| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfsup | Structured version Visualization version GIF version | ||
| Description: Hypothesis builder for supremum. (Contributed by Mario Carneiro, 20-Mar-2014.) |
| Ref | Expression |
|---|---|
| nfsup.1 | ⊢ Ⅎ𝑥𝐴 |
| nfsup.2 | ⊢ Ⅎ𝑥𝐵 |
| nfsup.3 | ⊢ Ⅎ𝑥𝑅 |
| Ref | Expression |
|---|---|
| nfsup | ⊢ Ⅎ𝑥sup(𝐴, 𝐵, 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsup2 9461 | . 2 ⊢ sup(𝐴, 𝐵, 𝑅) = ∪ (𝐵 ∖ ((◡𝑅 “ 𝐴) ∪ (𝑅 “ (𝐵 ∖ (◡𝑅 “ 𝐴))))) | |
| 2 | nfsup.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 3 | nfsup.3 | . . . . . . 7 ⊢ Ⅎ𝑥𝑅 | |
| 4 | 3 | nfcnv 5863 | . . . . . 6 ⊢ Ⅎ𝑥◡𝑅 |
| 5 | nfsup.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
| 6 | 4, 5 | nfima 6060 | . . . . 5 ⊢ Ⅎ𝑥(◡𝑅 “ 𝐴) |
| 7 | 2, 6 | nfdif 4109 | . . . . . 6 ⊢ Ⅎ𝑥(𝐵 ∖ (◡𝑅 “ 𝐴)) |
| 8 | 3, 7 | nfima 6060 | . . . . 5 ⊢ Ⅎ𝑥(𝑅 “ (𝐵 ∖ (◡𝑅 “ 𝐴))) |
| 9 | 6, 8 | nfun 4150 | . . . 4 ⊢ Ⅎ𝑥((◡𝑅 “ 𝐴) ∪ (𝑅 “ (𝐵 ∖ (◡𝑅 “ 𝐴)))) |
| 10 | 2, 9 | nfdif 4109 | . . 3 ⊢ Ⅎ𝑥(𝐵 ∖ ((◡𝑅 “ 𝐴) ∪ (𝑅 “ (𝐵 ∖ (◡𝑅 “ 𝐴))))) |
| 11 | 10 | nfuni 4895 | . 2 ⊢ Ⅎ𝑥∪ (𝐵 ∖ ((◡𝑅 “ 𝐴) ∪ (𝑅 “ (𝐵 ∖ (◡𝑅 “ 𝐴))))) |
| 12 | 1, 11 | nfcxfr 2897 | 1 ⊢ Ⅎ𝑥sup(𝐴, 𝐵, 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2884 ∖ cdif 3928 ∪ cun 3929 ∪ cuni 4888 ◡ccnv 5658 “ cima 5662 supcsup 9457 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-xp 5665 df-cnv 5667 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-sup 9459 |
| This theorem is referenced by: nfinf 9500 itg2cnlem1 25719 esum2d 34129 nfwlim 35845 totbndbnd 37818 aomclem8 43052 binomcxplemdvbinom 44344 binomcxplemdvsum 44346 binomcxplemnotnn0 44347 ssfiunibd 45305 uzub 45425 limsupubuz 45709 fourierdlem20 46123 fourierdlem31 46134 fourierdlem79 46181 sge0ltfirp 46396 pimdecfgtioc 46711 decsmflem 46762 smfsup 46810 smfsupxr 46812 smflimsup 46824 |
| Copyright terms: Public domain | W3C validator |