| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfsup | Structured version Visualization version GIF version | ||
| Description: Hypothesis builder for supremum. (Contributed by Mario Carneiro, 20-Mar-2014.) |
| Ref | Expression |
|---|---|
| nfsup.1 | ⊢ Ⅎ𝑥𝐴 |
| nfsup.2 | ⊢ Ⅎ𝑥𝐵 |
| nfsup.3 | ⊢ Ⅎ𝑥𝑅 |
| Ref | Expression |
|---|---|
| nfsup | ⊢ Ⅎ𝑥sup(𝐴, 𝐵, 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsup2 9353 | . 2 ⊢ sup(𝐴, 𝐵, 𝑅) = ∪ (𝐵 ∖ ((◡𝑅 “ 𝐴) ∪ (𝑅 “ (𝐵 ∖ (◡𝑅 “ 𝐴))))) | |
| 2 | nfsup.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 3 | nfsup.3 | . . . . . . 7 ⊢ Ⅎ𝑥𝑅 | |
| 4 | 3 | nfcnv 5825 | . . . . . 6 ⊢ Ⅎ𝑥◡𝑅 |
| 5 | nfsup.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
| 6 | 4, 5 | nfima 6023 | . . . . 5 ⊢ Ⅎ𝑥(◡𝑅 “ 𝐴) |
| 7 | 2, 6 | nfdif 4082 | . . . . . 6 ⊢ Ⅎ𝑥(𝐵 ∖ (◡𝑅 “ 𝐴)) |
| 8 | 3, 7 | nfima 6023 | . . . . 5 ⊢ Ⅎ𝑥(𝑅 “ (𝐵 ∖ (◡𝑅 “ 𝐴))) |
| 9 | 6, 8 | nfun 4123 | . . . 4 ⊢ Ⅎ𝑥((◡𝑅 “ 𝐴) ∪ (𝑅 “ (𝐵 ∖ (◡𝑅 “ 𝐴)))) |
| 10 | 2, 9 | nfdif 4082 | . . 3 ⊢ Ⅎ𝑥(𝐵 ∖ ((◡𝑅 “ 𝐴) ∪ (𝑅 “ (𝐵 ∖ (◡𝑅 “ 𝐴))))) |
| 11 | 10 | nfuni 4868 | . 2 ⊢ Ⅎ𝑥∪ (𝐵 ∖ ((◡𝑅 “ 𝐴) ∪ (𝑅 “ (𝐵 ∖ (◡𝑅 “ 𝐴))))) |
| 12 | 1, 11 | nfcxfr 2889 | 1 ⊢ Ⅎ𝑥sup(𝐴, 𝐵, 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2876 ∖ cdif 3902 ∪ cun 3903 ∪ cuni 4861 ◡ccnv 5622 “ cima 5626 supcsup 9349 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-xp 5629 df-cnv 5631 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-sup 9351 |
| This theorem is referenced by: nfinf 9392 itg2cnlem1 25678 esum2d 34059 nfwlim 35795 totbndbnd 37768 aomclem8 43034 binomcxplemdvbinom 44326 binomcxplemdvsum 44328 binomcxplemnotnn0 44329 ssfiunibd 45291 uzub 45411 limsupubuz 45695 fourierdlem20 46109 fourierdlem31 46120 fourierdlem79 46167 sge0ltfirp 46382 pimdecfgtioc 46697 decsmflem 46748 smfsup 46796 smfsupxr 46798 smflimsup 46810 |
| Copyright terms: Public domain | W3C validator |