Mathbox for Alan Sare < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sspwtrALT2 Structured version   Visualization version   GIF version

Theorem sspwtrALT2 39984
 Description: Short predicate calculus proof of the right-to-left implication of dftr4 4992. A class which is a subclass of its power class is transitive. This proof was constructed by applying Metamath's minimize command to the proof of sspwtrALT 39983, which is the virtual deduction proof sspwtr 39982 without virtual deductions. (Contributed by Alan Sare, 3-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sspwtrALT2 (𝐴 ⊆ 𝒫 𝐴 → Tr 𝐴)

Proof of Theorem sspwtrALT2
Dummy variables 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3814 . . . . . 6 (𝐴 ⊆ 𝒫 𝐴 → (𝑦𝐴𝑦 ∈ 𝒫 𝐴))
21adantld 486 . . . . 5 (𝐴 ⊆ 𝒫 𝐴 → ((𝑧𝑦𝑦𝐴) → 𝑦 ∈ 𝒫 𝐴))
3 elpwi 4388 . . . . 5 (𝑦 ∈ 𝒫 𝐴𝑦𝐴)
42, 3syl6 35 . . . 4 (𝐴 ⊆ 𝒫 𝐴 → ((𝑧𝑦𝑦𝐴) → 𝑦𝐴))
5 simpl 476 . . . . 5 ((𝑧𝑦𝑦𝐴) → 𝑧𝑦)
65a1i 11 . . . 4 (𝐴 ⊆ 𝒫 𝐴 → ((𝑧𝑦𝑦𝐴) → 𝑧𝑦))
7 ssel 3814 . . . 4 (𝑦𝐴 → (𝑧𝑦𝑧𝐴))
84, 6, 7syl6c 70 . . 3 (𝐴 ⊆ 𝒫 𝐴 → ((𝑧𝑦𝑦𝐴) → 𝑧𝐴))
98alrimivv 1971 . 2 (𝐴 ⊆ 𝒫 𝐴 → ∀𝑧𝑦((𝑧𝑦𝑦𝐴) → 𝑧𝐴))
10 dftr2 4989 . 2 (Tr 𝐴 ↔ ∀𝑧𝑦((𝑧𝑦𝑦𝐴) → 𝑧𝐴))
119, 10sylibr 226 1 (𝐴 ⊆ 𝒫 𝐴 → Tr 𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 386  ∀wal 1599   ∈ wcel 2106   ⊆ wss 3791  𝒫 cpw 4378  Tr wtr 4987 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-ext 2753 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-v 3399  df-in 3798  df-ss 3805  df-pw 4380  df-uni 4672  df-tr 4988 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator