Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sspwtrALT2 | Structured version Visualization version GIF version |
Description: Short predicate calculus proof of the right-to-left implication of dftr4 5192. A class which is a subclass of its power class is transitive. This proof was constructed by applying Metamath's minimize command to the proof of sspwtrALT 42331, which is the virtual deduction proof sspwtr 42330 without virtual deductions. (Contributed by Alan Sare, 3-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sspwtrALT2 | ⊢ (𝐴 ⊆ 𝒫 𝐴 → Tr 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3910 | . . . . . 6 ⊢ (𝐴 ⊆ 𝒫 𝐴 → (𝑦 ∈ 𝐴 → 𝑦 ∈ 𝒫 𝐴)) | |
2 | 1 | adantld 490 | . . . . 5 ⊢ (𝐴 ⊆ 𝒫 𝐴 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ 𝒫 𝐴)) |
3 | elpwi 4539 | . . . . 5 ⊢ (𝑦 ∈ 𝒫 𝐴 → 𝑦 ⊆ 𝐴) | |
4 | 2, 3 | syl6 35 | . . . 4 ⊢ (𝐴 ⊆ 𝒫 𝐴 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑦 ⊆ 𝐴)) |
5 | simpl 482 | . . . . 5 ⊢ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝑦) | |
6 | 5 | a1i 11 | . . . 4 ⊢ (𝐴 ⊆ 𝒫 𝐴 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝑦)) |
7 | ssel 3910 | . . . 4 ⊢ (𝑦 ⊆ 𝐴 → (𝑧 ∈ 𝑦 → 𝑧 ∈ 𝐴)) | |
8 | 4, 6, 7 | syl6c 70 | . . 3 ⊢ (𝐴 ⊆ 𝒫 𝐴 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴)) |
9 | 8 | alrimivv 1932 | . 2 ⊢ (𝐴 ⊆ 𝒫 𝐴 → ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴)) |
10 | dftr2 5189 | . 2 ⊢ (Tr 𝐴 ↔ ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴)) | |
11 | 9, 10 | sylibr 233 | 1 ⊢ (𝐴 ⊆ 𝒫 𝐴 → Tr 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1537 ∈ wcel 2108 ⊆ wss 3883 𝒫 cpw 4530 Tr wtr 5187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-pw 4532 df-uni 4837 df-tr 5188 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |