Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemj1 Structured version   Visualization version   GIF version

Theorem cdlemj1 40803
Description: Part of proof of Lemma J of [Crawley] p. 118. (Contributed by NM, 19-Jun-2013.)
Hypotheses
Ref Expression
cdlemj.b 𝐵 = (Base‘𝐾)
cdlemj.h 𝐻 = (LHyp‘𝐾)
cdlemj.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemj.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemj.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
cdlemj.l = (le‘𝐾)
cdlemj.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cdlemj1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ( ≠ ( I ↾ 𝐵) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐹) ≠ (𝑅𝑔) ∧ (𝑅𝑔) ≠ (𝑅) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊))) → ((𝑈)‘𝑝) = ((𝑉)‘𝑝))

Proof of Theorem cdlemj1
StepHypRef Expression
1 simp123 1306 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ( ≠ ( I ↾ 𝐵) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐹) ≠ (𝑅𝑔) ∧ (𝑅𝑔) ≠ (𝑅) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊))) → (𝑈𝐹) = (𝑉𝐹))
21fveq1d 6908 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ( ≠ ( I ↾ 𝐵) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐹) ≠ (𝑅𝑔) ∧ (𝑅𝑔) ≠ (𝑅) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊))) → ((𝑈𝐹)‘𝑝) = ((𝑉𝐹)‘𝑝))
32oveq1d 7445 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ( ≠ ( I ↾ 𝐵) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐹) ≠ (𝑅𝑔) ∧ (𝑅𝑔) ≠ (𝑅) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊))) → (((𝑈𝐹)‘𝑝)(join‘𝐾)(𝑅‘(𝑔𝐹))) = (((𝑉𝐹)‘𝑝)(join‘𝐾)(𝑅‘(𝑔𝐹))))
43oveq2d 7446 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ( ≠ ( I ↾ 𝐵) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐹) ≠ (𝑅𝑔) ∧ (𝑅𝑔) ≠ (𝑅) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊))) → ((𝑝(join‘𝐾)(𝑅𝑔))(meet‘𝐾)(((𝑈𝐹)‘𝑝)(join‘𝐾)(𝑅‘(𝑔𝐹)))) = ((𝑝(join‘𝐾)(𝑅𝑔))(meet‘𝐾)(((𝑉𝐹)‘𝑝)(join‘𝐾)(𝑅‘(𝑔𝐹)))))
5 simp11 1202 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ( ≠ ( I ↾ 𝐵) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐹) ≠ (𝑅𝑔) ∧ (𝑅𝑔) ≠ (𝑅) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
6 simp131 1307 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ( ≠ ( I ↾ 𝐵) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐹) ≠ (𝑅𝑔) ∧ (𝑅𝑔) ≠ (𝑅) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊))) → 𝐹𝑇)
7 simp22 1206 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ( ≠ ( I ↾ 𝐵) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐹) ≠ (𝑅𝑔) ∧ (𝑅𝑔) ≠ (𝑅) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊))) → 𝑔𝑇)
8 simp121 1304 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ( ≠ ( I ↾ 𝐵) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐹) ≠ (𝑅𝑔) ∧ (𝑅𝑔) ≠ (𝑅) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊))) → 𝑈𝐸)
9 simp33 1210 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ( ≠ ( I ↾ 𝐵) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐹) ≠ (𝑅𝑔) ∧ (𝑅𝑔) ≠ (𝑅) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊))) → (𝑝𝐴 ∧ ¬ 𝑝 𝑊))
10 simp132 1308 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ( ≠ ( I ↾ 𝐵) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐹) ≠ (𝑅𝑔) ∧ (𝑅𝑔) ≠ (𝑅) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊))) → 𝐹 ≠ ( I ↾ 𝐵))
11 simp23 1207 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ( ≠ ( I ↾ 𝐵) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐹) ≠ (𝑅𝑔) ∧ (𝑅𝑔) ≠ (𝑅) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊))) → 𝑔 ≠ ( I ↾ 𝐵))
12 simp31 1208 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ( ≠ ( I ↾ 𝐵) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐹) ≠ (𝑅𝑔) ∧ (𝑅𝑔) ≠ (𝑅) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊))) → (𝑅𝐹) ≠ (𝑅𝑔))
13 cdlemj.b . . . . . . 7 𝐵 = (Base‘𝐾)
14 cdlemj.l . . . . . . 7 = (le‘𝐾)
15 eqid 2734 . . . . . . 7 (join‘𝐾) = (join‘𝐾)
16 eqid 2734 . . . . . . 7 (meet‘𝐾) = (meet‘𝐾)
17 cdlemj.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
18 cdlemj.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
19 cdlemj.t . . . . . . 7 𝑇 = ((LTrn‘𝐾)‘𝑊)
20 cdlemj.r . . . . . . 7 𝑅 = ((trL‘𝐾)‘𝑊)
21 cdlemj.e . . . . . . 7 𝐸 = ((TEndo‘𝐾)‘𝑊)
22 eqid 2734 . . . . . . 7 ((𝑝(join‘𝐾)(𝑅𝑔))(meet‘𝐾)(((𝑈𝐹)‘𝑝)(join‘𝐾)(𝑅‘(𝑔𝐹)))) = ((𝑝(join‘𝐾)(𝑅𝑔))(meet‘𝐾)(((𝑈𝐹)‘𝑝)(join‘𝐾)(𝑅‘(𝑔𝐹))))
2313, 14, 15, 16, 17, 18, 19, 20, 21, 22cdlemi 40802 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑔𝑇) ∧ (𝑈𝐸 ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑔 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝑔))) → ((𝑈𝑔)‘𝑝) = ((𝑝(join‘𝐾)(𝑅𝑔))(meet‘𝐾)(((𝑈𝐹)‘𝑝)(join‘𝐾)(𝑅‘(𝑔𝐹)))))
245, 6, 7, 8, 9, 10, 11, 12, 23syl323anc 1399 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ( ≠ ( I ↾ 𝐵) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐹) ≠ (𝑅𝑔) ∧ (𝑅𝑔) ≠ (𝑅) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊))) → ((𝑈𝑔)‘𝑝) = ((𝑝(join‘𝐾)(𝑅𝑔))(meet‘𝐾)(((𝑈𝐹)‘𝑝)(join‘𝐾)(𝑅‘(𝑔𝐹)))))
25 simp122 1305 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ( ≠ ( I ↾ 𝐵) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐹) ≠ (𝑅𝑔) ∧ (𝑅𝑔) ≠ (𝑅) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊))) → 𝑉𝐸)
26 eqid 2734 . . . . . . 7 ((𝑝(join‘𝐾)(𝑅𝑔))(meet‘𝐾)(((𝑉𝐹)‘𝑝)(join‘𝐾)(𝑅‘(𝑔𝐹)))) = ((𝑝(join‘𝐾)(𝑅𝑔))(meet‘𝐾)(((𝑉𝐹)‘𝑝)(join‘𝐾)(𝑅‘(𝑔𝐹))))
2713, 14, 15, 16, 17, 18, 19, 20, 21, 26cdlemi 40802 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑔𝑇) ∧ (𝑉𝐸 ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑔 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝑔))) → ((𝑉𝑔)‘𝑝) = ((𝑝(join‘𝐾)(𝑅𝑔))(meet‘𝐾)(((𝑉𝐹)‘𝑝)(join‘𝐾)(𝑅‘(𝑔𝐹)))))
285, 6, 7, 25, 9, 10, 11, 12, 27syl323anc 1399 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ( ≠ ( I ↾ 𝐵) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐹) ≠ (𝑅𝑔) ∧ (𝑅𝑔) ≠ (𝑅) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊))) → ((𝑉𝑔)‘𝑝) = ((𝑝(join‘𝐾)(𝑅𝑔))(meet‘𝐾)(((𝑉𝐹)‘𝑝)(join‘𝐾)(𝑅‘(𝑔𝐹)))))
294, 24, 283eqtr4d 2784 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ( ≠ ( I ↾ 𝐵) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐹) ≠ (𝑅𝑔) ∧ (𝑅𝑔) ≠ (𝑅) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊))) → ((𝑈𝑔)‘𝑝) = ((𝑉𝑔)‘𝑝))
3029oveq1d 7445 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ( ≠ ( I ↾ 𝐵) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐹) ≠ (𝑅𝑔) ∧ (𝑅𝑔) ≠ (𝑅) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊))) → (((𝑈𝑔)‘𝑝)(join‘𝐾)(𝑅‘(𝑔))) = (((𝑉𝑔)‘𝑝)(join‘𝐾)(𝑅‘(𝑔))))
3130oveq2d 7446 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ( ≠ ( I ↾ 𝐵) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐹) ≠ (𝑅𝑔) ∧ (𝑅𝑔) ≠ (𝑅) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊))) → ((𝑝(join‘𝐾)(𝑅))(meet‘𝐾)(((𝑈𝑔)‘𝑝)(join‘𝐾)(𝑅‘(𝑔)))) = ((𝑝(join‘𝐾)(𝑅))(meet‘𝐾)(((𝑉𝑔)‘𝑝)(join‘𝐾)(𝑅‘(𝑔)))))
32 simp133 1309 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ( ≠ ( I ↾ 𝐵) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐹) ≠ (𝑅𝑔) ∧ (𝑅𝑔) ≠ (𝑅) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊))) → 𝑇)
33 simp21 1205 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ( ≠ ( I ↾ 𝐵) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐹) ≠ (𝑅𝑔) ∧ (𝑅𝑔) ≠ (𝑅) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊))) → ≠ ( I ↾ 𝐵))
34 simp32 1209 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ( ≠ ( I ↾ 𝐵) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐹) ≠ (𝑅𝑔) ∧ (𝑅𝑔) ≠ (𝑅) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊))) → (𝑅𝑔) ≠ (𝑅))
35 eqid 2734 . . . 4 ((𝑝(join‘𝐾)(𝑅))(meet‘𝐾)(((𝑈𝑔)‘𝑝)(join‘𝐾)(𝑅‘(𝑔)))) = ((𝑝(join‘𝐾)(𝑅))(meet‘𝐾)(((𝑈𝑔)‘𝑝)(join‘𝐾)(𝑅‘(𝑔))))
3613, 14, 15, 16, 17, 18, 19, 20, 21, 35cdlemi 40802 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇𝑇) ∧ (𝑈𝐸 ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) ∧ (𝑔 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅𝑔) ≠ (𝑅))) → ((𝑈)‘𝑝) = ((𝑝(join‘𝐾)(𝑅))(meet‘𝐾)(((𝑈𝑔)‘𝑝)(join‘𝐾)(𝑅‘(𝑔)))))
375, 7, 32, 8, 9, 11, 33, 34, 36syl323anc 1399 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ( ≠ ( I ↾ 𝐵) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐹) ≠ (𝑅𝑔) ∧ (𝑅𝑔) ≠ (𝑅) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊))) → ((𝑈)‘𝑝) = ((𝑝(join‘𝐾)(𝑅))(meet‘𝐾)(((𝑈𝑔)‘𝑝)(join‘𝐾)(𝑅‘(𝑔)))))
38 eqid 2734 . . . 4 ((𝑝(join‘𝐾)(𝑅))(meet‘𝐾)(((𝑉𝑔)‘𝑝)(join‘𝐾)(𝑅‘(𝑔)))) = ((𝑝(join‘𝐾)(𝑅))(meet‘𝐾)(((𝑉𝑔)‘𝑝)(join‘𝐾)(𝑅‘(𝑔))))
3913, 14, 15, 16, 17, 18, 19, 20, 21, 38cdlemi 40802 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇𝑇) ∧ (𝑉𝐸 ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) ∧ (𝑔 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅𝑔) ≠ (𝑅))) → ((𝑉)‘𝑝) = ((𝑝(join‘𝐾)(𝑅))(meet‘𝐾)(((𝑉𝑔)‘𝑝)(join‘𝐾)(𝑅‘(𝑔)))))
405, 7, 32, 25, 9, 11, 33, 34, 39syl323anc 1399 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ( ≠ ( I ↾ 𝐵) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐹) ≠ (𝑅𝑔) ∧ (𝑅𝑔) ≠ (𝑅) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊))) → ((𝑉)‘𝑝) = ((𝑝(join‘𝐾)(𝑅))(meet‘𝐾)(((𝑉𝑔)‘𝑝)(join‘𝐾)(𝑅‘(𝑔)))))
4131, 37, 403eqtr4d 2784 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ( ≠ ( I ↾ 𝐵) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐹) ≠ (𝑅𝑔) ∧ (𝑅𝑔) ≠ (𝑅) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊))) → ((𝑈)‘𝑝) = ((𝑉)‘𝑝))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1536  wcel 2105  wne 2937   class class class wbr 5147   I cid 5581  ccnv 5687  cres 5690  ccom 5692  cfv 6562  (class class class)co 7430  Basecbs 17244  lecple 17304  joincjn 18368  meetcmee 18369  Atomscatm 39244  HLchlt 39331  LHypclh 39966  LTrncltrn 40083  trLctrl 40140  TEndoctendo 40734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-riotaBAD 38934
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-1st 8012  df-2nd 8013  df-undef 8296  df-map 8866  df-proset 18351  df-poset 18370  df-plt 18387  df-lub 18403  df-glb 18404  df-join 18405  df-meet 18406  df-p0 18482  df-p1 18483  df-lat 18489  df-clat 18556  df-oposet 39157  df-ol 39159  df-oml 39160  df-covers 39247  df-ats 39248  df-atl 39279  df-cvlat 39303  df-hlat 39332  df-llines 39480  df-lplanes 39481  df-lvols 39482  df-lines 39483  df-psubsp 39485  df-pmap 39486  df-padd 39778  df-lhyp 39970  df-laut 39971  df-ldil 40086  df-ltrn 40087  df-trl 40141  df-tendo 40737
This theorem is referenced by:  cdlemj2  40804
  Copyright terms: Public domain W3C validator