Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sspwtrALT2 Structured version   Visualization version   GIF version

Theorem sspwtrALT2 44794
Description: Short predicate calculus proof of the right-to-left implication of dftr4 5290. A class which is a subclass of its power class is transitive. This proof was constructed by applying Metamath's minimize command to the proof of sspwtrALT 44793, which is the virtual deduction proof sspwtr 44792 without virtual deductions. (Contributed by Alan Sare, 3-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sspwtrALT2 (𝐴 ⊆ 𝒫 𝐴 → Tr 𝐴)

Proof of Theorem sspwtrALT2
Dummy variables 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 4002 . . . . . 6 (𝐴 ⊆ 𝒫 𝐴 → (𝑦𝐴𝑦 ∈ 𝒫 𝐴))
21adantld 490 . . . . 5 (𝐴 ⊆ 𝒫 𝐴 → ((𝑧𝑦𝑦𝐴) → 𝑦 ∈ 𝒫 𝐴))
3 elpwi 4629 . . . . 5 (𝑦 ∈ 𝒫 𝐴𝑦𝐴)
42, 3syl6 35 . . . 4 (𝐴 ⊆ 𝒫 𝐴 → ((𝑧𝑦𝑦𝐴) → 𝑦𝐴))
5 simpl 482 . . . . 5 ((𝑧𝑦𝑦𝐴) → 𝑧𝑦)
65a1i 11 . . . 4 (𝐴 ⊆ 𝒫 𝐴 → ((𝑧𝑦𝑦𝐴) → 𝑧𝑦))
7 ssel 4002 . . . 4 (𝑦𝐴 → (𝑧𝑦𝑧𝐴))
84, 6, 7syl6c 70 . . 3 (𝐴 ⊆ 𝒫 𝐴 → ((𝑧𝑦𝑦𝐴) → 𝑧𝐴))
98alrimivv 1927 . 2 (𝐴 ⊆ 𝒫 𝐴 → ∀𝑧𝑦((𝑧𝑦𝑦𝐴) → 𝑧𝐴))
10 dftr2 5285 . 2 (Tr 𝐴 ↔ ∀𝑧𝑦((𝑧𝑦𝑦𝐴) → 𝑧𝐴))
119, 10sylibr 234 1 (𝐴 ⊆ 𝒫 𝐴 → Tr 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1535  wcel 2108  wss 3976  𝒫 cpw 4622  Tr wtr 5283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-ss 3993  df-pw 4624  df-uni 4932  df-tr 5284
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator