![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > upgredgpr | Structured version Visualization version GIF version |
Description: If a proper pair (of vertices) is a subset of an edge in a pseudograph, the pair is the edge. (Contributed by AV, 30-Dec-2020.) |
Ref | Expression |
---|---|
upgredg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
upgredg.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
upgredgpr | ⊢ (((𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸 ∧ {𝐴, 𝐵} ⊆ 𝐶) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵)) → {𝐴, 𝐵} = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | upgredg.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | upgredg.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝐺) | |
3 | 1, 2 | upgredg 28665 | . . . 4 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝐶 = {𝑎, 𝑏}) |
4 | 3 | 3adant3 1131 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸 ∧ {𝐴, 𝐵} ⊆ 𝐶) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝐶 = {𝑎, 𝑏}) |
5 | ssprsseq 4828 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({𝐴, 𝐵} ⊆ {𝑎, 𝑏} ↔ {𝐴, 𝐵} = {𝑎, 𝑏})) | |
6 | 5 | biimpd 228 | . . . . . . . . 9 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({𝐴, 𝐵} ⊆ {𝑎, 𝑏} → {𝐴, 𝐵} = {𝑎, 𝑏})) |
7 | sseq2 4008 | . . . . . . . . . 10 ⊢ (𝐶 = {𝑎, 𝑏} → ({𝐴, 𝐵} ⊆ 𝐶 ↔ {𝐴, 𝐵} ⊆ {𝑎, 𝑏})) | |
8 | eqeq2 2743 | . . . . . . . . . 10 ⊢ (𝐶 = {𝑎, 𝑏} → ({𝐴, 𝐵} = 𝐶 ↔ {𝐴, 𝐵} = {𝑎, 𝑏})) | |
9 | 7, 8 | imbi12d 344 | . . . . . . . . 9 ⊢ (𝐶 = {𝑎, 𝑏} → (({𝐴, 𝐵} ⊆ 𝐶 → {𝐴, 𝐵} = 𝐶) ↔ ({𝐴, 𝐵} ⊆ {𝑎, 𝑏} → {𝐴, 𝐵} = {𝑎, 𝑏}))) |
10 | 6, 9 | imbitrrid 245 | . . . . . . . 8 ⊢ (𝐶 = {𝑎, 𝑏} → ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({𝐴, 𝐵} ⊆ 𝐶 → {𝐴, 𝐵} = 𝐶))) |
11 | 10 | com23 86 | . . . . . . 7 ⊢ (𝐶 = {𝑎, 𝑏} → ({𝐴, 𝐵} ⊆ 𝐶 → ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} = 𝐶))) |
12 | 11 | a1i 11 | . . . . . 6 ⊢ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝐶 = {𝑎, 𝑏} → ({𝐴, 𝐵} ⊆ 𝐶 → ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} = 𝐶)))) |
13 | 12 | rexlimivv 3198 | . . . . 5 ⊢ (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝐶 = {𝑎, 𝑏} → ({𝐴, 𝐵} ⊆ 𝐶 → ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} = 𝐶))) |
14 | 13 | com12 32 | . . . 4 ⊢ ({𝐴, 𝐵} ⊆ 𝐶 → (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝐶 = {𝑎, 𝑏} → ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} = 𝐶))) |
15 | 14 | 3ad2ant3 1134 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸 ∧ {𝐴, 𝐵} ⊆ 𝐶) → (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝐶 = {𝑎, 𝑏} → ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} = 𝐶))) |
16 | 4, 15 | mpd 15 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸 ∧ {𝐴, 𝐵} ⊆ 𝐶) → ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} = 𝐶)) |
17 | 16 | imp 406 | 1 ⊢ (((𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸 ∧ {𝐴, 𝐵} ⊆ 𝐶) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵)) → {𝐴, 𝐵} = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 ∃wrex 3069 ⊆ wss 3948 {cpr 4630 ‘cfv 6543 Vtxcvtx 28524 Edgcedg 28575 UPGraphcupgr 28608 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-2o 8471 df-oadd 8474 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-dju 9900 df-card 9938 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-n0 12478 df-xnn0 12550 df-z 12564 df-uz 12828 df-fz 13490 df-hash 14296 df-edg 28576 df-upgr 28610 |
This theorem is referenced by: nbupgr 28869 nbumgrvtx 28871 upgriswlk 29166 upgrwlkupwlk 46817 |
Copyright terms: Public domain | W3C validator |