![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sspwtrALT2 | Structured version Visualization version GIF version |
Description: Short predicate calculus proof of the right-to-left implication of dftr4 5290. A class which is a subclass of its power class is transitive. This proof was constructed by applying Metamath's minimize command to the proof of sspwtrALT 44793, which is the virtual deduction proof sspwtr 44792 without virtual deductions. (Contributed by Alan Sare, 3-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sspwtrALT2 | ⊢ (𝐴 ⊆ 𝒫 𝐴 → Tr 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 4002 | . . . . . 6 ⊢ (𝐴 ⊆ 𝒫 𝐴 → (𝑦 ∈ 𝐴 → 𝑦 ∈ 𝒫 𝐴)) | |
2 | 1 | adantld 490 | . . . . 5 ⊢ (𝐴 ⊆ 𝒫 𝐴 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ 𝒫 𝐴)) |
3 | elpwi 4629 | . . . . 5 ⊢ (𝑦 ∈ 𝒫 𝐴 → 𝑦 ⊆ 𝐴) | |
4 | 2, 3 | syl6 35 | . . . 4 ⊢ (𝐴 ⊆ 𝒫 𝐴 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑦 ⊆ 𝐴)) |
5 | simpl 482 | . . . . 5 ⊢ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝑦) | |
6 | 5 | a1i 11 | . . . 4 ⊢ (𝐴 ⊆ 𝒫 𝐴 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝑦)) |
7 | ssel 4002 | . . . 4 ⊢ (𝑦 ⊆ 𝐴 → (𝑧 ∈ 𝑦 → 𝑧 ∈ 𝐴)) | |
8 | 4, 6, 7 | syl6c 70 | . . 3 ⊢ (𝐴 ⊆ 𝒫 𝐴 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴)) |
9 | 8 | alrimivv 1927 | . 2 ⊢ (𝐴 ⊆ 𝒫 𝐴 → ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴)) |
10 | dftr2 5285 | . 2 ⊢ (Tr 𝐴 ↔ ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴)) | |
11 | 9, 10 | sylibr 234 | 1 ⊢ (𝐴 ⊆ 𝒫 𝐴 → Tr 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1535 ∈ wcel 2108 ⊆ wss 3976 𝒫 cpw 4622 Tr wtr 5283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-pw 4624 df-uni 4932 df-tr 5284 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |