![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfsup | Structured version Visualization version GIF version |
Description: Hypothesis builder for supremum. (Contributed by Mario Carneiro, 20-Mar-2014.) |
Ref | Expression |
---|---|
nfsup.1 | ⊢ Ⅎ𝑥𝐴 |
nfsup.2 | ⊢ Ⅎ𝑥𝐵 |
nfsup.3 | ⊢ Ⅎ𝑥𝑅 |
Ref | Expression |
---|---|
nfsup | ⊢ Ⅎ𝑥sup(𝐴, 𝐵, 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsup2 9513 | . 2 ⊢ sup(𝐴, 𝐵, 𝑅) = ∪ (𝐵 ∖ ((◡𝑅 “ 𝐴) ∪ (𝑅 “ (𝐵 ∖ (◡𝑅 “ 𝐴))))) | |
2 | nfsup.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
3 | nfsup.3 | . . . . . . 7 ⊢ Ⅎ𝑥𝑅 | |
4 | 3 | nfcnv 5903 | . . . . . 6 ⊢ Ⅎ𝑥◡𝑅 |
5 | nfsup.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
6 | 4, 5 | nfima 6097 | . . . . 5 ⊢ Ⅎ𝑥(◡𝑅 “ 𝐴) |
7 | 2, 6 | nfdif 4152 | . . . . . 6 ⊢ Ⅎ𝑥(𝐵 ∖ (◡𝑅 “ 𝐴)) |
8 | 3, 7 | nfima 6097 | . . . . 5 ⊢ Ⅎ𝑥(𝑅 “ (𝐵 ∖ (◡𝑅 “ 𝐴))) |
9 | 6, 8 | nfun 4193 | . . . 4 ⊢ Ⅎ𝑥((◡𝑅 “ 𝐴) ∪ (𝑅 “ (𝐵 ∖ (◡𝑅 “ 𝐴)))) |
10 | 2, 9 | nfdif 4152 | . . 3 ⊢ Ⅎ𝑥(𝐵 ∖ ((◡𝑅 “ 𝐴) ∪ (𝑅 “ (𝐵 ∖ (◡𝑅 “ 𝐴))))) |
11 | 10 | nfuni 4938 | . 2 ⊢ Ⅎ𝑥∪ (𝐵 ∖ ((◡𝑅 “ 𝐴) ∪ (𝑅 “ (𝐵 ∖ (◡𝑅 “ 𝐴))))) |
12 | 1, 11 | nfcxfr 2906 | 1 ⊢ Ⅎ𝑥sup(𝐴, 𝐵, 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2893 ∖ cdif 3973 ∪ cun 3974 ∪ cuni 4931 ◡ccnv 5699 “ cima 5703 supcsup 9509 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-sup 9511 |
This theorem is referenced by: nfinf 9551 itg2cnlem1 25816 esum2d 34057 nfwlim 35786 totbndbnd 37749 aomclem8 43018 binomcxplemdvbinom 44322 binomcxplemdvsum 44324 binomcxplemnotnn0 44325 ssfiunibd 45224 uzub 45346 limsupubuz 45634 fourierdlem20 46048 fourierdlem31 46059 fourierdlem79 46106 sge0ltfirp 46321 pimdecfgtioc 46636 decsmflem 46687 smfsup 46735 smfsupxr 46737 smflimsup 46749 |
Copyright terms: Public domain | W3C validator |