (𝑥𝐵𝑅) ⇝𝑟 𝐶)
3027, 28, 29rlimi 15232 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) → ∃𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))
31 letop 22367 . . . . . . . . . . . . . 14 (ordTop‘ ≤ ) ∈ Top
32 xrlimcnp.b . . . . . . . . . . . . . . . . . . 19 (𝜑𝐵 ⊆ ℝ)
33 ressxr 11029 . . . . . . . . . . . . . . . . . . 19 ℝ ⊆ ℝ*
3432, 33sstrdi 3932 . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ⊆ ℝ*)
35 pnfxr 11039 . . . . . . . . . . . . . . . . . . . 20 +∞ ∈ ℝ*
3635a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → +∞ ∈ ℝ*)
3736snssd 4742 . . . . . . . . . . . . . . . . . 18 (𝜑 → {+∞} ⊆ ℝ*)
3834, 37unssd 4119 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐵 ∪ {+∞}) ⊆ ℝ*)
3910, 38eqsstrd 3958 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ⊆ ℝ*)
40 xrex 12737 . . . . . . . . . . . . . . . . 17 * ∈ V
4140ssex 5243 . . . . . . . . . . . . . . . 16 (𝐴 ⊆ ℝ*𝐴 ∈ V)
4239, 41syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ V)
4342ad2antrr 723 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → 𝐴 ∈ V)
44 iocpnfordt 22376 . . . . . . . . . . . . . . 15 (𝑘(,]+∞) ∈ (ordTop‘ ≤ )
4544a1i 11 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → (𝑘(,]+∞) ∈ (ordTop‘ ≤ ))
46 elrestr 17149 . . . . . . . . . . . . . 14 (((ordTop‘ ≤ ) ∈ Top ∧ 𝐴 ∈ V ∧ (𝑘(,]+∞) ∈ (ordTop‘ ≤ )) → ((𝑘(,]+∞) ∩ 𝐴) ∈ ((ordTop‘ ≤ ) ↾t 𝐴))
4731, 43, 45, 46mp3an2i 1465 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → ((𝑘(,]+∞) ∩ 𝐴) ∈ ((ordTop‘ ≤ ) ↾t 𝐴))
48 xrlimcnp.k . . . . . . . . . . . . 13 𝐾 = ((ordTop‘ ≤ ) ↾t 𝐴)
4947, 48eleqtrrdi 2850 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → ((𝑘(,]+∞) ∩ 𝐴) ∈ 𝐾)
50 simprl 768 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → 𝑘 ∈ ℝ)
5150rexrd 11035 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → 𝑘 ∈ ℝ*)
5235a1i 11 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → +∞ ∈ ℝ*)
5350ltpnfd 12867 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → 𝑘 < +∞)
54 ubioc1 13142 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑘 < +∞) → +∞ ∈ (𝑘(,]+∞))
5551, 52, 53, 54syl3anc 1370 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → +∞ ∈ (𝑘(,]+∞))
5611ad2antrr 723 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → +∞ ∈ 𝐴)
5755, 56elind 4127 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → +∞ ∈ ((𝑘(,]+∞) ∩ 𝐴))
58 simplr 766 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → 𝑘 ∈ ℝ)
5958rexrd 11035 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → 𝑘 ∈ ℝ*)
60 elioc1 13131 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑘 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑥 ∈ (𝑘(,]+∞) ↔ (𝑥 ∈ ℝ*𝑘 < 𝑥𝑥 ≤ +∞)))
6159, 35, 60sylancl 586 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → (𝑥 ∈ (𝑘(,]+∞) ↔ (𝑥 ∈ ℝ*𝑘 < 𝑥𝑥 ≤ +∞)))
62 simp2 1136 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℝ*𝑘 < 𝑥𝑥 ≤ +∞) → 𝑘 < 𝑥)
6361, 62syl6bi 252 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → (𝑥 ∈ (𝑘(,]+∞) → 𝑘 < 𝑥))
6432ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) → 𝐵 ⊆ ℝ)
6564sselda 3920 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → 𝑥 ∈ ℝ)
66 ltle 11073 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑘 < 𝑥𝑘𝑥))
6758, 65, 66syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → (𝑘 < 𝑥𝑘𝑥))
6863, 67syld 47 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → (𝑥 ∈ (𝑘(,]+∞) → 𝑘𝑥))
6918a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → (abs ∘ − ) ∈ (∞Met‘ℂ))
70 simprl 768 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) → 𝑟 ∈ ℝ+)
7170ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → 𝑟 ∈ ℝ+)
72 rpxr 12749 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
7371, 72syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → 𝑟 ∈ ℝ*)
7414ad3antrrr 727 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → 𝐶 ∈ ℂ)
7526ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) → ∀𝑥𝐵 𝑅 ∈ ℂ)
7675r19.21bi 3133 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → 𝑅 ∈ ℂ)
77 elbl3 23555 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑟 ∈ ℝ*) ∧ (𝐶 ∈ ℂ ∧ 𝑅 ∈ ℂ)) → (𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ (𝑅(abs ∘ − )𝐶) < 𝑟))
7869, 73, 74, 76, 77syl22anc 836 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → (𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ (𝑅(abs ∘ − )𝐶) < 𝑟))
79 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (abs ∘ − ) = (abs ∘ − )
8079cnmetdval 23944 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑅 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝑅(abs ∘ − )𝐶) = (abs‘(𝑅𝐶)))
8176, 74, 80syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → (𝑅(abs ∘ − )𝐶) = (abs‘(𝑅𝐶)))
8281breq1d 5083 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → ((𝑅(abs ∘ − )𝐶) < 𝑟 ↔ (abs‘(𝑅𝐶)) < 𝑟))
8378, 82bitrd 278 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → (𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ (abs‘(𝑅𝐶)) < 𝑟))
8483biimprd 247 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → ((abs‘(𝑅𝐶)) < 𝑟𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
8568, 84imim12d 81 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → ((𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟) → (𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟))))
8685ralimdva 3103 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) → (∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟) → ∀𝑥𝐵 (𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟))))
8786impr 455 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → ∀𝑥𝐵 (𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
8814ad2antrr 723 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → 𝐶 ∈ ℂ)
89 simplrl 774 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → 𝑟 ∈ ℝ+)
90 blcntr 23576 . . . . . . . . . . . . . . . . . . . . 21 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐶 ∈ ℂ ∧ 𝑟 ∈ ℝ+) → 𝐶 ∈ (𝐶(ball‘(abs ∘ − ))𝑟))
9118, 88, 89, 90mp3an2i 1465 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → 𝐶 ∈ (𝐶(ball‘(abs ∘ − ))𝑟))
9291a1d 25 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → (+∞ ∈ (𝑘(,]+∞) → 𝐶 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
93 eleq1 2826 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = +∞ → (𝑥 ∈ (𝑘(,]+∞) ↔ +∞ ∈ (𝑘(,]+∞)))
945eleq1d 2823 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = +∞ → (𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ 𝐶 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
9593, 94imbi12d 345 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = +∞ → ((𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) ↔ (+∞ ∈ (𝑘(,]+∞) → 𝐶 ∈ (𝐶(ball‘(abs ∘ − ))𝑟))))
967, 95ralsn 4617 . . . . . . . . . . . . . . . . . . 19 (∀𝑥 ∈ {+∞} (𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) ↔ (+∞ ∈ (𝑘(,]+∞) → 𝐶 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
9792, 96sylibr 233 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → ∀𝑥 ∈ {+∞} (𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
98 ralunb 4124 . . . . . . . . . . . . . . . . . 18 (∀𝑥 ∈ (𝐵 ∪ {+∞})(𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) ↔ (∀𝑥𝐵 (𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) ∧ ∀𝑥 ∈ {+∞} (𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟))))
9987, 97, 98sylanbrc 583 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → ∀𝑥 ∈ (𝐵 ∪ {+∞})(𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
10010ad2antrr 723 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → 𝐴 = (𝐵 ∪ {+∞}))
101100raleqdv 3346 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → (∀𝑥𝐴 (𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) ↔ ∀𝑥 ∈ (𝐵 ∪ {+∞})(𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟))))
10299, 101mpbird 256 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → ∀𝑥𝐴 (𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
103 ss2rab 4003 . . . . . . . . . . . . . . . 16 ({𝑥𝐴𝑥 ∈ (𝑘(,]+∞)} ⊆ {𝑥𝐴𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)} ↔ ∀𝑥𝐴 (𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
104102, 103sylibr 233 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → {𝑥𝐴𝑥 ∈ (𝑘(,]+∞)} ⊆ {𝑥𝐴𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)})
105 incom 4134 . . . . . . . . . . . . . . . 16 ((𝑘(,]+∞) ∩ 𝐴) = (𝐴 ∩ (𝑘(,]+∞))
106 dfin5 3894 . . . . . . . . . . . . . . . 16 (𝐴 ∩ (𝑘(,]+∞)) = {𝑥𝐴𝑥 ∈ (𝑘(,]+∞)}
107105, 106eqtri 2766 . . . . . . . . . . . . . . 15 ((𝑘(,]+∞) ∩ 𝐴) = {𝑥𝐴𝑥 ∈ (𝑘(,]+∞)}
1084mptpreima 6134 . . . . . . . . . . . . . . 15 ((𝑥𝐴𝑅) “ (𝐶(ball‘(abs ∘ − ))𝑟)) = {𝑥𝐴𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)}
109104, 107, 1083sstr4g 3965 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → ((𝑘(,]+∞) ∩ 𝐴) ⊆ ((𝑥𝐴𝑅) “ (𝐶(ball‘(abs ∘ − ))𝑟)))
110 funmpt 6464 . . . . . . . . . . . . . . 15 Fun (𝑥𝐴𝑅)
111 inss2 4163 . . . . . . . . . . . . . . . 16 ((𝑘(,]+∞) ∩ 𝐴) ⊆ 𝐴
1122ad2antrr 723 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → (𝑥𝐴𝑅):𝐴⟶ℂ)
113112fdmd 6603 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → dom (𝑥𝐴𝑅) = 𝐴)
114111, 113sseqtrrid 3973 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → ((𝑘(,]+∞) ∩ 𝐴) ⊆ dom (𝑥𝐴𝑅))
115 funimass3 6923 . . . . . . . . . . . . . . 15 ((Fun (𝑥𝐴𝑅) ∧ ((𝑘(,]+∞) ∩ 𝐴) ⊆ dom (𝑥𝐴𝑅)) → (((𝑥𝐴𝑅) “ ((𝑘(,]+∞) ∩ 𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ ((𝑘(,]+∞) ∩ 𝐴) ⊆ ((𝑥𝐴𝑅) “ (𝐶(ball‘(abs ∘ − ))𝑟))))
116110, 114, 115sylancr 587 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → (((𝑥𝐴𝑅) “ ((𝑘(,]+∞) ∩ 𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ ((𝑘(,]+∞) ∩ 𝐴) ⊆ ((𝑥𝐴𝑅) “ (𝐶(ball‘(abs ∘ − ))𝑟))))
117109, 116mpbird 256 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → ((𝑥𝐴𝑅) “ ((𝑘(,]+∞) ∩ 𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟))
118 simplrr 775 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)
119117, 118sstrd 3930 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → ((𝑥𝐴𝑅) “ ((𝑘(,]+∞) ∩ 𝐴)) ⊆ 𝑦)
120 eleq2 2827 . . . . . . . . . . . . . 14 (𝑧 = ((𝑘(,]+∞) ∩ 𝐴) → (+∞ ∈ 𝑧 ↔ +∞ ∈ ((𝑘(,]+∞) ∩ 𝐴)))
121 imaeq2 5958 . . . . . . . . . . . . . . 15 (𝑧 = ((𝑘(,]+∞) ∩ 𝐴) → ((𝑥𝐴𝑅) “ 𝑧) = ((𝑥𝐴𝑅) “ ((𝑘(,]+∞) ∩ 𝐴)))
122121sseq1d 3951 . . . . . . . . . . . . . 14 (𝑧 = ((𝑘(,]+∞) ∩ 𝐴) → (((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦 ↔ ((𝑥𝐴𝑅) “ ((𝑘(,]+∞) ∩ 𝐴)) ⊆ 𝑦))
123120, 122anbi12d 631 . . . . . . . . . . . . 13 (𝑧 = ((𝑘(,]+∞) ∩ 𝐴) → ((+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦) ↔ (+∞ ∈ ((𝑘(,]+∞) ∩ 𝐴) ∧ ((𝑥𝐴𝑅) “ ((𝑘(,]+∞) ∩ 𝐴)) ⊆ 𝑦)))
124123rspcev 3559 . . . . . . . . . . . 12 ((((𝑘(,]+∞) ∩ 𝐴) ∈ 𝐾 ∧ (+∞ ∈ ((𝑘(,]+∞) ∩ 𝐴) ∧ ((𝑥𝐴𝑅) “ ((𝑘(,]+∞) ∩ 𝐴)) ⊆ 𝑦)) → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦))
12549, 57, 119, 124syl12anc 834 . . . . . . . . . . 11 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦))
126125rexlimdvaa 3212 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) → (∃𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟) → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦)))
127126adantlr 712 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) → (∃𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟) → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦)))
12830, 127mpd 15 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦))
129128rexlimdvaa 3212 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) → (∃𝑟 ∈ ℝ+ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦 → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦)))
13022, 129syl5 34 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) → ((𝑦𝐽𝐶𝑦) → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦)))
131130expdimp 453 . . . . 5 (((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) ∧ 𝑦𝐽) → (𝐶𝑦 → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦)))
13217, 131sylbid 239 . . . 4 (((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) ∧ 𝑦𝐽) → (((𝑥𝐴𝑅)‘+∞) ∈ 𝑦 → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦)))
133132ralrimiva 3108 . . 3 ((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) → ∀𝑦𝐽 (((𝑥𝐴𝑅)‘+∞) ∈ 𝑦 → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦)))
134 letopon 22366 . . . . . . 7 (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)
135 resttopon 22322 . . . . . . 7 (((ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) ∧ 𝐴 ⊆ ℝ*) → ((ordTop‘ ≤ ) ↾t 𝐴) ∈ (TopOn‘𝐴))
136134, 39, 135sylancr 587 . . . . . 6 (𝜑 → ((ordTop‘ ≤ ) ↾t 𝐴) ∈ (TopOn‘𝐴))
13748, 136eqeltrid 2843 . . . . 5 (𝜑𝐾 ∈ (TopOn‘𝐴))
13819cnfldtopon 23956 . . . . . 6 𝐽 ∈ (TopOn‘ℂ)
139138a1i 11 . . . . 5 (𝜑𝐽 ∈ (TopOn‘ℂ))
140 iscnp 22398 . . . . 5 ((𝐾 ∈ (TopOn‘𝐴) ∧ 𝐽 ∈ (TopOn‘ℂ) ∧ +∞ ∈ 𝐴) → ((𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞) ↔ ((𝑥𝐴𝑅):𝐴⟶ℂ ∧ ∀𝑦𝐽 (((𝑥𝐴𝑅)‘+∞) ∈ 𝑦 → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦)))))
141137, 139, 11, 140syl3anc 1370 . . . 4 (𝜑 → ((𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞) ↔ ((𝑥𝐴𝑅):𝐴⟶ℂ ∧ ∀𝑦𝐽 (((𝑥𝐴𝑅)‘+∞) ∈ 𝑦 → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦)))))
142141adantr 481 . . 3 ((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) → ((𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞) ↔ ((𝑥𝐴𝑅):𝐴⟶ℂ ∧ ∀𝑦𝐽 (((𝑥𝐴𝑅)‘+∞) ∈ 𝑦 → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦)))))
1433, 133, 142mpbir2and 710 . 2 ((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) → (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞))
144 simplr 766 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞))
14514ad2antrr 723 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → 𝐶 ∈ ℂ)
14672adantl 482 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ*)
14720blopn 23666 . . . . . . . 8 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐶 ∈ ℂ ∧ 𝑟 ∈ ℝ*) → (𝐶(ball‘(abs ∘ − ))𝑟) ∈ 𝐽)
14818, 145, 146, 147mp3an2i 1465 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → (𝐶(ball‘(abs ∘ − ))𝑟) ∈ 𝐽)
14915ad2antrr 723 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → ((𝑥𝐴𝑅)‘+∞) = 𝐶)
150 simpr 485 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ+)
15118, 145, 150, 90mp3an2i 1465 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → 𝐶 ∈ (𝐶(ball‘(abs ∘ − ))𝑟))
152149, 151eqeltrd 2839 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → ((𝑥𝐴𝑅)‘+∞) ∈ (𝐶(ball‘(abs ∘ − ))𝑟))
153 cnpimaex 22417 . . . . . . 7 (((𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞) ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ∈ 𝐽 ∧ ((𝑥𝐴𝑅)‘+∞) ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟)))
154144, 148, 152, 153syl3anc 1370 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟)))
155 vex 3433 . . . . . . . . 9 𝑤 ∈ V
156155inex1 5239 . . . . . . . 8 (𝑤𝐴) ∈ V
157156a1i 11 . . . . . . 7 ((((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑤 ∈ (ordTop‘ ≤ )) → (𝑤𝐴) ∈ V)
15848eleq2i 2830 . . . . . . . 8 (𝑧𝐾𝑧 ∈ ((ordTop‘ ≤ ) ↾t 𝐴))
15942ad2antrr 723 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → 𝐴 ∈ V)
160 elrest 17148 . . . . . . . . 9 (((ordTop‘ ≤ ) ∈ Top ∧ 𝐴 ∈ V) → (𝑧 ∈ ((ordTop‘ ≤ ) ↾t 𝐴) ↔ ∃𝑤 ∈ (ordTop‘ ≤ )𝑧 = (𝑤𝐴)))
16131, 159, 160sylancr 587 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → (𝑧 ∈ ((ordTop‘ ≤ ) ↾t 𝐴) ↔ ∃𝑤 ∈ (ordTop‘ ≤ )𝑧 = (𝑤𝐴)))
162158, 161syl5bb 283 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → (𝑧𝐾 ↔ ∃𝑤 ∈ (ordTop‘ ≤ )𝑧 = (𝑤𝐴)))
163 eleq2 2827 . . . . . . . . 9 (𝑧 = (𝑤𝐴) → (+∞ ∈ 𝑧 ↔ +∞ ∈ (𝑤𝐴)))
164 imaeq2 5958 . . . . . . . . . 10 (𝑧 = (𝑤𝐴) → ((𝑥𝐴𝑅) “ 𝑧) = ((𝑥𝐴𝑅) “ (𝑤𝐴)))
165164sseq1d 3951 . . . . . . . . 9 (𝑧 = (𝑤𝐴) → (((𝑥𝐴𝑅) “ 𝑧) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ ((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟)))
166163, 165anbi12d 631 . . . . . . . 8 (𝑧 = (𝑤𝐴) → ((+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟)) ↔ (+∞ ∈ (𝑤𝐴) ∧ ((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟))))
167166adantl 482 . . . . . . 7 ((((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑧 = (𝑤𝐴)) → ((+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟)) ↔ (+∞ ∈ (𝑤𝐴) ∧ ((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟))))
168157, 162, 167rexxfr2d 5332 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → (∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟)) ↔ ∃𝑤 ∈ (ordTop‘ ≤ )(+∞ ∈ (𝑤𝐴) ∧ ((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟))))
169154, 168mpbid 231 . . . . 5 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → ∃𝑤 ∈ (ordTop‘ ≤ )(+∞ ∈ (𝑤𝐴) ∧ ((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟)))
170 elinel1 4128 . . . . . . . . . . 11 (+∞ ∈ (𝑤𝐴) → +∞ ∈ 𝑤)
171 pnfnei 22381 . . . . . . . . . . 11 ((𝑤 ∈ (ordTop‘ ≤ ) ∧ +∞ ∈ 𝑤) → ∃𝑘 ∈ ℝ (𝑘(,]+∞) ⊆ 𝑤)
172170, 171sylan2 593 . . . . . . . . . 10 ((𝑤 ∈ (ordTop‘ ≤ ) ∧ +∞ ∈ (𝑤𝐴)) → ∃𝑘 ∈ ℝ (𝑘(,]+∞) ⊆ 𝑤)
173 df-ima 5597 . . . . . . . . . . . . . . . 16 ((𝑥𝐴𝑅) “ (𝑤𝐴)) = ran ((𝑥𝐴𝑅) ↾ (𝑤𝐴))
174 inss2 4163 . . . . . . . . . . . . . . . . . 18 (𝑤𝐴) ⊆ 𝐴
175 resmpt 5938 . . . . . . . . . . . . . . . . . 18 ((𝑤𝐴) ⊆ 𝐴 → ((𝑥𝐴𝑅) ↾ (𝑤𝐴)) = (𝑥 ∈ (𝑤𝐴) ↦ 𝑅))
176174, 175ax-mp 5 . . . . . . . . . . . . . . . . 17 ((𝑥𝐴𝑅) ↾ (𝑤𝐴)) = (𝑥 ∈ (𝑤𝐴) ↦ 𝑅)
177176rneqi 5839 . . . . . . . . . . . . . . . 16 ran ((𝑥𝐴𝑅) ↾ (𝑤𝐴)) = ran (𝑥 ∈ (𝑤𝐴) ↦ 𝑅)
178173, 177eqtri 2766 . . . . . . . . . . . . . . 15 ((𝑥𝐴𝑅) “ (𝑤𝐴)) = ran (𝑥 ∈ (𝑤𝐴) ↦ 𝑅)
179178sseq1i 3948 . . . . . . . . . . . . . 14 (((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ ran (𝑥 ∈ (𝑤𝐴) ↦ 𝑅) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟))
180 dfss3 3908 . . . . . . . . . . . . . 14 (ran (𝑥 ∈ (𝑤𝐴) ↦ 𝑅) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ ∀𝑧 ∈ ran (𝑥 ∈ (𝑤𝐴) ↦ 𝑅)𝑧 ∈ (𝐶(ball‘(abs ∘ − ))𝑟))
181179, 180bitri 274 . . . . . . . . . . . . 13 (((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ ∀𝑧 ∈ ran (𝑥 ∈ (𝑤𝐴) ↦ 𝑅)𝑧 ∈ (𝐶(ball‘(abs ∘ − ))𝑟))
18213adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑟 ∈ ℝ+) → ∀𝑥𝐴 𝑅 ∈ ℂ)
183 ssralv 3986 . . . . . . . . . . . . . . . 16 ((𝑤𝐴) ⊆ 𝐴 → (∀𝑥𝐴 𝑅 ∈ ℂ → ∀𝑥 ∈ (𝑤𝐴)𝑅 ∈ ℂ))
184174, 182, 183mpsyl 68 . . . . . . . . . . . . . . 15 ((𝜑𝑟 ∈ ℝ+) → ∀𝑥 ∈ (𝑤𝐴)𝑅 ∈ ℂ)
185 eqid 2738 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝑤𝐴) ↦ 𝑅) = (𝑥 ∈ (𝑤𝐴) ↦ 𝑅)
186 eleq1 2826 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑅 → (𝑧 ∈ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
187185, 186ralrnmptw 6962 . . . . . . . . . . . . . . 15 (∀𝑥 ∈ (𝑤𝐴)𝑅 ∈ ℂ → (∀𝑧 ∈ ran (𝑥 ∈ (𝑤𝐴) ↦ 𝑅)𝑧 ∈ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ ∀𝑥 ∈ (𝑤𝐴)𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
188184, 187syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑟 ∈ ℝ+) → (∀𝑧 ∈ ran (𝑥 ∈ (𝑤𝐴) ↦ 𝑅)𝑧 ∈ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ ∀𝑥 ∈ (𝑤𝐴)𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
189188biimpd 228 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ ℝ+) → (∀𝑧 ∈ ran (𝑥 ∈ (𝑤𝐴) ↦ 𝑅)𝑧 ∈ (𝐶(ball‘(abs ∘ − ))𝑟) → ∀𝑥 ∈ (𝑤𝐴)𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
190181, 189syl5bi 241 . . . . . . . . . . . 12 ((𝜑𝑟 ∈ ℝ+) → (((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟) → ∀𝑥 ∈ (𝑤𝐴)𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
191 simplrr 775 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → (𝑘(,]+∞) ⊆ 𝑤)
19234ad3antrrr 727 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝐵 ⊆ ℝ*)
193 simprl 768 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝑥𝐵)
194192, 193sseldd 3921 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝑥 ∈ ℝ*)
195 simprr 770 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝑘 < 𝑥)
196 pnfge 12876 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 ∈ ℝ*𝑥 ≤ +∞)
197194, 196syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝑥 ≤ +∞)
198 simplrl 774 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝑘 ∈ ℝ)
199198rexrd 11035 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝑘 ∈ ℝ*)
200199, 35, 60sylancl 586 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → (𝑥 ∈ (𝑘(,]+∞) ↔ (𝑥 ∈ ℝ*𝑘 < 𝑥𝑥 ≤ +∞)))
201194, 195, 197, 200mpbir3and 1341 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝑥 ∈ (𝑘(,]+∞))
202191, 201sseldd 3921 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝑥𝑤)
20324ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) → 𝐵𝐴)
204203sselda 3920 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ 𝑥𝐵) → 𝑥𝐴)
205204adantrr 714 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝑥𝐴)
206202, 205elind 4127 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝑥 ∈ (𝑤𝐴))
207206ex 413 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) → ((𝑥𝐵𝑘 < 𝑥) → 𝑥 ∈ (𝑤𝐴)))
208207imim1d 82 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) → ((𝑥 ∈ (𝑤𝐴) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) → ((𝑥𝐵𝑘 < 𝑥) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟))))
20918a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → (abs ∘ − ) ∈ (∞Met‘ℂ))
21072adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ*)
211210ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝑟 ∈ ℝ*)
21214ad3antrrr 727 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝐶 ∈ ℂ)
21326ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) → ∀𝑥𝐵 𝑅 ∈ ℂ)
214213r19.21bi 3133 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ 𝑥𝐵) → 𝑅 ∈ ℂ)
215214adantrr 714 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝑅 ∈ ℂ)
216209, 211, 212, 215, 77syl22anc 836 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → (𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ (𝑅(abs ∘ − )𝐶) < 𝑟))
217215, 212, 80syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → (𝑅(abs ∘ − )𝐶) = (abs‘(𝑅𝐶)))
218217breq1d 5083 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → ((𝑅(abs ∘ − )𝐶) < 𝑟 ↔ (abs‘(𝑅𝐶)) < 𝑟))
219216, 218bitrd 278 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → (𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ (abs‘(𝑅𝐶)) < 𝑟))
220219pm5.74da 801 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) → (((𝑥𝐵𝑘 < 𝑥) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) ↔ ((𝑥𝐵𝑘 < 𝑥) → (abs‘(𝑅𝐶)) < 𝑟)))
221208, 220sylibd 238 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) → ((𝑥 ∈ (𝑤𝐴) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) → ((𝑥𝐵𝑘 < 𝑥) → (abs‘(𝑅𝐶)) < 𝑟)))
222221exp4a 432 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) → ((𝑥 ∈ (𝑤𝐴) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) → (𝑥𝐵 → (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟))))
223222ralimdv2 3102 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) → (∀𝑥 ∈ (𝑤𝐴)𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟) → ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟)))
224223imp 407 . . . . . . . . . . . . . . . 16 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ ∀𝑥 ∈ (𝑤𝐴)𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) → ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟))
225224an32s 649 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ ∀𝑥 ∈ (𝑤𝐴)𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) → ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟))
226225expr 457 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ ∀𝑥 ∈ (𝑤𝐴)𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) ∧ 𝑘 ∈ ℝ) → ((𝑘(,]+∞) ⊆ 𝑤 → ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟)))
227226reximdva 3201 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ ∀𝑥 ∈ (𝑤𝐴)𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) → (∃𝑘 ∈ ℝ (𝑘(,]+∞) ⊆ 𝑤 → ∃𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟)))
228227ex 413 . . . . . . . . . . . 12 ((𝜑𝑟 ∈ ℝ+) → (∀𝑥 ∈ (𝑤𝐴)𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟) → (∃𝑘 ∈ ℝ (𝑘(,]+∞) ⊆ 𝑤 → ∃𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟))))
229190, 228syld 47 . . . . . . . . . . 11 ((𝜑𝑟 ∈ ℝ+) → (((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟) → (∃𝑘 ∈ ℝ (𝑘(,]+∞) ⊆ 𝑤 → ∃𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟))))
230229com23 86 . . . . . . . . . 10 ((𝜑𝑟 ∈ ℝ+) → (∃𝑘 ∈ ℝ (𝑘(,]+∞) ⊆ 𝑤 → (((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟) → ∃𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟))))
231172, 230syl5 34 . . . . . . . . 9 ((𝜑𝑟 ∈ ℝ+) → ((𝑤 ∈ (ordTop‘ ≤ ) ∧ +∞ ∈ (𝑤𝐴)) → (((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟) → ∃𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟))))
232231impl 456 . . . . . . . 8 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑤 ∈ (ordTop‘ ≤ )) ∧ +∞ ∈ (𝑤𝐴)) → (((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟) → ∃𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟)))
233232expimpd 454 . . . . . . 7 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑤 ∈ (ordTop‘ ≤ )) → ((+∞ ∈ (𝑤𝐴) ∧ ((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟)) → ∃𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟)))
234233rexlimdva 3211 . . . . . 6 ((𝜑𝑟 ∈ ℝ+) → (∃𝑤 ∈ (ordTop‘ ≤ )(+∞ ∈ (𝑤𝐴) ∧ ((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟)) → ∃𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟)))
235234adantlr 712 . . . . 5 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → (∃𝑤 ∈ (ordTop‘ ≤ )(+∞ ∈ (𝑤𝐴) ∧ ((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟)) → ∃𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟)))
236169, 235mpd 15 . . . 4 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → ∃𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟))
237236ralrimiva 3108 . . 3 ((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) → ∀𝑟 ∈ ℝ+𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟))
23826, 32, 14rlim2lt 15216 . . . 4 (𝜑 → ((𝑥𝐵𝑅) ⇝𝑟 𝐶 ↔ ∀𝑟 ∈ ℝ+𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟)))
239238adantr 481 . . 3 ((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) → ((𝑥𝐵𝑅) ⇝𝑟 𝐶 ↔ ∀𝑟 ∈ ℝ+𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟)))
240237, 239mpbird 256 . 2 ((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) → (𝑥𝐵𝑅) ⇝𝑟 𝐶)
241143, 240impbida 798 1 (𝜑 → ((𝑥𝐵𝑅) ⇝𝑟 𝐶 ↔ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wrex 3065  {crab 3068  Vcvv 3429  cun 3884  cin 3885  wss 3886  {csn 4561   class class class wbr 5073  cmpt 5156  ccnv 5583  dom cdm 5584  ran crn 5585  cres 5586  cima 5587  ccom 5588  Fun wfun 6420  wf 6422  cfv 6426  (class class class)co 7267  cc 10879  cr 10880  +∞cpnf 11016  *cxr 11018   < clt 11019  cle 11020  cmin 11215  +crp 12740  (,]cioc 13090  abscabs 14955  𝑟 crli 15204  t crest 17141  TopOpenctopn 17142  ordTopcordt 17220  ∞Metcxmet 20592  ballcbl 20594  fldccnfld 20607  Topctop 22052  TopOnctopon 22069   CnP ccnp 22386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5208  ax-sep 5221  ax-nul 5228  ax-pow 5286  ax-pr 5350  ax-un 7578  ax-cnex 10937  ax-resscn 10938  ax-1cn 10939  ax-icn 10940  ax-addcl 10941  ax-addrcl 10942  ax-mulcl 10943  ax-mulrcl 10944  ax-mulcom 10945  ax-addass 10946  ax-mulass 10947  ax-distr 10948  ax-i2m1 10949  ax-1ne0 10950  ax-1rid 10951  ax-rnegex 10952  ax-rrecex 10953  ax-cnre 10954  ax-pre-lttri 10955  ax-pre-lttrn 10956  ax-pre-ltadd 10957  ax-pre-mulgt0 10958  ax-pre-sup 10959
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-pss 3905  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5074  df-opab 5136  df-mpt 5157  df-tr 5191  df-id 5484  df-eprel 5490  df-po 5498  df-so 5499  df-fr 5539  df-we 5541  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-pred 6195  df-ord 6262  df-on 6263  df-lim 6264  df-suc 6265  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-riota 7224  df-ov 7270  df-oprab 7271  df-mpo 7272  df-om 7703  df-1st 7820  df-2nd 7821  df-frecs 8084  df-wrecs 8115  df-recs 8189  df-rdg 8228  df-1o 8284  df-er 8485  df-map 8604  df-pm 8605  df-en 8721  df-dom 8722  df-sdom 8723  df-fin 8724  df-fi 9157  df-sup 9188  df-inf 9189  df-pnf 11021  df-mnf 11022  df-xr 11023  df-ltxr 11024  df-le 11025  df-sub 11217  df-neg 11218  df-div 11643  df-nn 11984  df-2 12046  df-3 12047  df-4 12048  df-5 12049  df-6 12050  df-7 12051  df-8 12052  df-9 12053  df-n0 12244  df-z 12330  df-dec 12448  df-uz 12593  df-q 12699  df-rp 12741  df-xneg 12858  df-xadd 12859  df-xmul 12860  df-ioo 13093  df-ioc 13094  df-ico 13095  df-icc 13096  df-fz 13250  df-seq 13732  df-exp 13793  df-cj 14820  df-re 14821  df-im 14822  df-sqrt 14956  df-abs 14957  df-rlim 15208  df-struct 16858  df-slot 16893  df-ndx 16905  df-base 16923  df-plusg 16985  df-mulr 16986  df-starv 16987  df-tset 16991  df-ple 16992  df-ds 16994  df-unif 16995  df-rest 17143  df-topn 17144  df-topgen 17164  df-ordt 17222  df-ps 18294  df-tsr 18295  df-psmet 20599  df-xmet 20600  df-met 20601  df-bl 20602  df-mopn 20603  df-cnfld 20608  df-top 22053  df-topon 22070  df-topsp 22092  df-bases 22106  df-cnp 22389  df-xms 23483  df-ms 23484
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator