| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sspwtrALT2 | Structured version Visualization version GIF version | ||
| Description: Short predicate calculus proof of the right-to-left implication of dftr4 5216. A class which is a subclass of its power class is transitive. This proof was constructed by applying Metamath's minimize command to the proof of sspwtrALT 44784, which is the virtual deduction proof sspwtr 44783 without virtual deductions. (Contributed by Alan Sare, 3-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sspwtrALT2 | ⊢ (𝐴 ⊆ 𝒫 𝐴 → Tr 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3937 | . . . . . 6 ⊢ (𝐴 ⊆ 𝒫 𝐴 → (𝑦 ∈ 𝐴 → 𝑦 ∈ 𝒫 𝐴)) | |
| 2 | 1 | adantld 490 | . . . . 5 ⊢ (𝐴 ⊆ 𝒫 𝐴 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ 𝒫 𝐴)) |
| 3 | elpwi 4566 | . . . . 5 ⊢ (𝑦 ∈ 𝒫 𝐴 → 𝑦 ⊆ 𝐴) | |
| 4 | 2, 3 | syl6 35 | . . . 4 ⊢ (𝐴 ⊆ 𝒫 𝐴 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑦 ⊆ 𝐴)) |
| 5 | simpl 482 | . . . . 5 ⊢ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝑦) | |
| 6 | 5 | a1i 11 | . . . 4 ⊢ (𝐴 ⊆ 𝒫 𝐴 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝑦)) |
| 7 | ssel 3937 | . . . 4 ⊢ (𝑦 ⊆ 𝐴 → (𝑧 ∈ 𝑦 → 𝑧 ∈ 𝐴)) | |
| 8 | 4, 6, 7 | syl6c 70 | . . 3 ⊢ (𝐴 ⊆ 𝒫 𝐴 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴)) |
| 9 | 8 | alrimivv 1928 | . 2 ⊢ (𝐴 ⊆ 𝒫 𝐴 → ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴)) |
| 10 | dftr2 5211 | . 2 ⊢ (Tr 𝐴 ↔ ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴)) | |
| 11 | 9, 10 | sylibr 234 | 1 ⊢ (𝐴 ⊆ 𝒫 𝐴 → Tr 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 ∈ wcel 2109 ⊆ wss 3911 𝒫 cpw 4559 Tr wtr 5209 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-ss 3928 df-pw 4561 df-uni 4868 df-tr 5210 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |