![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > upgredgpr | Structured version Visualization version GIF version |
Description: If a proper pair (of vertices) is a subset of an edge in a pseudograph, the pair is the edge. (Contributed by AV, 30-Dec-2020.) |
Ref | Expression |
---|---|
upgredg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
upgredg.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
upgredgpr | ⊢ (((𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸 ∧ {𝐴, 𝐵} ⊆ 𝐶) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵)) → {𝐴, 𝐵} = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | upgredg.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | upgredg.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝐺) | |
3 | 1, 2 | upgredg 26436 | . . . 4 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝐶 = {𝑎, 𝑏}) |
4 | 3 | 3adant3 1168 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸 ∧ {𝐴, 𝐵} ⊆ 𝐶) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝐶 = {𝑎, 𝑏}) |
5 | ssprsseq 4574 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({𝐴, 𝐵} ⊆ {𝑎, 𝑏} ↔ {𝐴, 𝐵} = {𝑎, 𝑏})) | |
6 | 5 | biimpd 221 | . . . . . . . . 9 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({𝐴, 𝐵} ⊆ {𝑎, 𝑏} → {𝐴, 𝐵} = {𝑎, 𝑏})) |
7 | sseq2 3852 | . . . . . . . . . 10 ⊢ (𝐶 = {𝑎, 𝑏} → ({𝐴, 𝐵} ⊆ 𝐶 ↔ {𝐴, 𝐵} ⊆ {𝑎, 𝑏})) | |
8 | eqeq2 2836 | . . . . . . . . . 10 ⊢ (𝐶 = {𝑎, 𝑏} → ({𝐴, 𝐵} = 𝐶 ↔ {𝐴, 𝐵} = {𝑎, 𝑏})) | |
9 | 7, 8 | imbi12d 336 | . . . . . . . . 9 ⊢ (𝐶 = {𝑎, 𝑏} → (({𝐴, 𝐵} ⊆ 𝐶 → {𝐴, 𝐵} = 𝐶) ↔ ({𝐴, 𝐵} ⊆ {𝑎, 𝑏} → {𝐴, 𝐵} = {𝑎, 𝑏}))) |
10 | 6, 9 | syl5ibr 238 | . . . . . . . 8 ⊢ (𝐶 = {𝑎, 𝑏} → ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({𝐴, 𝐵} ⊆ 𝐶 → {𝐴, 𝐵} = 𝐶))) |
11 | 10 | com23 86 | . . . . . . 7 ⊢ (𝐶 = {𝑎, 𝑏} → ({𝐴, 𝐵} ⊆ 𝐶 → ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} = 𝐶))) |
12 | 11 | a1i 11 | . . . . . 6 ⊢ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝐶 = {𝑎, 𝑏} → ({𝐴, 𝐵} ⊆ 𝐶 → ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} = 𝐶)))) |
13 | 12 | rexlimivv 3246 | . . . . 5 ⊢ (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝐶 = {𝑎, 𝑏} → ({𝐴, 𝐵} ⊆ 𝐶 → ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} = 𝐶))) |
14 | 13 | com12 32 | . . . 4 ⊢ ({𝐴, 𝐵} ⊆ 𝐶 → (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝐶 = {𝑎, 𝑏} → ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} = 𝐶))) |
15 | 14 | 3ad2ant3 1171 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸 ∧ {𝐴, 𝐵} ⊆ 𝐶) → (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝐶 = {𝑎, 𝑏} → ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} = 𝐶))) |
16 | 4, 15 | mpd 15 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸 ∧ {𝐴, 𝐵} ⊆ 𝐶) → ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} = 𝐶)) |
17 | 16 | imp 397 | 1 ⊢ (((𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸 ∧ {𝐴, 𝐵} ⊆ 𝐶) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵)) → {𝐴, 𝐵} = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1113 = wceq 1658 ∈ wcel 2166 ≠ wne 2999 ∃wrex 3118 ⊆ wss 3798 {cpr 4399 ‘cfv 6123 Vtxcvtx 26294 Edgcedg 26345 UPGraphcupgr 26378 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-cnex 10308 ax-resscn 10309 ax-1cn 10310 ax-icn 10311 ax-addcl 10312 ax-addrcl 10313 ax-mulcl 10314 ax-mulrcl 10315 ax-mulcom 10316 ax-addass 10317 ax-mulass 10318 ax-distr 10319 ax-i2m1 10320 ax-1ne0 10321 ax-1rid 10322 ax-rnegex 10323 ax-rrecex 10324 ax-cnre 10325 ax-pre-lttri 10326 ax-pre-lttrn 10327 ax-pre-ltadd 10328 ax-pre-mulgt0 10329 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4659 df-int 4698 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-pred 5920 df-ord 5966 df-on 5967 df-lim 5968 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-om 7327 df-1st 7428 df-2nd 7429 df-wrecs 7672 df-recs 7734 df-rdg 7772 df-1o 7826 df-2o 7827 df-oadd 7830 df-er 8009 df-en 8223 df-dom 8224 df-sdom 8225 df-fin 8226 df-card 9078 df-cda 9305 df-pnf 10393 df-mnf 10394 df-xr 10395 df-ltxr 10396 df-le 10397 df-sub 10587 df-neg 10588 df-nn 11351 df-2 11414 df-n0 11619 df-xnn0 11691 df-z 11705 df-uz 11969 df-fz 12620 df-hash 13411 df-edg 26346 df-upgr 26380 |
This theorem is referenced by: nbupgr 26641 nbumgrvtx 26643 upgriswlk 26938 upgrwlkupwlk 42568 |
Copyright terms: Public domain | W3C validator |