Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfsup | Structured version Visualization version GIF version |
Description: Hypothesis builder for supremum. (Contributed by Mario Carneiro, 20-Mar-2014.) |
Ref | Expression |
---|---|
nfsup.1 | ⊢ Ⅎ𝑥𝐴 |
nfsup.2 | ⊢ Ⅎ𝑥𝐵 |
nfsup.3 | ⊢ Ⅎ𝑥𝑅 |
Ref | Expression |
---|---|
nfsup | ⊢ Ⅎ𝑥sup(𝐴, 𝐵, 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsup2 8954 | . 2 ⊢ sup(𝐴, 𝐵, 𝑅) = ∪ (𝐵 ∖ ((◡𝑅 “ 𝐴) ∪ (𝑅 “ (𝐵 ∖ (◡𝑅 “ 𝐴))))) | |
2 | nfsup.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
3 | nfsup.3 | . . . . . . 7 ⊢ Ⅎ𝑥𝑅 | |
4 | 3 | nfcnv 5724 | . . . . . 6 ⊢ Ⅎ𝑥◡𝑅 |
5 | nfsup.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
6 | 4, 5 | nfima 5914 | . . . . 5 ⊢ Ⅎ𝑥(◡𝑅 “ 𝐴) |
7 | 2, 6 | nfdif 4033 | . . . . . 6 ⊢ Ⅎ𝑥(𝐵 ∖ (◡𝑅 “ 𝐴)) |
8 | 3, 7 | nfima 5914 | . . . . 5 ⊢ Ⅎ𝑥(𝑅 “ (𝐵 ∖ (◡𝑅 “ 𝐴))) |
9 | 6, 8 | nfun 4072 | . . . 4 ⊢ Ⅎ𝑥((◡𝑅 “ 𝐴) ∪ (𝑅 “ (𝐵 ∖ (◡𝑅 “ 𝐴)))) |
10 | 2, 9 | nfdif 4033 | . . 3 ⊢ Ⅎ𝑥(𝐵 ∖ ((◡𝑅 “ 𝐴) ∪ (𝑅 “ (𝐵 ∖ (◡𝑅 “ 𝐴))))) |
11 | 10 | nfuni 4808 | . 2 ⊢ Ⅎ𝑥∪ (𝐵 ∖ ((◡𝑅 “ 𝐴) ∪ (𝑅 “ (𝐵 ∖ (◡𝑅 “ 𝐴))))) |
12 | 1, 11 | nfcxfr 2917 | 1 ⊢ Ⅎ𝑥sup(𝐴, 𝐵, 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2899 ∖ cdif 3857 ∪ cun 3858 ∪ cuni 4801 ◡ccnv 5527 “ cima 5531 supcsup 8950 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pr 5302 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5037 df-opab 5099 df-xp 5534 df-cnv 5536 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-sup 8952 |
This theorem is referenced by: nfinf 8992 itg2cnlem1 24475 esum2d 31593 nfwlim 33384 totbndbnd 35542 aomclem8 40423 binomcxplemdvbinom 41475 binomcxplemdvsum 41477 binomcxplemnotnn0 41478 ssfiunibd 42354 uzub 42479 limsupubuz 42766 fourierdlem20 43180 fourierdlem31 43191 fourierdlem79 43238 sge0ltfirp 43450 pimdecfgtioc 43761 decsmflem 43810 smfsup 43856 smfsupxr 43858 smflimsup 43870 |
Copyright terms: Public domain | W3C validator |