MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfsup Structured version   Visualization version   GIF version

Theorem nfsup 9360
Description: Hypothesis builder for supremum. (Contributed by Mario Carneiro, 20-Mar-2014.)
Hypotheses
Ref Expression
nfsup.1 𝑥𝐴
nfsup.2 𝑥𝐵
nfsup.3 𝑥𝑅
Assertion
Ref Expression
nfsup 𝑥sup(𝐴, 𝐵, 𝑅)

Proof of Theorem nfsup
StepHypRef Expression
1 dfsup2 9353 . 2 sup(𝐴, 𝐵, 𝑅) = (𝐵 ∖ ((𝑅𝐴) ∪ (𝑅 “ (𝐵 ∖ (𝑅𝐴)))))
2 nfsup.2 . . . 4 𝑥𝐵
3 nfsup.3 . . . . . . 7 𝑥𝑅
43nfcnv 5825 . . . . . 6 𝑥𝑅
5 nfsup.1 . . . . . 6 𝑥𝐴
64, 5nfima 6023 . . . . 5 𝑥(𝑅𝐴)
72, 6nfdif 4082 . . . . . 6 𝑥(𝐵 ∖ (𝑅𝐴))
83, 7nfima 6023 . . . . 5 𝑥(𝑅 “ (𝐵 ∖ (𝑅𝐴)))
96, 8nfun 4123 . . . 4 𝑥((𝑅𝐴) ∪ (𝑅 “ (𝐵 ∖ (𝑅𝐴))))
102, 9nfdif 4082 . . 3 𝑥(𝐵 ∖ ((𝑅𝐴) ∪ (𝑅 “ (𝐵 ∖ (𝑅𝐴)))))
1110nfuni 4868 . 2 𝑥 (𝐵 ∖ ((𝑅𝐴) ∪ (𝑅 “ (𝐵 ∖ (𝑅𝐴)))))
121, 11nfcxfr 2889 1 𝑥sup(𝐴, 𝐵, 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wnfc 2876  cdif 3902  cun 3903   cuni 4861  ccnv 5622  cima 5626  supcsup 9349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-xp 5629  df-cnv 5631  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-sup 9351
This theorem is referenced by:  nfinf  9392  itg2cnlem1  25678  esum2d  34059  nfwlim  35795  totbndbnd  37768  aomclem8  43034  binomcxplemdvbinom  44326  binomcxplemdvsum  44328  binomcxplemnotnn0  44329  ssfiunibd  45291  uzub  45411  limsupubuz  45695  fourierdlem20  46109  fourierdlem31  46120  fourierdlem79  46167  sge0ltfirp  46382  pimdecfgtioc  46697  decsmflem  46748  smfsup  46796  smfsupxr  46798  smflimsup  46810
  Copyright terms: Public domain W3C validator