![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > upgredgpr | Structured version Visualization version GIF version |
Description: If a proper pair (of vertices) is a subset of an edge in a pseudograph, the pair is the edge. (Contributed by AV, 30-Dec-2020.) |
Ref | Expression |
---|---|
upgredg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
upgredg.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
upgredgpr | ⊢ (((𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸 ∧ {𝐴, 𝐵} ⊆ 𝐶) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵)) → {𝐴, 𝐵} = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | upgredg.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | upgredg.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝐺) | |
3 | 1, 2 | upgredg 28943 | . . . 4 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝐶 = {𝑎, 𝑏}) |
4 | 3 | 3adant3 1130 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸 ∧ {𝐴, 𝐵} ⊆ 𝐶) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝐶 = {𝑎, 𝑏}) |
5 | ssprsseq 4824 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({𝐴, 𝐵} ⊆ {𝑎, 𝑏} ↔ {𝐴, 𝐵} = {𝑎, 𝑏})) | |
6 | 5 | biimpd 228 | . . . . . . . . 9 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({𝐴, 𝐵} ⊆ {𝑎, 𝑏} → {𝐴, 𝐵} = {𝑎, 𝑏})) |
7 | sseq2 4004 | . . . . . . . . . 10 ⊢ (𝐶 = {𝑎, 𝑏} → ({𝐴, 𝐵} ⊆ 𝐶 ↔ {𝐴, 𝐵} ⊆ {𝑎, 𝑏})) | |
8 | eqeq2 2739 | . . . . . . . . . 10 ⊢ (𝐶 = {𝑎, 𝑏} → ({𝐴, 𝐵} = 𝐶 ↔ {𝐴, 𝐵} = {𝑎, 𝑏})) | |
9 | 7, 8 | imbi12d 344 | . . . . . . . . 9 ⊢ (𝐶 = {𝑎, 𝑏} → (({𝐴, 𝐵} ⊆ 𝐶 → {𝐴, 𝐵} = 𝐶) ↔ ({𝐴, 𝐵} ⊆ {𝑎, 𝑏} → {𝐴, 𝐵} = {𝑎, 𝑏}))) |
10 | 6, 9 | imbitrrid 245 | . . . . . . . 8 ⊢ (𝐶 = {𝑎, 𝑏} → ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({𝐴, 𝐵} ⊆ 𝐶 → {𝐴, 𝐵} = 𝐶))) |
11 | 10 | com23 86 | . . . . . . 7 ⊢ (𝐶 = {𝑎, 𝑏} → ({𝐴, 𝐵} ⊆ 𝐶 → ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} = 𝐶))) |
12 | 11 | a1i 11 | . . . . . 6 ⊢ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝐶 = {𝑎, 𝑏} → ({𝐴, 𝐵} ⊆ 𝐶 → ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} = 𝐶)))) |
13 | 12 | rexlimivv 3194 | . . . . 5 ⊢ (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝐶 = {𝑎, 𝑏} → ({𝐴, 𝐵} ⊆ 𝐶 → ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} = 𝐶))) |
14 | 13 | com12 32 | . . . 4 ⊢ ({𝐴, 𝐵} ⊆ 𝐶 → (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝐶 = {𝑎, 𝑏} → ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} = 𝐶))) |
15 | 14 | 3ad2ant3 1133 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸 ∧ {𝐴, 𝐵} ⊆ 𝐶) → (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝐶 = {𝑎, 𝑏} → ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} = 𝐶))) |
16 | 4, 15 | mpd 15 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸 ∧ {𝐴, 𝐵} ⊆ 𝐶) → ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} = 𝐶)) |
17 | 16 | imp 406 | 1 ⊢ (((𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸 ∧ {𝐴, 𝐵} ⊆ 𝐶) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵)) → {𝐴, 𝐵} = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ≠ wne 2935 ∃wrex 3065 ⊆ wss 3944 {cpr 4626 ‘cfv 6542 Vtxcvtx 28802 Edgcedg 28853 UPGraphcupgr 28886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-oadd 8484 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-dju 9918 df-card 9956 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-nn 12237 df-2 12299 df-n0 12497 df-xnn0 12569 df-z 12583 df-uz 12847 df-fz 13511 df-hash 14316 df-edg 28854 df-upgr 28888 |
This theorem is referenced by: nbupgr 29150 nbumgrvtx 29152 upgriswlk 29448 upgrwlkupwlk 47174 |
Copyright terms: Public domain | W3C validator |