| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfsup | Structured version Visualization version GIF version | ||
| Description: Hypothesis builder for supremum. (Contributed by Mario Carneiro, 20-Mar-2014.) |
| Ref | Expression |
|---|---|
| nfsup.1 | ⊢ Ⅎ𝑥𝐴 |
| nfsup.2 | ⊢ Ⅎ𝑥𝐵 |
| nfsup.3 | ⊢ Ⅎ𝑥𝑅 |
| Ref | Expression |
|---|---|
| nfsup | ⊢ Ⅎ𝑥sup(𝐴, 𝐵, 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsup2 9335 | . 2 ⊢ sup(𝐴, 𝐵, 𝑅) = ∪ (𝐵 ∖ ((◡𝑅 “ 𝐴) ∪ (𝑅 “ (𝐵 ∖ (◡𝑅 “ 𝐴))))) | |
| 2 | nfsup.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 3 | nfsup.3 | . . . . . . 7 ⊢ Ⅎ𝑥𝑅 | |
| 4 | 3 | nfcnv 5822 | . . . . . 6 ⊢ Ⅎ𝑥◡𝑅 |
| 5 | nfsup.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
| 6 | 4, 5 | nfima 6021 | . . . . 5 ⊢ Ⅎ𝑥(◡𝑅 “ 𝐴) |
| 7 | 2, 6 | nfdif 4078 | . . . . . 6 ⊢ Ⅎ𝑥(𝐵 ∖ (◡𝑅 “ 𝐴)) |
| 8 | 3, 7 | nfima 6021 | . . . . 5 ⊢ Ⅎ𝑥(𝑅 “ (𝐵 ∖ (◡𝑅 “ 𝐴))) |
| 9 | 6, 8 | nfun 4119 | . . . 4 ⊢ Ⅎ𝑥((◡𝑅 “ 𝐴) ∪ (𝑅 “ (𝐵 ∖ (◡𝑅 “ 𝐴)))) |
| 10 | 2, 9 | nfdif 4078 | . . 3 ⊢ Ⅎ𝑥(𝐵 ∖ ((◡𝑅 “ 𝐴) ∪ (𝑅 “ (𝐵 ∖ (◡𝑅 “ 𝐴))))) |
| 11 | 10 | nfuni 4865 | . 2 ⊢ Ⅎ𝑥∪ (𝐵 ∖ ((◡𝑅 “ 𝐴) ∪ (𝑅 “ (𝐵 ∖ (◡𝑅 “ 𝐴))))) |
| 12 | 1, 11 | nfcxfr 2893 | 1 ⊢ Ⅎ𝑥sup(𝐴, 𝐵, 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2880 ∖ cdif 3895 ∪ cun 3896 ∪ cuni 4858 ◡ccnv 5618 “ cima 5622 supcsup 9331 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-xp 5625 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-sup 9333 |
| This theorem is referenced by: nfinf 9374 itg2cnlem1 25690 esum2d 34127 nfwlim 35885 totbndbnd 37849 aomclem8 43178 binomcxplemdvbinom 44470 binomcxplemdvsum 44472 binomcxplemnotnn0 44473 ssfiunibd 45434 uzub 45553 limsupubuz 45835 fourierdlem20 46249 fourierdlem31 46260 fourierdlem79 46307 sge0ltfirp 46522 pimdecfgtioc 46837 decsmflem 46888 smfsup 46936 smfsupxr 46938 smflimsup 46950 |
| Copyright terms: Public domain | W3C validator |