| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfsup | Structured version Visualization version GIF version | ||
| Description: Hypothesis builder for supremum. (Contributed by Mario Carneiro, 20-Mar-2014.) |
| Ref | Expression |
|---|---|
| nfsup.1 | ⊢ Ⅎ𝑥𝐴 |
| nfsup.2 | ⊢ Ⅎ𝑥𝐵 |
| nfsup.3 | ⊢ Ⅎ𝑥𝑅 |
| Ref | Expression |
|---|---|
| nfsup | ⊢ Ⅎ𝑥sup(𝐴, 𝐵, 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsup2 9402 | . 2 ⊢ sup(𝐴, 𝐵, 𝑅) = ∪ (𝐵 ∖ ((◡𝑅 “ 𝐴) ∪ (𝑅 “ (𝐵 ∖ (◡𝑅 “ 𝐴))))) | |
| 2 | nfsup.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 3 | nfsup.3 | . . . . . . 7 ⊢ Ⅎ𝑥𝑅 | |
| 4 | 3 | nfcnv 5845 | . . . . . 6 ⊢ Ⅎ𝑥◡𝑅 |
| 5 | nfsup.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
| 6 | 4, 5 | nfima 6042 | . . . . 5 ⊢ Ⅎ𝑥(◡𝑅 “ 𝐴) |
| 7 | 2, 6 | nfdif 4095 | . . . . . 6 ⊢ Ⅎ𝑥(𝐵 ∖ (◡𝑅 “ 𝐴)) |
| 8 | 3, 7 | nfima 6042 | . . . . 5 ⊢ Ⅎ𝑥(𝑅 “ (𝐵 ∖ (◡𝑅 “ 𝐴))) |
| 9 | 6, 8 | nfun 4136 | . . . 4 ⊢ Ⅎ𝑥((◡𝑅 “ 𝐴) ∪ (𝑅 “ (𝐵 ∖ (◡𝑅 “ 𝐴)))) |
| 10 | 2, 9 | nfdif 4095 | . . 3 ⊢ Ⅎ𝑥(𝐵 ∖ ((◡𝑅 “ 𝐴) ∪ (𝑅 “ (𝐵 ∖ (◡𝑅 “ 𝐴))))) |
| 11 | 10 | nfuni 4881 | . 2 ⊢ Ⅎ𝑥∪ (𝐵 ∖ ((◡𝑅 “ 𝐴) ∪ (𝑅 “ (𝐵 ∖ (◡𝑅 “ 𝐴))))) |
| 12 | 1, 11 | nfcxfr 2890 | 1 ⊢ Ⅎ𝑥sup(𝐴, 𝐵, 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2877 ∖ cdif 3914 ∪ cun 3915 ∪ cuni 4874 ◡ccnv 5640 “ cima 5644 supcsup 9398 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-xp 5647 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-sup 9400 |
| This theorem is referenced by: nfinf 9441 itg2cnlem1 25669 esum2d 34090 nfwlim 35817 totbndbnd 37790 aomclem8 43057 binomcxplemdvbinom 44349 binomcxplemdvsum 44351 binomcxplemnotnn0 44352 ssfiunibd 45314 uzub 45434 limsupubuz 45718 fourierdlem20 46132 fourierdlem31 46143 fourierdlem79 46190 sge0ltfirp 46405 pimdecfgtioc 46720 decsmflem 46771 smfsup 46819 smfsupxr 46821 smflimsup 46833 |
| Copyright terms: Public domain | W3C validator |