MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrlimcnp Structured version   Visualization version   GIF version

Theorem xrlimcnp 27012
Description: Relate a limit of a real-valued sequence at infinity to the continuity of the corresponding extended real function at +∞. Since any 𝑟 limit can be written in the form on the left side of the implication, this shows that real limits are a special case of topological continuity at a point. (Contributed by Mario Carneiro, 8-Sep-2015.)
Hypotheses
Ref Expression
xrlimcnp.a (𝜑𝐴 = (𝐵 ∪ {+∞}))
xrlimcnp.b (𝜑𝐵 ⊆ ℝ)
xrlimcnp.r ((𝜑𝑥𝐴) → 𝑅 ∈ ℂ)
xrlimcnp.c (𝑥 = +∞ → 𝑅 = 𝐶)
xrlimcnp.j 𝐽 = (TopOpen‘ℂfld)
xrlimcnp.k 𝐾 = ((ordTop‘ ≤ ) ↾t 𝐴)
Assertion
Ref Expression
xrlimcnp (𝜑 → ((𝑥𝐵𝑅) ⇝𝑟 𝐶 ↔ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)))
Distinct variable groups:   𝑥,𝐵   𝜑,𝑥   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝑅(𝑥)   𝐽(𝑥)   𝐾(𝑥)

Proof of Theorem xrlimcnp
Dummy variables 𝑘 𝑟 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrlimcnp.r . . . . 5 ((𝜑𝑥𝐴) → 𝑅 ∈ ℂ)
21fmpttd 7134 . . . 4 (𝜑 → (𝑥𝐴𝑅):𝐴⟶ℂ)
32adantr 480 . . 3 ((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) → (𝑥𝐴𝑅):𝐴⟶ℂ)
4 eqid 2736 . . . . . . . 8 (𝑥𝐴𝑅) = (𝑥𝐴𝑅)
5 xrlimcnp.c . . . . . . . 8 (𝑥 = +∞ → 𝑅 = 𝐶)
6 ssun2 4178 . . . . . . . . . 10 {+∞} ⊆ (𝐵 ∪ {+∞})
7 pnfex 11315 . . . . . . . . . . 11 +∞ ∈ V
87snid 4661 . . . . . . . . . 10 +∞ ∈ {+∞}
96, 8sselii 3979 . . . . . . . . 9 +∞ ∈ (𝐵 ∪ {+∞})
10 xrlimcnp.a . . . . . . . . 9 (𝜑𝐴 = (𝐵 ∪ {+∞}))
119, 10eleqtrrid 2847 . . . . . . . 8 (𝜑 → +∞ ∈ 𝐴)
125eleq1d 2825 . . . . . . . . 9 (𝑥 = +∞ → (𝑅 ∈ ℂ ↔ 𝐶 ∈ ℂ))
131ralrimiva 3145 . . . . . . . . 9 (𝜑 → ∀𝑥𝐴 𝑅 ∈ ℂ)
1412, 13, 11rspcdva 3622 . . . . . . . 8 (𝜑𝐶 ∈ ℂ)
154, 5, 11, 14fvmptd3 7038 . . . . . . 7 (𝜑 → ((𝑥𝐴𝑅)‘+∞) = 𝐶)
1615ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) ∧ 𝑦𝐽) → ((𝑥𝐴𝑅)‘+∞) = 𝐶)
1716eleq1d 2825 . . . . 5 (((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) ∧ 𝑦𝐽) → (((𝑥𝐴𝑅)‘+∞) ∈ 𝑦𝐶𝑦))
18 cnxmet 24794 . . . . . . . 8 (abs ∘ − ) ∈ (∞Met‘ℂ)
19 xrlimcnp.j . . . . . . . . . 10 𝐽 = (TopOpen‘ℂfld)
2019cnfldtopn 24803 . . . . . . . . 9 𝐽 = (MetOpen‘(abs ∘ − ))
2120mopni2 24507 . . . . . . . 8 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑦𝐽𝐶𝑦) → ∃𝑟 ∈ ℝ+ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)
2218, 21mp3an1 1449 . . . . . . 7 ((𝑦𝐽𝐶𝑦) → ∃𝑟 ∈ ℝ+ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)
23 ssun1 4177 . . . . . . . . . . . . 13 𝐵 ⊆ (𝐵 ∪ {+∞})
2423, 10sseqtrrid 4026 . . . . . . . . . . . 12 (𝜑𝐵𝐴)
25 ssralv 4051 . . . . . . . . . . . 12 (𝐵𝐴 → (∀𝑥𝐴 𝑅 ∈ ℂ → ∀𝑥𝐵 𝑅 ∈ ℂ))
2624, 13, 25sylc 65 . . . . . . . . . . 11 (𝜑 → ∀𝑥𝐵 𝑅 ∈ ℂ)
2726ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) → ∀𝑥𝐵 𝑅 ∈ ℂ)
28 simprl 770 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) → 𝑟 ∈ ℝ+)
29 simplr 768 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) → (𝑥𝐵𝑅) ⇝𝑟 𝐶)
3027, 28, 29rlimi 15550 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) → ∃𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))
31 letop 23215 . . . . . . . . . . . . . 14 (ordTop‘ ≤ ) ∈ Top
32 xrlimcnp.b . . . . . . . . . . . . . . . . . . 19 (𝜑𝐵 ⊆ ℝ)
33 ressxr 11306 . . . . . . . . . . . . . . . . . . 19 ℝ ⊆ ℝ*
3432, 33sstrdi 3995 . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ⊆ ℝ*)
35 pnfxr 11316 . . . . . . . . . . . . . . . . . . . 20 +∞ ∈ ℝ*
3635a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → +∞ ∈ ℝ*)
3736snssd 4808 . . . . . . . . . . . . . . . . . 18 (𝜑 → {+∞} ⊆ ℝ*)
3834, 37unssd 4191 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐵 ∪ {+∞}) ⊆ ℝ*)
3910, 38eqsstrd 4017 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ⊆ ℝ*)
40 xrex 13030 . . . . . . . . . . . . . . . . 17 * ∈ V
4140ssex 5320 . . . . . . . . . . . . . . . 16 (𝐴 ⊆ ℝ*𝐴 ∈ V)
4239, 41syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ V)
4342ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → 𝐴 ∈ V)
44 iocpnfordt 23224 . . . . . . . . . . . . . . 15 (𝑘(,]+∞) ∈ (ordTop‘ ≤ )
4544a1i 11 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → (𝑘(,]+∞) ∈ (ordTop‘ ≤ ))
46 elrestr 17474 . . . . . . . . . . . . . 14 (((ordTop‘ ≤ ) ∈ Top ∧ 𝐴 ∈ V ∧ (𝑘(,]+∞) ∈ (ordTop‘ ≤ )) → ((𝑘(,]+∞) ∩ 𝐴) ∈ ((ordTop‘ ≤ ) ↾t 𝐴))
4731, 43, 45, 46mp3an2i 1467 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → ((𝑘(,]+∞) ∩ 𝐴) ∈ ((ordTop‘ ≤ ) ↾t 𝐴))
48 xrlimcnp.k . . . . . . . . . . . . 13 𝐾 = ((ordTop‘ ≤ ) ↾t 𝐴)
4947, 48eleqtrrdi 2851 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → ((𝑘(,]+∞) ∩ 𝐴) ∈ 𝐾)
50 simprl 770 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → 𝑘 ∈ ℝ)
5150rexrd 11312 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → 𝑘 ∈ ℝ*)
5235a1i 11 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → +∞ ∈ ℝ*)
5350ltpnfd 13164 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → 𝑘 < +∞)
54 ubioc1 13441 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑘 < +∞) → +∞ ∈ (𝑘(,]+∞))
5551, 52, 53, 54syl3anc 1372 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → +∞ ∈ (𝑘(,]+∞))
5611ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → +∞ ∈ 𝐴)
5755, 56elind 4199 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → +∞ ∈ ((𝑘(,]+∞) ∩ 𝐴))
58 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → 𝑘 ∈ ℝ)
5958rexrd 11312 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → 𝑘 ∈ ℝ*)
60 elioc1 13430 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑘 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑥 ∈ (𝑘(,]+∞) ↔ (𝑥 ∈ ℝ*𝑘 < 𝑥𝑥 ≤ +∞)))
6159, 35, 60sylancl 586 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → (𝑥 ∈ (𝑘(,]+∞) ↔ (𝑥 ∈ ℝ*𝑘 < 𝑥𝑥 ≤ +∞)))
62 simp2 1137 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℝ*𝑘 < 𝑥𝑥 ≤ +∞) → 𝑘 < 𝑥)
6361, 62biimtrdi 253 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → (𝑥 ∈ (𝑘(,]+∞) → 𝑘 < 𝑥))
6432ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) → 𝐵 ⊆ ℝ)
6564sselda 3982 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → 𝑥 ∈ ℝ)
66 ltle 11350 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑘 < 𝑥𝑘𝑥))
6758, 65, 66syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → (𝑘 < 𝑥𝑘𝑥))
6863, 67syld 47 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → (𝑥 ∈ (𝑘(,]+∞) → 𝑘𝑥))
6918a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → (abs ∘ − ) ∈ (∞Met‘ℂ))
70 simprl 770 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) → 𝑟 ∈ ℝ+)
7170ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → 𝑟 ∈ ℝ+)
72 rpxr 13045 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
7371, 72syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → 𝑟 ∈ ℝ*)
7414ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → 𝐶 ∈ ℂ)
7526ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) → ∀𝑥𝐵 𝑅 ∈ ℂ)
7675r19.21bi 3250 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → 𝑅 ∈ ℂ)
77 elbl3 24403 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑟 ∈ ℝ*) ∧ (𝐶 ∈ ℂ ∧ 𝑅 ∈ ℂ)) → (𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ (𝑅(abs ∘ − )𝐶) < 𝑟))
7869, 73, 74, 76, 77syl22anc 838 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → (𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ (𝑅(abs ∘ − )𝐶) < 𝑟))
79 eqid 2736 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (abs ∘ − ) = (abs ∘ − )
8079cnmetdval 24792 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑅 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝑅(abs ∘ − )𝐶) = (abs‘(𝑅𝐶)))
8176, 74, 80syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → (𝑅(abs ∘ − )𝐶) = (abs‘(𝑅𝐶)))
8281breq1d 5152 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → ((𝑅(abs ∘ − )𝐶) < 𝑟 ↔ (abs‘(𝑅𝐶)) < 𝑟))
8378, 82bitrd 279 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → (𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ (abs‘(𝑅𝐶)) < 𝑟))
8483biimprd 248 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → ((abs‘(𝑅𝐶)) < 𝑟𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
8568, 84imim12d 81 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → ((𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟) → (𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟))))
8685ralimdva 3166 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) → (∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟) → ∀𝑥𝐵 (𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟))))
8786impr 454 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → ∀𝑥𝐵 (𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
8814ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → 𝐶 ∈ ℂ)
89 simplrl 776 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → 𝑟 ∈ ℝ+)
90 blcntr 24424 . . . . . . . . . . . . . . . . . . . . 21 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐶 ∈ ℂ ∧ 𝑟 ∈ ℝ+) → 𝐶 ∈ (𝐶(ball‘(abs ∘ − ))𝑟))
9118, 88, 89, 90mp3an2i 1467 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → 𝐶 ∈ (𝐶(ball‘(abs ∘ − ))𝑟))
9291a1d 25 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → (+∞ ∈ (𝑘(,]+∞) → 𝐶 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
93 eleq1 2828 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = +∞ → (𝑥 ∈ (𝑘(,]+∞) ↔ +∞ ∈ (𝑘(,]+∞)))
945eleq1d 2825 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = +∞ → (𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ 𝐶 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
9593, 94imbi12d 344 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = +∞ → ((𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) ↔ (+∞ ∈ (𝑘(,]+∞) → 𝐶 ∈ (𝐶(ball‘(abs ∘ − ))𝑟))))
967, 95ralsn 4680 . . . . . . . . . . . . . . . . . . 19 (∀𝑥 ∈ {+∞} (𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) ↔ (+∞ ∈ (𝑘(,]+∞) → 𝐶 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
9792, 96sylibr 234 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → ∀𝑥 ∈ {+∞} (𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
98 ralunb 4196 . . . . . . . . . . . . . . . . . 18 (∀𝑥 ∈ (𝐵 ∪ {+∞})(𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) ↔ (∀𝑥𝐵 (𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) ∧ ∀𝑥 ∈ {+∞} (𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟))))
9987, 97, 98sylanbrc 583 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → ∀𝑥 ∈ (𝐵 ∪ {+∞})(𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
10010ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → 𝐴 = (𝐵 ∪ {+∞}))
10199, 100raleqtrrdv 3329 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → ∀𝑥𝐴 (𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
102 ss2rab 4070 . . . . . . . . . . . . . . . 16 ({𝑥𝐴𝑥 ∈ (𝑘(,]+∞)} ⊆ {𝑥𝐴𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)} ↔ ∀𝑥𝐴 (𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
103101, 102sylibr 234 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → {𝑥𝐴𝑥 ∈ (𝑘(,]+∞)} ⊆ {𝑥𝐴𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)})
104 incom 4208 . . . . . . . . . . . . . . . 16 ((𝑘(,]+∞) ∩ 𝐴) = (𝐴 ∩ (𝑘(,]+∞))
105 dfin5 3958 . . . . . . . . . . . . . . . 16 (𝐴 ∩ (𝑘(,]+∞)) = {𝑥𝐴𝑥 ∈ (𝑘(,]+∞)}
106104, 105eqtri 2764 . . . . . . . . . . . . . . 15 ((𝑘(,]+∞) ∩ 𝐴) = {𝑥𝐴𝑥 ∈ (𝑘(,]+∞)}
1074mptpreima 6257 . . . . . . . . . . . . . . 15 ((𝑥𝐴𝑅) “ (𝐶(ball‘(abs ∘ − ))𝑟)) = {𝑥𝐴𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)}
108103, 106, 1073sstr4g 4036 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → ((𝑘(,]+∞) ∩ 𝐴) ⊆ ((𝑥𝐴𝑅) “ (𝐶(ball‘(abs ∘ − ))𝑟)))
109 funmpt 6603 . . . . . . . . . . . . . . 15 Fun (𝑥𝐴𝑅)
110 inss2 4237 . . . . . . . . . . . . . . . 16 ((𝑘(,]+∞) ∩ 𝐴) ⊆ 𝐴
1112ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → (𝑥𝐴𝑅):𝐴⟶ℂ)
112111fdmd 6745 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → dom (𝑥𝐴𝑅) = 𝐴)
113110, 112sseqtrrid 4026 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → ((𝑘(,]+∞) ∩ 𝐴) ⊆ dom (𝑥𝐴𝑅))
114 funimass3 7073 . . . . . . . . . . . . . . 15 ((Fun (𝑥𝐴𝑅) ∧ ((𝑘(,]+∞) ∩ 𝐴) ⊆ dom (𝑥𝐴𝑅)) → (((𝑥𝐴𝑅) “ ((𝑘(,]+∞) ∩ 𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ ((𝑘(,]+∞) ∩ 𝐴) ⊆ ((𝑥𝐴𝑅) “ (𝐶(ball‘(abs ∘ − ))𝑟))))
115109, 113, 114sylancr 587 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → (((𝑥𝐴𝑅) “ ((𝑘(,]+∞) ∩ 𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ ((𝑘(,]+∞) ∩ 𝐴) ⊆ ((𝑥𝐴𝑅) “ (𝐶(ball‘(abs ∘ − ))𝑟))))
116108, 115mpbird 257 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → ((𝑥𝐴𝑅) “ ((𝑘(,]+∞) ∩ 𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟))
117 simplrr 777 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)
118116, 117sstrd 3993 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → ((𝑥𝐴𝑅) “ ((𝑘(,]+∞) ∩ 𝐴)) ⊆ 𝑦)
119 eleq2 2829 . . . . . . . . . . . . . 14 (𝑧 = ((𝑘(,]+∞) ∩ 𝐴) → (+∞ ∈ 𝑧 ↔ +∞ ∈ ((𝑘(,]+∞) ∩ 𝐴)))
120 imaeq2 6073 . . . . . . . . . . . . . . 15 (𝑧 = ((𝑘(,]+∞) ∩ 𝐴) → ((𝑥𝐴𝑅) “ 𝑧) = ((𝑥𝐴𝑅) “ ((𝑘(,]+∞) ∩ 𝐴)))
121120sseq1d 4014 . . . . . . . . . . . . . 14 (𝑧 = ((𝑘(,]+∞) ∩ 𝐴) → (((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦 ↔ ((𝑥𝐴𝑅) “ ((𝑘(,]+∞) ∩ 𝐴)) ⊆ 𝑦))
122119, 121anbi12d 632 . . . . . . . . . . . . 13 (𝑧 = ((𝑘(,]+∞) ∩ 𝐴) → ((+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦) ↔ (+∞ ∈ ((𝑘(,]+∞) ∩ 𝐴) ∧ ((𝑥𝐴𝑅) “ ((𝑘(,]+∞) ∩ 𝐴)) ⊆ 𝑦)))
123122rspcev 3621 . . . . . . . . . . . 12 ((((𝑘(,]+∞) ∩ 𝐴) ∈ 𝐾 ∧ (+∞ ∈ ((𝑘(,]+∞) ∩ 𝐴) ∧ ((𝑥𝐴𝑅) “ ((𝑘(,]+∞) ∩ 𝐴)) ⊆ 𝑦)) → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦))
12449, 57, 118, 123syl12anc 836 . . . . . . . . . . 11 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦))
125124rexlimdvaa 3155 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) → (∃𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟) → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦)))
126125adantlr 715 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) → (∃𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟) → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦)))
12730, 126mpd 15 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦))
128127rexlimdvaa 3155 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) → (∃𝑟 ∈ ℝ+ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦 → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦)))
12922, 128syl5 34 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) → ((𝑦𝐽𝐶𝑦) → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦)))
130129expdimp 452 . . . . 5 (((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) ∧ 𝑦𝐽) → (𝐶𝑦 → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦)))
13117, 130sylbid 240 . . . 4 (((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) ∧ 𝑦𝐽) → (((𝑥𝐴𝑅)‘+∞) ∈ 𝑦 → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦)))
132131ralrimiva 3145 . . 3 ((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) → ∀𝑦𝐽 (((𝑥𝐴𝑅)‘+∞) ∈ 𝑦 → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦)))
133 letopon 23214 . . . . . . 7 (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)
134 resttopon 23170 . . . . . . 7 (((ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) ∧ 𝐴 ⊆ ℝ*) → ((ordTop‘ ≤ ) ↾t 𝐴) ∈ (TopOn‘𝐴))
135133, 39, 134sylancr 587 . . . . . 6 (𝜑 → ((ordTop‘ ≤ ) ↾t 𝐴) ∈ (TopOn‘𝐴))
13648, 135eqeltrid 2844 . . . . 5 (𝜑𝐾 ∈ (TopOn‘𝐴))
13719cnfldtopon 24804 . . . . . 6 𝐽 ∈ (TopOn‘ℂ)
138137a1i 11 . . . . 5 (𝜑𝐽 ∈ (TopOn‘ℂ))
139 iscnp 23246 . . . . 5 ((𝐾 ∈ (TopOn‘𝐴) ∧ 𝐽 ∈ (TopOn‘ℂ) ∧ +∞ ∈ 𝐴) → ((𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞) ↔ ((𝑥𝐴𝑅):𝐴⟶ℂ ∧ ∀𝑦𝐽 (((𝑥𝐴𝑅)‘+∞) ∈ 𝑦 → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦)))))
140136, 138, 11, 139syl3anc 1372 . . . 4 (𝜑 → ((𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞) ↔ ((𝑥𝐴𝑅):𝐴⟶ℂ ∧ ∀𝑦𝐽 (((𝑥𝐴𝑅)‘+∞) ∈ 𝑦 → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦)))))
141140adantr 480 . . 3 ((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) → ((𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞) ↔ ((𝑥𝐴𝑅):𝐴⟶ℂ ∧ ∀𝑦𝐽 (((𝑥𝐴𝑅)‘+∞) ∈ 𝑦 → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦)))))
1423, 132, 141mpbir2and 713 . 2 ((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) → (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞))
143 simplr 768 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞))
14414ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → 𝐶 ∈ ℂ)
14572adantl 481 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ*)
14620blopn 24514 . . . . . . . 8 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐶 ∈ ℂ ∧ 𝑟 ∈ ℝ*) → (𝐶(ball‘(abs ∘ − ))𝑟) ∈ 𝐽)
14718, 144, 145, 146mp3an2i 1467 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → (𝐶(ball‘(abs ∘ − ))𝑟) ∈ 𝐽)
14815ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → ((𝑥𝐴𝑅)‘+∞) = 𝐶)
149 simpr 484 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ+)
15018, 144, 149, 90mp3an2i 1467 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → 𝐶 ∈ (𝐶(ball‘(abs ∘ − ))𝑟))
151148, 150eqeltrd 2840 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → ((𝑥𝐴𝑅)‘+∞) ∈ (𝐶(ball‘(abs ∘ − ))𝑟))
152 cnpimaex 23265 . . . . . . 7 (((𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞) ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ∈ 𝐽 ∧ ((𝑥𝐴𝑅)‘+∞) ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟)))
153143, 147, 151, 152syl3anc 1372 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟)))
154 vex 3483 . . . . . . . . 9 𝑤 ∈ V
155154inex1 5316 . . . . . . . 8 (𝑤𝐴) ∈ V
156155a1i 11 . . . . . . 7 ((((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑤 ∈ (ordTop‘ ≤ )) → (𝑤𝐴) ∈ V)
15748eleq2i 2832 . . . . . . . 8 (𝑧𝐾𝑧 ∈ ((ordTop‘ ≤ ) ↾t 𝐴))
15842ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → 𝐴 ∈ V)
159 elrest 17473 . . . . . . . . 9 (((ordTop‘ ≤ ) ∈ Top ∧ 𝐴 ∈ V) → (𝑧 ∈ ((ordTop‘ ≤ ) ↾t 𝐴) ↔ ∃𝑤 ∈ (ordTop‘ ≤ )𝑧 = (𝑤𝐴)))
16031, 158, 159sylancr 587 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → (𝑧 ∈ ((ordTop‘ ≤ ) ↾t 𝐴) ↔ ∃𝑤 ∈ (ordTop‘ ≤ )𝑧 = (𝑤𝐴)))
161157, 160bitrid 283 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → (𝑧𝐾 ↔ ∃𝑤 ∈ (ordTop‘ ≤ )𝑧 = (𝑤𝐴)))
162 eleq2 2829 . . . . . . . . 9 (𝑧 = (𝑤𝐴) → (+∞ ∈ 𝑧 ↔ +∞ ∈ (𝑤𝐴)))
163 imaeq2 6073 . . . . . . . . . 10 (𝑧 = (𝑤𝐴) → ((𝑥𝐴𝑅) “ 𝑧) = ((𝑥𝐴𝑅) “ (𝑤𝐴)))
164163sseq1d 4014 . . . . . . . . 9 (𝑧 = (𝑤𝐴) → (((𝑥𝐴𝑅) “ 𝑧) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ ((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟)))
165162, 164anbi12d 632 . . . . . . . 8 (𝑧 = (𝑤𝐴) → ((+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟)) ↔ (+∞ ∈ (𝑤𝐴) ∧ ((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟))))
166165adantl 481 . . . . . . 7 ((((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑧 = (𝑤𝐴)) → ((+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟)) ↔ (+∞ ∈ (𝑤𝐴) ∧ ((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟))))
167156, 161, 166rexxfr2d 5410 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → (∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟)) ↔ ∃𝑤 ∈ (ordTop‘ ≤ )(+∞ ∈ (𝑤𝐴) ∧ ((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟))))
168153, 167mpbid 232 . . . . 5 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → ∃𝑤 ∈ (ordTop‘ ≤ )(+∞ ∈ (𝑤𝐴) ∧ ((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟)))
169 elinel1 4200 . . . . . . . . . . 11 (+∞ ∈ (𝑤𝐴) → +∞ ∈ 𝑤)
170 pnfnei 23229 . . . . . . . . . . 11 ((𝑤 ∈ (ordTop‘ ≤ ) ∧ +∞ ∈ 𝑤) → ∃𝑘 ∈ ℝ (𝑘(,]+∞) ⊆ 𝑤)
171169, 170sylan2 593 . . . . . . . . . 10 ((𝑤 ∈ (ordTop‘ ≤ ) ∧ +∞ ∈ (𝑤𝐴)) → ∃𝑘 ∈ ℝ (𝑘(,]+∞) ⊆ 𝑤)
172 df-ima 5697 . . . . . . . . . . . . . . . 16 ((𝑥𝐴𝑅) “ (𝑤𝐴)) = ran ((𝑥𝐴𝑅) ↾ (𝑤𝐴))
173 inss2 4237 . . . . . . . . . . . . . . . . . 18 (𝑤𝐴) ⊆ 𝐴
174 resmpt 6054 . . . . . . . . . . . . . . . . . 18 ((𝑤𝐴) ⊆ 𝐴 → ((𝑥𝐴𝑅) ↾ (𝑤𝐴)) = (𝑥 ∈ (𝑤𝐴) ↦ 𝑅))
175173, 174ax-mp 5 . . . . . . . . . . . . . . . . 17 ((𝑥𝐴𝑅) ↾ (𝑤𝐴)) = (𝑥 ∈ (𝑤𝐴) ↦ 𝑅)
176175rneqi 5947 . . . . . . . . . . . . . . . 16 ran ((𝑥𝐴𝑅) ↾ (𝑤𝐴)) = ran (𝑥 ∈ (𝑤𝐴) ↦ 𝑅)
177172, 176eqtri 2764 . . . . . . . . . . . . . . 15 ((𝑥𝐴𝑅) “ (𝑤𝐴)) = ran (𝑥 ∈ (𝑤𝐴) ↦ 𝑅)
178177sseq1i 4011 . . . . . . . . . . . . . 14 (((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ ran (𝑥 ∈ (𝑤𝐴) ↦ 𝑅) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟))
179 dfss3 3971 . . . . . . . . . . . . . 14 (ran (𝑥 ∈ (𝑤𝐴) ↦ 𝑅) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ ∀𝑧 ∈ ran (𝑥 ∈ (𝑤𝐴) ↦ 𝑅)𝑧 ∈ (𝐶(ball‘(abs ∘ − ))𝑟))
180178, 179bitri 275 . . . . . . . . . . . . 13 (((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ ∀𝑧 ∈ ran (𝑥 ∈ (𝑤𝐴) ↦ 𝑅)𝑧 ∈ (𝐶(ball‘(abs ∘ − ))𝑟))
18113adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑟 ∈ ℝ+) → ∀𝑥𝐴 𝑅 ∈ ℂ)
182 ssralv 4051 . . . . . . . . . . . . . . . 16 ((𝑤𝐴) ⊆ 𝐴 → (∀𝑥𝐴 𝑅 ∈ ℂ → ∀𝑥 ∈ (𝑤𝐴)𝑅 ∈ ℂ))
183173, 181, 182mpsyl 68 . . . . . . . . . . . . . . 15 ((𝜑𝑟 ∈ ℝ+) → ∀𝑥 ∈ (𝑤𝐴)𝑅 ∈ ℂ)
184 eqid 2736 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝑤𝐴) ↦ 𝑅) = (𝑥 ∈ (𝑤𝐴) ↦ 𝑅)
185 eleq1 2828 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑅 → (𝑧 ∈ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
186184, 185ralrnmptw 7113 . . . . . . . . . . . . . . 15 (∀𝑥 ∈ (𝑤𝐴)𝑅 ∈ ℂ → (∀𝑧 ∈ ran (𝑥 ∈ (𝑤𝐴) ↦ 𝑅)𝑧 ∈ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ ∀𝑥 ∈ (𝑤𝐴)𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
187183, 186syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑟 ∈ ℝ+) → (∀𝑧 ∈ ran (𝑥 ∈ (𝑤𝐴) ↦ 𝑅)𝑧 ∈ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ ∀𝑥 ∈ (𝑤𝐴)𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
188187biimpd 229 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ ℝ+) → (∀𝑧 ∈ ran (𝑥 ∈ (𝑤𝐴) ↦ 𝑅)𝑧 ∈ (𝐶(ball‘(abs ∘ − ))𝑟) → ∀𝑥 ∈ (𝑤𝐴)𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
189180, 188biimtrid 242 . . . . . . . . . . . 12 ((𝜑𝑟 ∈ ℝ+) → (((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟) → ∀𝑥 ∈ (𝑤𝐴)𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
190 simplrr 777 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → (𝑘(,]+∞) ⊆ 𝑤)
19134ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝐵 ⊆ ℝ*)
192 simprl 770 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝑥𝐵)
193191, 192sseldd 3983 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝑥 ∈ ℝ*)
194 simprr 772 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝑘 < 𝑥)
195 pnfge 13173 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 ∈ ℝ*𝑥 ≤ +∞)
196193, 195syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝑥 ≤ +∞)
197 simplrl 776 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝑘 ∈ ℝ)
198197rexrd 11312 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝑘 ∈ ℝ*)
199198, 35, 60sylancl 586 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → (𝑥 ∈ (𝑘(,]+∞) ↔ (𝑥 ∈ ℝ*𝑘 < 𝑥𝑥 ≤ +∞)))
200193, 194, 196, 199mpbir3and 1342 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝑥 ∈ (𝑘(,]+∞))
201190, 200sseldd 3983 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝑥𝑤)
20224ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) → 𝐵𝐴)
203202sselda 3982 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ 𝑥𝐵) → 𝑥𝐴)
204203adantrr 717 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝑥𝐴)
205201, 204elind 4199 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝑥 ∈ (𝑤𝐴))
206205ex 412 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) → ((𝑥𝐵𝑘 < 𝑥) → 𝑥 ∈ (𝑤𝐴)))
207206imim1d 82 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) → ((𝑥 ∈ (𝑤𝐴) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) → ((𝑥𝐵𝑘 < 𝑥) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟))))
20818a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → (abs ∘ − ) ∈ (∞Met‘ℂ))
20972adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ*)
210209ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝑟 ∈ ℝ*)
21114ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝐶 ∈ ℂ)
21226ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) → ∀𝑥𝐵 𝑅 ∈ ℂ)
213212r19.21bi 3250 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ 𝑥𝐵) → 𝑅 ∈ ℂ)
214213adantrr 717 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝑅 ∈ ℂ)
215208, 210, 211, 214, 77syl22anc 838 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → (𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ (𝑅(abs ∘ − )𝐶) < 𝑟))
216214, 211, 80syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → (𝑅(abs ∘ − )𝐶) = (abs‘(𝑅𝐶)))
217216breq1d 5152 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → ((𝑅(abs ∘ − )𝐶) < 𝑟 ↔ (abs‘(𝑅𝐶)) < 𝑟))
218215, 217bitrd 279 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → (𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ (abs‘(𝑅𝐶)) < 𝑟))
219218pm5.74da 803 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) → (((𝑥𝐵𝑘 < 𝑥) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) ↔ ((𝑥𝐵𝑘 < 𝑥) → (abs‘(𝑅𝐶)) < 𝑟)))
220207, 219sylibd 239 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) → ((𝑥 ∈ (𝑤𝐴) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) → ((𝑥𝐵𝑘 < 𝑥) → (abs‘(𝑅𝐶)) < 𝑟)))
221220exp4a 431 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) → ((𝑥 ∈ (𝑤𝐴) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) → (𝑥𝐵 → (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟))))
222221ralimdv2 3162 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) → (∀𝑥 ∈ (𝑤𝐴)𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟) → ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟)))
223222imp 406 . . . . . . . . . . . . . . . 16 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ ∀𝑥 ∈ (𝑤𝐴)𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) → ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟))
224223an32s 652 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ ∀𝑥 ∈ (𝑤𝐴)𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) → ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟))
225224expr 456 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ ∀𝑥 ∈ (𝑤𝐴)𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) ∧ 𝑘 ∈ ℝ) → ((𝑘(,]+∞) ⊆ 𝑤 → ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟)))
226225reximdva 3167 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ ∀𝑥 ∈ (𝑤𝐴)𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) → (∃𝑘 ∈ ℝ (𝑘(,]+∞) ⊆ 𝑤 → ∃𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟)))
227226ex 412 . . . . . . . . . . . 12 ((𝜑𝑟 ∈ ℝ+) → (∀𝑥 ∈ (𝑤𝐴)𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟) → (∃𝑘 ∈ ℝ (𝑘(,]+∞) ⊆ 𝑤 → ∃𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟))))
228189, 227syld 47 . . . . . . . . . . 11 ((𝜑𝑟 ∈ ℝ+) → (((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟) → (∃𝑘 ∈ ℝ (𝑘(,]+∞) ⊆ 𝑤 → ∃𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟))))
229228com23 86 . . . . . . . . . 10 ((𝜑𝑟 ∈ ℝ+) → (∃𝑘 ∈ ℝ (𝑘(,]+∞) ⊆ 𝑤 → (((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟) → ∃𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟))))
230171, 229syl5 34 . . . . . . . . 9 ((𝜑𝑟 ∈ ℝ+) → ((𝑤 ∈ (ordTop‘ ≤ ) ∧ +∞ ∈ (𝑤𝐴)) → (((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟) → ∃𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟))))
231230impl 455 . . . . . . . 8 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑤 ∈ (ordTop‘ ≤ )) ∧ +∞ ∈ (𝑤𝐴)) → (((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟) → ∃𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟)))
232231expimpd 453 . . . . . . 7 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑤 ∈ (ordTop‘ ≤ )) → ((+∞ ∈ (𝑤𝐴) ∧ ((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟)) → ∃𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟)))
233232rexlimdva 3154 . . . . . 6 ((𝜑𝑟 ∈ ℝ+) → (∃𝑤 ∈ (ordTop‘ ≤ )(+∞ ∈ (𝑤𝐴) ∧ ((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟)) → ∃𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟)))
234233adantlr 715 . . . . 5 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → (∃𝑤 ∈ (ordTop‘ ≤ )(+∞ ∈ (𝑤𝐴) ∧ ((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟)) → ∃𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟)))
235168, 234mpd 15 . . . 4 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → ∃𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟))
236235ralrimiva 3145 . . 3 ((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) → ∀𝑟 ∈ ℝ+𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟))
23726, 32, 14rlim2lt 15534 . . . 4 (𝜑 → ((𝑥𝐵𝑅) ⇝𝑟 𝐶 ↔ ∀𝑟 ∈ ℝ+𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟)))
238237adantr 480 . . 3 ((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) → ((𝑥𝐵𝑅) ⇝𝑟 𝐶 ↔ ∀𝑟 ∈ ℝ+𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟)))
239236, 238mpbird 257 . 2 ((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) → (𝑥𝐵𝑅) ⇝𝑟 𝐶)
240142, 239impbida 800 1 (𝜑 → ((𝑥𝐵𝑅) ⇝𝑟 𝐶 ↔ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wral 3060  wrex 3069  {crab 3435  Vcvv 3479  cun 3948  cin 3949  wss 3950  {csn 4625   class class class wbr 5142  cmpt 5224  ccnv 5683  dom cdm 5684  ran crn 5685  cres 5686  cima 5687  ccom 5688  Fun wfun 6554  wf 6556  cfv 6560  (class class class)co 7432  cc 11154  cr 11155  +∞cpnf 11293  *cxr 11295   < clt 11296  cle 11297  cmin 11493  +crp 13035  (,]cioc 13389  abscabs 15274  𝑟 crli 15522  t crest 17466  TopOpenctopn 17467  ordTopcordt 17545  ∞Metcxmet 21350  ballcbl 21352  fldccnfld 21365  Topctop 22900  TopOnctopon 22917   CnP ccnp 23234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-pm 8870  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fi 9452  df-sup 9483  df-inf 9484  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-q 12992  df-rp 13036  df-xneg 13155  df-xadd 13156  df-xmul 13157  df-ioo 13392  df-ioc 13393  df-ico 13394  df-icc 13395  df-fz 13549  df-seq 14044  df-exp 14104  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-rlim 15526  df-struct 17185  df-slot 17220  df-ndx 17232  df-base 17249  df-plusg 17311  df-mulr 17312  df-starv 17313  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-rest 17468  df-topn 17469  df-topgen 17489  df-ordt 17547  df-ps 18612  df-tsr 18613  df-psmet 21357  df-xmet 21358  df-met 21359  df-bl 21360  df-mopn 21361  df-cnfld 21366  df-top 22901  df-topon 22918  df-topsp 22940  df-bases 22954  df-cnp 23237  df-xms 24331  df-ms 24332
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator