| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfsup | Structured version Visualization version GIF version | ||
| Description: Hypothesis builder for supremum. (Contributed by Mario Carneiro, 20-Mar-2014.) |
| Ref | Expression |
|---|---|
| nfsup.1 | ⊢ Ⅎ𝑥𝐴 |
| nfsup.2 | ⊢ Ⅎ𝑥𝐵 |
| nfsup.3 | ⊢ Ⅎ𝑥𝑅 |
| Ref | Expression |
|---|---|
| nfsup | ⊢ Ⅎ𝑥sup(𝐴, 𝐵, 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsup2 9395 | . 2 ⊢ sup(𝐴, 𝐵, 𝑅) = ∪ (𝐵 ∖ ((◡𝑅 “ 𝐴) ∪ (𝑅 “ (𝐵 ∖ (◡𝑅 “ 𝐴))))) | |
| 2 | nfsup.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 3 | nfsup.3 | . . . . . . 7 ⊢ Ⅎ𝑥𝑅 | |
| 4 | 3 | nfcnv 5842 | . . . . . 6 ⊢ Ⅎ𝑥◡𝑅 |
| 5 | nfsup.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
| 6 | 4, 5 | nfima 6039 | . . . . 5 ⊢ Ⅎ𝑥(◡𝑅 “ 𝐴) |
| 7 | 2, 6 | nfdif 4092 | . . . . . 6 ⊢ Ⅎ𝑥(𝐵 ∖ (◡𝑅 “ 𝐴)) |
| 8 | 3, 7 | nfima 6039 | . . . . 5 ⊢ Ⅎ𝑥(𝑅 “ (𝐵 ∖ (◡𝑅 “ 𝐴))) |
| 9 | 6, 8 | nfun 4133 | . . . 4 ⊢ Ⅎ𝑥((◡𝑅 “ 𝐴) ∪ (𝑅 “ (𝐵 ∖ (◡𝑅 “ 𝐴)))) |
| 10 | 2, 9 | nfdif 4092 | . . 3 ⊢ Ⅎ𝑥(𝐵 ∖ ((◡𝑅 “ 𝐴) ∪ (𝑅 “ (𝐵 ∖ (◡𝑅 “ 𝐴))))) |
| 11 | 10 | nfuni 4878 | . 2 ⊢ Ⅎ𝑥∪ (𝐵 ∖ ((◡𝑅 “ 𝐴) ∪ (𝑅 “ (𝐵 ∖ (◡𝑅 “ 𝐴))))) |
| 12 | 1, 11 | nfcxfr 2889 | 1 ⊢ Ⅎ𝑥sup(𝐴, 𝐵, 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2876 ∖ cdif 3911 ∪ cun 3912 ∪ cuni 4871 ◡ccnv 5637 “ cima 5641 supcsup 9391 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-sup 9393 |
| This theorem is referenced by: nfinf 9434 itg2cnlem1 25662 esum2d 34083 nfwlim 35810 totbndbnd 37783 aomclem8 43050 binomcxplemdvbinom 44342 binomcxplemdvsum 44344 binomcxplemnotnn0 44345 ssfiunibd 45307 uzub 45427 limsupubuz 45711 fourierdlem20 46125 fourierdlem31 46136 fourierdlem79 46183 sge0ltfirp 46398 pimdecfgtioc 46713 decsmflem 46764 smfsup 46812 smfsupxr 46814 smflimsup 46826 |
| Copyright terms: Public domain | W3C validator |