Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimiooltgt Structured version   Visualization version   GIF version

Theorem pimiooltgt 42982
Description: The preimage of an open interval is the intersection of the preimage of an unbounded below open interval and an unbounded above open interval. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
pimiooltgt.1 𝑥𝜑
pimiooltgt.2 (𝜑𝐿 ∈ ℝ*)
pimiooltgt.3 (𝜑𝑅 ∈ ℝ*)
pimiooltgt.4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
Assertion
Ref Expression
pimiooltgt (𝜑 → {𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)} = ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵}))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑅(𝑥)   𝐿(𝑥)

Proof of Theorem pimiooltgt
StepHypRef Expression
1 pimiooltgt.1 . . . . 5 𝑥𝜑
2 pimiooltgt.2 . . . . . . . . 9 (𝜑𝐿 ∈ ℝ*)
32adantr 483 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐿 ∈ ℝ*)
433adant3 1128 . . . . . . 7 ((𝜑𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)) → 𝐿 ∈ ℝ*)
5 pimiooltgt.3 . . . . . . . . 9 (𝜑𝑅 ∈ ℝ*)
65adantr 483 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝑅 ∈ ℝ*)
763adant3 1128 . . . . . . 7 ((𝜑𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)) → 𝑅 ∈ ℝ*)
8 simp3 1134 . . . . . . 7 ((𝜑𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)) → 𝐵 ∈ (𝐿(,)𝑅))
9 iooltub 41778 . . . . . . 7 ((𝐿 ∈ ℝ*𝑅 ∈ ℝ*𝐵 ∈ (𝐿(,)𝑅)) → 𝐵 < 𝑅)
104, 7, 8, 9syl3anc 1367 . . . . . 6 ((𝜑𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)) → 𝐵 < 𝑅)
11103exp 1115 . . . . 5 (𝜑 → (𝑥𝐴 → (𝐵 ∈ (𝐿(,)𝑅) → 𝐵 < 𝑅)))
121, 11ralrimi 3216 . . . 4 (𝜑 → ∀𝑥𝐴 (𝐵 ∈ (𝐿(,)𝑅) → 𝐵 < 𝑅))
13 ss2rab 4047 . . . 4 ({𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)} ⊆ {𝑥𝐴𝐵 < 𝑅} ↔ ∀𝑥𝐴 (𝐵 ∈ (𝐿(,)𝑅) → 𝐵 < 𝑅))
1412, 13sylibr 236 . . 3 (𝜑 → {𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)} ⊆ {𝑥𝐴𝐵 < 𝑅})
15 ioogtlb 41762 . . . . . . 7 ((𝐿 ∈ ℝ*𝑅 ∈ ℝ*𝐵 ∈ (𝐿(,)𝑅)) → 𝐿 < 𝐵)
164, 7, 8, 15syl3anc 1367 . . . . . 6 ((𝜑𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)) → 𝐿 < 𝐵)
17163exp 1115 . . . . 5 (𝜑 → (𝑥𝐴 → (𝐵 ∈ (𝐿(,)𝑅) → 𝐿 < 𝐵)))
181, 17ralrimi 3216 . . . 4 (𝜑 → ∀𝑥𝐴 (𝐵 ∈ (𝐿(,)𝑅) → 𝐿 < 𝐵))
19 ss2rab 4047 . . . 4 ({𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)} ⊆ {𝑥𝐴𝐿 < 𝐵} ↔ ∀𝑥𝐴 (𝐵 ∈ (𝐿(,)𝑅) → 𝐿 < 𝐵))
2018, 19sylibr 236 . . 3 (𝜑 → {𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)} ⊆ {𝑥𝐴𝐿 < 𝐵})
2114, 20ssind 4209 . 2 (𝜑 → {𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)} ⊆ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵}))
22 elinel1 4172 . . . . . . . . 9 (𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵}) → 𝑥 ∈ {𝑥𝐴𝐵 < 𝑅})
23 ssrab2 4056 . . . . . . . . . 10 {𝑥𝐴𝐵 < 𝑅} ⊆ 𝐴
2423sseli 3963 . . . . . . . . 9 (𝑥 ∈ {𝑥𝐴𝐵 < 𝑅} → 𝑥𝐴)
2522, 24syl 17 . . . . . . . 8 (𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵}) → 𝑥𝐴)
2625adantl 484 . . . . . . 7 ((𝜑𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})) → 𝑥𝐴)
2726, 3syldan 593 . . . . . . . 8 ((𝜑𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})) → 𝐿 ∈ ℝ*)
2826, 6syldan 593 . . . . . . . 8 ((𝜑𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})) → 𝑅 ∈ ℝ*)
29 pimiooltgt.4 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
3026, 29syldan 593 . . . . . . . . 9 ((𝜑𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})) → 𝐵 ∈ ℝ*)
31 mnfxr 10692 . . . . . . . . . . . 12 -∞ ∈ ℝ*
3231a1i 11 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})) → -∞ ∈ ℝ*)
3327mnfled 41652 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})) → -∞ ≤ 𝐿)
34 elinel2 4173 . . . . . . . . . . . . . 14 (𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵}) → 𝑥 ∈ {𝑥𝐴𝐿 < 𝐵})
35 rabidim2 41361 . . . . . . . . . . . . . 14 (𝑥 ∈ {𝑥𝐴𝐿 < 𝐵} → 𝐿 < 𝐵)
3634, 35syl 17 . . . . . . . . . . . . 13 (𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵}) → 𝐿 < 𝐵)
3736adantl 484 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})) → 𝐿 < 𝐵)
3832, 27, 30, 33, 37xrlelttrd 12547 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})) → -∞ < 𝐵)
3932, 30, 38xrltned 41617 . . . . . . . . . 10 ((𝜑𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})) → -∞ ≠ 𝐵)
4039necomd 3071 . . . . . . . . 9 ((𝜑𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})) → 𝐵 ≠ -∞)
41 pnfxr 10689 . . . . . . . . . . 11 +∞ ∈ ℝ*
4241a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})) → +∞ ∈ ℝ*)
43 rabidim2 41361 . . . . . . . . . . . . 13 (𝑥 ∈ {𝑥𝐴𝐵 < 𝑅} → 𝐵 < 𝑅)
4422, 43syl 17 . . . . . . . . . . . 12 (𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵}) → 𝐵 < 𝑅)
4544adantl 484 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})) → 𝐵 < 𝑅)
46 pnfge 12519 . . . . . . . . . . . 12 (𝑅 ∈ ℝ*𝑅 ≤ +∞)
4728, 46syl 17 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})) → 𝑅 ≤ +∞)
4830, 28, 42, 45, 47xrltletrd 12548 . . . . . . . . . 10 ((𝜑𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})) → 𝐵 < +∞)
4930, 42, 48xrltned 41617 . . . . . . . . 9 ((𝜑𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})) → 𝐵 ≠ +∞)
5030, 40, 49xrred 41625 . . . . . . . 8 ((𝜑𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})) → 𝐵 ∈ ℝ)
5127, 28, 50, 37, 45eliood 41765 . . . . . . 7 ((𝜑𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})) → 𝐵 ∈ (𝐿(,)𝑅))
5226, 51jca 514 . . . . . 6 ((𝜑𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})) → (𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)))
53 rabid 3379 . . . . . 6 (𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)} ↔ (𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)))
5452, 53sylibr 236 . . . . 5 ((𝜑𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})) → 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)})
5554ex 415 . . . 4 (𝜑 → (𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵}) → 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)}))
561, 55ralrimi 3216 . . 3 (𝜑 → ∀𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)})
57 nfrab1 3385 . . . . 5 𝑥{𝑥𝐴𝐵 < 𝑅}
58 nfrab1 3385 . . . . 5 𝑥{𝑥𝐴𝐿 < 𝐵}
5957, 58nfin 4193 . . . 4 𝑥({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})
60 nfrab1 3385 . . . 4 𝑥{𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)}
6159, 60dfss3f 3959 . . 3 (({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵}) ⊆ {𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)} ↔ ∀𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)})
6256, 61sylibr 236 . 2 (𝜑 → ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵}) ⊆ {𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)})
6321, 62eqssd 3984 1 (𝜑 → {𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)} = ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wnf 1780  wcel 2110  wral 3138  {crab 3142  cin 3935  wss 3936   class class class wbr 5059  (class class class)co 7150  +∞cpnf 10666  -∞cmnf 10667  *cxr 10668   < clt 10669  cle 10670  (,)cioo 12732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-pre-lttri 10605  ax-pre-lttrn 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-po 5469  df-so 5470  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7683  df-2nd 7684  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-ioo 12736
This theorem is referenced by:  smfpimioompt  43054
  Copyright terms: Public domain W3C validator