|   | Mathbox for Alan Sare | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sspwtrALT | Structured version Visualization version GIF version | ||
| Description: Virtual deduction proof of sspwtr 44846. This proof is the same as the proof of sspwtr 44846 except each virtual deduction symbol is replaced by its non-virtual deduction symbol equivalent. A class which is a subclass of its power class is transitive. (Contributed by Alan Sare, 3-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| sspwtrALT | ⊢ (𝐴 ⊆ 𝒫 𝐴 → Tr 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dftr2 5260 | . . 3 ⊢ (Tr 𝐴 ↔ ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴)) | |
| 2 | simpr 484 | . . . . . 6 ⊢ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ 𝐴) | |
| 3 | ssel 3976 | . . . . . 6 ⊢ (𝐴 ⊆ 𝒫 𝐴 → (𝑦 ∈ 𝐴 → 𝑦 ∈ 𝒫 𝐴)) | |
| 4 | elpwi 4606 | . . . . . 6 ⊢ (𝑦 ∈ 𝒫 𝐴 → 𝑦 ⊆ 𝐴) | |
| 5 | 2, 3, 4 | syl56 36 | . . . . 5 ⊢ (𝐴 ⊆ 𝒫 𝐴 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑦 ⊆ 𝐴)) | 
| 6 | idd 24 | . . . . . 6 ⊢ (𝐴 ⊆ 𝒫 𝐴 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴))) | |
| 7 | simpl 482 | . . . . . 6 ⊢ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝑦) | |
| 8 | 6, 7 | syl6 35 | . . . . 5 ⊢ (𝐴 ⊆ 𝒫 𝐴 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝑦)) | 
| 9 | ssel 3976 | . . . . 5 ⊢ (𝑦 ⊆ 𝐴 → (𝑧 ∈ 𝑦 → 𝑧 ∈ 𝐴)) | |
| 10 | 5, 8, 9 | syl6c 70 | . . . 4 ⊢ (𝐴 ⊆ 𝒫 𝐴 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴)) | 
| 11 | 10 | alrimivv 1927 | . . 3 ⊢ (𝐴 ⊆ 𝒫 𝐴 → ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴)) | 
| 12 | biimpr 220 | . . 3 ⊢ ((Tr 𝐴 ↔ ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴)) → (∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴) → Tr 𝐴)) | |
| 13 | 1, 11, 12 | mpsyl 68 | . 2 ⊢ (𝐴 ⊆ 𝒫 𝐴 → Tr 𝐴) | 
| 14 | 13 | idiALT 44503 | 1 ⊢ (𝐴 ⊆ 𝒫 𝐴 → Tr 𝐴) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1537 ∈ wcel 2107 ⊆ wss 3950 𝒫 cpw 4599 Tr wtr 5258 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-v 3481 df-ss 3967 df-pw 4601 df-uni 4907 df-tr 5259 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |