| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sspwtrALT2 | Structured version Visualization version GIF version | ||
| Description: Short predicate calculus proof of the right-to-left implication of dftr4 5202. A class which is a subclass of its power class is transitive. This proof was constructed by applying Metamath's minimize command to the proof of sspwtrALT 44862, which is the virtual deduction proof sspwtr 44861 without virtual deductions. (Contributed by Alan Sare, 3-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sspwtrALT2 | ⊢ (𝐴 ⊆ 𝒫 𝐴 → Tr 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3923 | . . . . . 6 ⊢ (𝐴 ⊆ 𝒫 𝐴 → (𝑦 ∈ 𝐴 → 𝑦 ∈ 𝒫 𝐴)) | |
| 2 | 1 | adantld 490 | . . . . 5 ⊢ (𝐴 ⊆ 𝒫 𝐴 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ 𝒫 𝐴)) |
| 3 | elpwi 4554 | . . . . 5 ⊢ (𝑦 ∈ 𝒫 𝐴 → 𝑦 ⊆ 𝐴) | |
| 4 | 2, 3 | syl6 35 | . . . 4 ⊢ (𝐴 ⊆ 𝒫 𝐴 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑦 ⊆ 𝐴)) |
| 5 | simpl 482 | . . . . 5 ⊢ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝑦) | |
| 6 | 5 | a1i 11 | . . . 4 ⊢ (𝐴 ⊆ 𝒫 𝐴 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝑦)) |
| 7 | ssel 3923 | . . . 4 ⊢ (𝑦 ⊆ 𝐴 → (𝑧 ∈ 𝑦 → 𝑧 ∈ 𝐴)) | |
| 8 | 4, 6, 7 | syl6c 70 | . . 3 ⊢ (𝐴 ⊆ 𝒫 𝐴 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴)) |
| 9 | 8 | alrimivv 1929 | . 2 ⊢ (𝐴 ⊆ 𝒫 𝐴 → ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴)) |
| 10 | dftr2 5198 | . 2 ⊢ (Tr 𝐴 ↔ ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴)) | |
| 11 | 9, 10 | sylibr 234 | 1 ⊢ (𝐴 ⊆ 𝒫 𝐴 → Tr 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1539 ∈ wcel 2111 ⊆ wss 3897 𝒫 cpw 4547 Tr wtr 5196 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-ss 3914 df-pw 4549 df-uni 4857 df-tr 5197 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |