MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgredgpr Structured version   Visualization version   GIF version

Theorem upgredgpr 28670
Description: If a proper pair (of vertices) is a subset of an edge in a pseudograph, the pair is the edge. (Contributed by AV, 30-Dec-2020.)
Hypotheses
Ref Expression
upgredg.v 𝑉 = (Vtx‘𝐺)
upgredg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
upgredgpr (((𝐺 ∈ UPGraph ∧ 𝐶𝐸 ∧ {𝐴, 𝐵} ⊆ 𝐶) ∧ (𝐴𝑈𝐵𝑊𝐴𝐵)) → {𝐴, 𝐵} = 𝐶)

Proof of Theorem upgredgpr
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 upgredg.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 upgredg.e . . . . 5 𝐸 = (Edg‘𝐺)
31, 2upgredg 28665 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝐶𝐸) → ∃𝑎𝑉𝑏𝑉 𝐶 = {𝑎, 𝑏})
433adant3 1131 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐶𝐸 ∧ {𝐴, 𝐵} ⊆ 𝐶) → ∃𝑎𝑉𝑏𝑉 𝐶 = {𝑎, 𝑏})
5 ssprsseq 4828 . . . . . . . . . 10 ((𝐴𝑈𝐵𝑊𝐴𝐵) → ({𝐴, 𝐵} ⊆ {𝑎, 𝑏} ↔ {𝐴, 𝐵} = {𝑎, 𝑏}))
65biimpd 228 . . . . . . . . 9 ((𝐴𝑈𝐵𝑊𝐴𝐵) → ({𝐴, 𝐵} ⊆ {𝑎, 𝑏} → {𝐴, 𝐵} = {𝑎, 𝑏}))
7 sseq2 4008 . . . . . . . . . 10 (𝐶 = {𝑎, 𝑏} → ({𝐴, 𝐵} ⊆ 𝐶 ↔ {𝐴, 𝐵} ⊆ {𝑎, 𝑏}))
8 eqeq2 2743 . . . . . . . . . 10 (𝐶 = {𝑎, 𝑏} → ({𝐴, 𝐵} = 𝐶 ↔ {𝐴, 𝐵} = {𝑎, 𝑏}))
97, 8imbi12d 344 . . . . . . . . 9 (𝐶 = {𝑎, 𝑏} → (({𝐴, 𝐵} ⊆ 𝐶 → {𝐴, 𝐵} = 𝐶) ↔ ({𝐴, 𝐵} ⊆ {𝑎, 𝑏} → {𝐴, 𝐵} = {𝑎, 𝑏})))
106, 9imbitrrid 245 . . . . . . . 8 (𝐶 = {𝑎, 𝑏} → ((𝐴𝑈𝐵𝑊𝐴𝐵) → ({𝐴, 𝐵} ⊆ 𝐶 → {𝐴, 𝐵} = 𝐶)))
1110com23 86 . . . . . . 7 (𝐶 = {𝑎, 𝑏} → ({𝐴, 𝐵} ⊆ 𝐶 → ((𝐴𝑈𝐵𝑊𝐴𝐵) → {𝐴, 𝐵} = 𝐶)))
1211a1i 11 . . . . . 6 ((𝑎𝑉𝑏𝑉) → (𝐶 = {𝑎, 𝑏} → ({𝐴, 𝐵} ⊆ 𝐶 → ((𝐴𝑈𝐵𝑊𝐴𝐵) → {𝐴, 𝐵} = 𝐶))))
1312rexlimivv 3198 . . . . 5 (∃𝑎𝑉𝑏𝑉 𝐶 = {𝑎, 𝑏} → ({𝐴, 𝐵} ⊆ 𝐶 → ((𝐴𝑈𝐵𝑊𝐴𝐵) → {𝐴, 𝐵} = 𝐶)))
1413com12 32 . . . 4 ({𝐴, 𝐵} ⊆ 𝐶 → (∃𝑎𝑉𝑏𝑉 𝐶 = {𝑎, 𝑏} → ((𝐴𝑈𝐵𝑊𝐴𝐵) → {𝐴, 𝐵} = 𝐶)))
15143ad2ant3 1134 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐶𝐸 ∧ {𝐴, 𝐵} ⊆ 𝐶) → (∃𝑎𝑉𝑏𝑉 𝐶 = {𝑎, 𝑏} → ((𝐴𝑈𝐵𝑊𝐴𝐵) → {𝐴, 𝐵} = 𝐶)))
164, 15mpd 15 . 2 ((𝐺 ∈ UPGraph ∧ 𝐶𝐸 ∧ {𝐴, 𝐵} ⊆ 𝐶) → ((𝐴𝑈𝐵𝑊𝐴𝐵) → {𝐴, 𝐵} = 𝐶))
1716imp 406 1 (((𝐺 ∈ UPGraph ∧ 𝐶𝐸 ∧ {𝐴, 𝐵} ⊆ 𝐶) ∧ (𝐴𝑈𝐵𝑊𝐴𝐵)) → {𝐴, 𝐵} = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2105  wne 2939  wrex 3069  wss 3948  {cpr 4630  cfv 6543  Vtxcvtx 28524  Edgcedg 28575  UPGraphcupgr 28608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-1o 8470  df-2o 8471  df-oadd 8474  df-er 8707  df-en 8944  df-dom 8945  df-sdom 8946  df-fin 8947  df-dju 9900  df-card 9938  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-nn 12218  df-2 12280  df-n0 12478  df-xnn0 12550  df-z 12564  df-uz 12828  df-fz 13490  df-hash 14296  df-edg 28576  df-upgr 28610
This theorem is referenced by:  nbupgr  28869  nbumgrvtx  28871  upgriswlk  29166  upgrwlkupwlk  46817
  Copyright terms: Public domain W3C validator