Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimiooltgt Structured version   Visualization version   GIF version

Theorem pimiooltgt 44135
Description: The preimage of an open interval is the intersection of the preimage of an unbounded below open interval and an unbounded above open interval. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
pimiooltgt.1 𝑥𝜑
pimiooltgt.2 (𝜑𝐿 ∈ ℝ*)
pimiooltgt.3 (𝜑𝑅 ∈ ℝ*)
pimiooltgt.4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
Assertion
Ref Expression
pimiooltgt (𝜑 → {𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)} = ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵}))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑅(𝑥)   𝐿(𝑥)

Proof of Theorem pimiooltgt
StepHypRef Expression
1 pimiooltgt.1 . . . . 5 𝑥𝜑
2 pimiooltgt.2 . . . . . . . . 9 (𝜑𝐿 ∈ ℝ*)
32adantr 480 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐿 ∈ ℝ*)
433adant3 1130 . . . . . . 7 ((𝜑𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)) → 𝐿 ∈ ℝ*)
5 pimiooltgt.3 . . . . . . . . 9 (𝜑𝑅 ∈ ℝ*)
65adantr 480 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝑅 ∈ ℝ*)
763adant3 1130 . . . . . . 7 ((𝜑𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)) → 𝑅 ∈ ℝ*)
8 simp3 1136 . . . . . . 7 ((𝜑𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)) → 𝐵 ∈ (𝐿(,)𝑅))
9 iooltub 42938 . . . . . . 7 ((𝐿 ∈ ℝ*𝑅 ∈ ℝ*𝐵 ∈ (𝐿(,)𝑅)) → 𝐵 < 𝑅)
104, 7, 8, 9syl3anc 1369 . . . . . 6 ((𝜑𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)) → 𝐵 < 𝑅)
11103exp 1117 . . . . 5 (𝜑 → (𝑥𝐴 → (𝐵 ∈ (𝐿(,)𝑅) → 𝐵 < 𝑅)))
121, 11ralrimi 3139 . . . 4 (𝜑 → ∀𝑥𝐴 (𝐵 ∈ (𝐿(,)𝑅) → 𝐵 < 𝑅))
13 ss2rab 4000 . . . 4 ({𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)} ⊆ {𝑥𝐴𝐵 < 𝑅} ↔ ∀𝑥𝐴 (𝐵 ∈ (𝐿(,)𝑅) → 𝐵 < 𝑅))
1412, 13sylibr 233 . . 3 (𝜑 → {𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)} ⊆ {𝑥𝐴𝐵 < 𝑅})
15 ioogtlb 42923 . . . . . . 7 ((𝐿 ∈ ℝ*𝑅 ∈ ℝ*𝐵 ∈ (𝐿(,)𝑅)) → 𝐿 < 𝐵)
164, 7, 8, 15syl3anc 1369 . . . . . 6 ((𝜑𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)) → 𝐿 < 𝐵)
17163exp 1117 . . . . 5 (𝜑 → (𝑥𝐴 → (𝐵 ∈ (𝐿(,)𝑅) → 𝐿 < 𝐵)))
181, 17ralrimi 3139 . . . 4 (𝜑 → ∀𝑥𝐴 (𝐵 ∈ (𝐿(,)𝑅) → 𝐿 < 𝐵))
19 ss2rab 4000 . . . 4 ({𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)} ⊆ {𝑥𝐴𝐿 < 𝐵} ↔ ∀𝑥𝐴 (𝐵 ∈ (𝐿(,)𝑅) → 𝐿 < 𝐵))
2018, 19sylibr 233 . . 3 (𝜑 → {𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)} ⊆ {𝑥𝐴𝐿 < 𝐵})
2114, 20ssind 4163 . 2 (𝜑 → {𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)} ⊆ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵}))
22 elinel1 4125 . . . . . . . . 9 (𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵}) → 𝑥 ∈ {𝑥𝐴𝐵 < 𝑅})
23 ssrab2 4009 . . . . . . . . . 10 {𝑥𝐴𝐵 < 𝑅} ⊆ 𝐴
2423sseli 3913 . . . . . . . . 9 (𝑥 ∈ {𝑥𝐴𝐵 < 𝑅} → 𝑥𝐴)
2522, 24syl 17 . . . . . . . 8 (𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵}) → 𝑥𝐴)
2625adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})) → 𝑥𝐴)
2726, 3syldan 590 . . . . . . . 8 ((𝜑𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})) → 𝐿 ∈ ℝ*)
2826, 6syldan 590 . . . . . . . 8 ((𝜑𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})) → 𝑅 ∈ ℝ*)
29 pimiooltgt.4 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
3026, 29syldan 590 . . . . . . . . 9 ((𝜑𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})) → 𝐵 ∈ ℝ*)
31 mnfxr 10963 . . . . . . . . . . . 12 -∞ ∈ ℝ*
3231a1i 11 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})) → -∞ ∈ ℝ*)
3327mnfled 42818 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})) → -∞ ≤ 𝐿)
34 elinel2 4126 . . . . . . . . . . . . . 14 (𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵}) → 𝑥 ∈ {𝑥𝐴𝐿 < 𝐵})
35 rabidim2 42541 . . . . . . . . . . . . . 14 (𝑥 ∈ {𝑥𝐴𝐿 < 𝐵} → 𝐿 < 𝐵)
3634, 35syl 17 . . . . . . . . . . . . 13 (𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵}) → 𝐿 < 𝐵)
3736adantl 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})) → 𝐿 < 𝐵)
3832, 27, 30, 33, 37xrlelttrd 12823 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})) → -∞ < 𝐵)
3932, 30, 38xrltned 42786 . . . . . . . . . 10 ((𝜑𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})) → -∞ ≠ 𝐵)
4039necomd 2998 . . . . . . . . 9 ((𝜑𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})) → 𝐵 ≠ -∞)
41 pnfxr 10960 . . . . . . . . . . 11 +∞ ∈ ℝ*
4241a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})) → +∞ ∈ ℝ*)
43 rabidim2 42541 . . . . . . . . . . . . 13 (𝑥 ∈ {𝑥𝐴𝐵 < 𝑅} → 𝐵 < 𝑅)
4422, 43syl 17 . . . . . . . . . . . 12 (𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵}) → 𝐵 < 𝑅)
4544adantl 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})) → 𝐵 < 𝑅)
46 pnfge 12795 . . . . . . . . . . . 12 (𝑅 ∈ ℝ*𝑅 ≤ +∞)
4728, 46syl 17 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})) → 𝑅 ≤ +∞)
4830, 28, 42, 45, 47xrltletrd 12824 . . . . . . . . . 10 ((𝜑𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})) → 𝐵 < +∞)
4930, 42, 48xrltned 42786 . . . . . . . . 9 ((𝜑𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})) → 𝐵 ≠ +∞)
5030, 40, 49xrred 42794 . . . . . . . 8 ((𝜑𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})) → 𝐵 ∈ ℝ)
5127, 28, 50, 37, 45eliood 42926 . . . . . . 7 ((𝜑𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})) → 𝐵 ∈ (𝐿(,)𝑅))
5226, 51jca 511 . . . . . 6 ((𝜑𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})) → (𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)))
53 rabid 3304 . . . . . 6 (𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)} ↔ (𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)))
5452, 53sylibr 233 . . . . 5 ((𝜑𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})) → 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)})
5554ex 412 . . . 4 (𝜑 → (𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵}) → 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)}))
561, 55ralrimi 3139 . . 3 (𝜑 → ∀𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)})
57 nfrab1 3310 . . . . 5 𝑥{𝑥𝐴𝐵 < 𝑅}
58 nfrab1 3310 . . . . 5 𝑥{𝑥𝐴𝐿 < 𝐵}
5957, 58nfin 4147 . . . 4 𝑥({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})
60 nfrab1 3310 . . . 4 𝑥{𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)}
6159, 60dfss3f 3908 . . 3 (({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵}) ⊆ {𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)} ↔ ∀𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)})
6256, 61sylibr 233 . 2 (𝜑 → ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵}) ⊆ {𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)})
6321, 62eqssd 3934 1 (𝜑 → {𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)} = ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wnf 1787  wcel 2108  wral 3063  {crab 3067  cin 3882  wss 3883   class class class wbr 5070  (class class class)co 7255  +∞cpnf 10937  -∞cmnf 10938  *cxr 10939   < clt 10940  cle 10941  (,)cioo 13008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-pre-lttri 10876  ax-pre-lttrn 10877
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-ioo 13012
This theorem is referenced by:  smfpimioompt  44207
  Copyright terms: Public domain W3C validator