Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemj1 Structured version   Visualization version   GIF version

Theorem cdlemj1 40823
Description: Part of proof of Lemma J of [Crawley] p. 118. (Contributed by NM, 19-Jun-2013.)
Hypotheses
Ref Expression
cdlemj.b 𝐵 = (Base‘𝐾)
cdlemj.h 𝐻 = (LHyp‘𝐾)
cdlemj.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemj.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemj.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
cdlemj.l = (le‘𝐾)
cdlemj.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cdlemj1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ( ≠ ( I ↾ 𝐵) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐹) ≠ (𝑅𝑔) ∧ (𝑅𝑔) ≠ (𝑅) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊))) → ((𝑈)‘𝑝) = ((𝑉)‘𝑝))

Proof of Theorem cdlemj1
StepHypRef Expression
1 simp123 1308 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ( ≠ ( I ↾ 𝐵) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐹) ≠ (𝑅𝑔) ∧ (𝑅𝑔) ≠ (𝑅) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊))) → (𝑈𝐹) = (𝑉𝐹))
21fveq1d 6908 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ( ≠ ( I ↾ 𝐵) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐹) ≠ (𝑅𝑔) ∧ (𝑅𝑔) ≠ (𝑅) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊))) → ((𝑈𝐹)‘𝑝) = ((𝑉𝐹)‘𝑝))
32oveq1d 7446 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ( ≠ ( I ↾ 𝐵) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐹) ≠ (𝑅𝑔) ∧ (𝑅𝑔) ≠ (𝑅) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊))) → (((𝑈𝐹)‘𝑝)(join‘𝐾)(𝑅‘(𝑔𝐹))) = (((𝑉𝐹)‘𝑝)(join‘𝐾)(𝑅‘(𝑔𝐹))))
43oveq2d 7447 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ( ≠ ( I ↾ 𝐵) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐹) ≠ (𝑅𝑔) ∧ (𝑅𝑔) ≠ (𝑅) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊))) → ((𝑝(join‘𝐾)(𝑅𝑔))(meet‘𝐾)(((𝑈𝐹)‘𝑝)(join‘𝐾)(𝑅‘(𝑔𝐹)))) = ((𝑝(join‘𝐾)(𝑅𝑔))(meet‘𝐾)(((𝑉𝐹)‘𝑝)(join‘𝐾)(𝑅‘(𝑔𝐹)))))
5 simp11 1204 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ( ≠ ( I ↾ 𝐵) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐹) ≠ (𝑅𝑔) ∧ (𝑅𝑔) ≠ (𝑅) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
6 simp131 1309 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ( ≠ ( I ↾ 𝐵) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐹) ≠ (𝑅𝑔) ∧ (𝑅𝑔) ≠ (𝑅) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊))) → 𝐹𝑇)
7 simp22 1208 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ( ≠ ( I ↾ 𝐵) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐹) ≠ (𝑅𝑔) ∧ (𝑅𝑔) ≠ (𝑅) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊))) → 𝑔𝑇)
8 simp121 1306 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ( ≠ ( I ↾ 𝐵) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐹) ≠ (𝑅𝑔) ∧ (𝑅𝑔) ≠ (𝑅) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊))) → 𝑈𝐸)
9 simp33 1212 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ( ≠ ( I ↾ 𝐵) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐹) ≠ (𝑅𝑔) ∧ (𝑅𝑔) ≠ (𝑅) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊))) → (𝑝𝐴 ∧ ¬ 𝑝 𝑊))
10 simp132 1310 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ( ≠ ( I ↾ 𝐵) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐹) ≠ (𝑅𝑔) ∧ (𝑅𝑔) ≠ (𝑅) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊))) → 𝐹 ≠ ( I ↾ 𝐵))
11 simp23 1209 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ( ≠ ( I ↾ 𝐵) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐹) ≠ (𝑅𝑔) ∧ (𝑅𝑔) ≠ (𝑅) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊))) → 𝑔 ≠ ( I ↾ 𝐵))
12 simp31 1210 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ( ≠ ( I ↾ 𝐵) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐹) ≠ (𝑅𝑔) ∧ (𝑅𝑔) ≠ (𝑅) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊))) → (𝑅𝐹) ≠ (𝑅𝑔))
13 cdlemj.b . . . . . . 7 𝐵 = (Base‘𝐾)
14 cdlemj.l . . . . . . 7 = (le‘𝐾)
15 eqid 2737 . . . . . . 7 (join‘𝐾) = (join‘𝐾)
16 eqid 2737 . . . . . . 7 (meet‘𝐾) = (meet‘𝐾)
17 cdlemj.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
18 cdlemj.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
19 cdlemj.t . . . . . . 7 𝑇 = ((LTrn‘𝐾)‘𝑊)
20 cdlemj.r . . . . . . 7 𝑅 = ((trL‘𝐾)‘𝑊)
21 cdlemj.e . . . . . . 7 𝐸 = ((TEndo‘𝐾)‘𝑊)
22 eqid 2737 . . . . . . 7 ((𝑝(join‘𝐾)(𝑅𝑔))(meet‘𝐾)(((𝑈𝐹)‘𝑝)(join‘𝐾)(𝑅‘(𝑔𝐹)))) = ((𝑝(join‘𝐾)(𝑅𝑔))(meet‘𝐾)(((𝑈𝐹)‘𝑝)(join‘𝐾)(𝑅‘(𝑔𝐹))))
2313, 14, 15, 16, 17, 18, 19, 20, 21, 22cdlemi 40822 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑔𝑇) ∧ (𝑈𝐸 ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑔 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝑔))) → ((𝑈𝑔)‘𝑝) = ((𝑝(join‘𝐾)(𝑅𝑔))(meet‘𝐾)(((𝑈𝐹)‘𝑝)(join‘𝐾)(𝑅‘(𝑔𝐹)))))
245, 6, 7, 8, 9, 10, 11, 12, 23syl323anc 1402 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ( ≠ ( I ↾ 𝐵) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐹) ≠ (𝑅𝑔) ∧ (𝑅𝑔) ≠ (𝑅) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊))) → ((𝑈𝑔)‘𝑝) = ((𝑝(join‘𝐾)(𝑅𝑔))(meet‘𝐾)(((𝑈𝐹)‘𝑝)(join‘𝐾)(𝑅‘(𝑔𝐹)))))
25 simp122 1307 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ( ≠ ( I ↾ 𝐵) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐹) ≠ (𝑅𝑔) ∧ (𝑅𝑔) ≠ (𝑅) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊))) → 𝑉𝐸)
26 eqid 2737 . . . . . . 7 ((𝑝(join‘𝐾)(𝑅𝑔))(meet‘𝐾)(((𝑉𝐹)‘𝑝)(join‘𝐾)(𝑅‘(𝑔𝐹)))) = ((𝑝(join‘𝐾)(𝑅𝑔))(meet‘𝐾)(((𝑉𝐹)‘𝑝)(join‘𝐾)(𝑅‘(𝑔𝐹))))
2713, 14, 15, 16, 17, 18, 19, 20, 21, 26cdlemi 40822 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑔𝑇) ∧ (𝑉𝐸 ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑔 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝑔))) → ((𝑉𝑔)‘𝑝) = ((𝑝(join‘𝐾)(𝑅𝑔))(meet‘𝐾)(((𝑉𝐹)‘𝑝)(join‘𝐾)(𝑅‘(𝑔𝐹)))))
285, 6, 7, 25, 9, 10, 11, 12, 27syl323anc 1402 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ( ≠ ( I ↾ 𝐵) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐹) ≠ (𝑅𝑔) ∧ (𝑅𝑔) ≠ (𝑅) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊))) → ((𝑉𝑔)‘𝑝) = ((𝑝(join‘𝐾)(𝑅𝑔))(meet‘𝐾)(((𝑉𝐹)‘𝑝)(join‘𝐾)(𝑅‘(𝑔𝐹)))))
294, 24, 283eqtr4d 2787 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ( ≠ ( I ↾ 𝐵) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐹) ≠ (𝑅𝑔) ∧ (𝑅𝑔) ≠ (𝑅) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊))) → ((𝑈𝑔)‘𝑝) = ((𝑉𝑔)‘𝑝))
3029oveq1d 7446 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ( ≠ ( I ↾ 𝐵) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐹) ≠ (𝑅𝑔) ∧ (𝑅𝑔) ≠ (𝑅) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊))) → (((𝑈𝑔)‘𝑝)(join‘𝐾)(𝑅‘(𝑔))) = (((𝑉𝑔)‘𝑝)(join‘𝐾)(𝑅‘(𝑔))))
3130oveq2d 7447 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ( ≠ ( I ↾ 𝐵) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐹) ≠ (𝑅𝑔) ∧ (𝑅𝑔) ≠ (𝑅) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊))) → ((𝑝(join‘𝐾)(𝑅))(meet‘𝐾)(((𝑈𝑔)‘𝑝)(join‘𝐾)(𝑅‘(𝑔)))) = ((𝑝(join‘𝐾)(𝑅))(meet‘𝐾)(((𝑉𝑔)‘𝑝)(join‘𝐾)(𝑅‘(𝑔)))))
32 simp133 1311 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ( ≠ ( I ↾ 𝐵) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐹) ≠ (𝑅𝑔) ∧ (𝑅𝑔) ≠ (𝑅) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊))) → 𝑇)
33 simp21 1207 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ( ≠ ( I ↾ 𝐵) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐹) ≠ (𝑅𝑔) ∧ (𝑅𝑔) ≠ (𝑅) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊))) → ≠ ( I ↾ 𝐵))
34 simp32 1211 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ( ≠ ( I ↾ 𝐵) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐹) ≠ (𝑅𝑔) ∧ (𝑅𝑔) ≠ (𝑅) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊))) → (𝑅𝑔) ≠ (𝑅))
35 eqid 2737 . . . 4 ((𝑝(join‘𝐾)(𝑅))(meet‘𝐾)(((𝑈𝑔)‘𝑝)(join‘𝐾)(𝑅‘(𝑔)))) = ((𝑝(join‘𝐾)(𝑅))(meet‘𝐾)(((𝑈𝑔)‘𝑝)(join‘𝐾)(𝑅‘(𝑔))))
3613, 14, 15, 16, 17, 18, 19, 20, 21, 35cdlemi 40822 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇𝑇) ∧ (𝑈𝐸 ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) ∧ (𝑔 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅𝑔) ≠ (𝑅))) → ((𝑈)‘𝑝) = ((𝑝(join‘𝐾)(𝑅))(meet‘𝐾)(((𝑈𝑔)‘𝑝)(join‘𝐾)(𝑅‘(𝑔)))))
375, 7, 32, 8, 9, 11, 33, 34, 36syl323anc 1402 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ( ≠ ( I ↾ 𝐵) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐹) ≠ (𝑅𝑔) ∧ (𝑅𝑔) ≠ (𝑅) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊))) → ((𝑈)‘𝑝) = ((𝑝(join‘𝐾)(𝑅))(meet‘𝐾)(((𝑈𝑔)‘𝑝)(join‘𝐾)(𝑅‘(𝑔)))))
38 eqid 2737 . . . 4 ((𝑝(join‘𝐾)(𝑅))(meet‘𝐾)(((𝑉𝑔)‘𝑝)(join‘𝐾)(𝑅‘(𝑔)))) = ((𝑝(join‘𝐾)(𝑅))(meet‘𝐾)(((𝑉𝑔)‘𝑝)(join‘𝐾)(𝑅‘(𝑔))))
3913, 14, 15, 16, 17, 18, 19, 20, 21, 38cdlemi 40822 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇𝑇) ∧ (𝑉𝐸 ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) ∧ (𝑔 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅𝑔) ≠ (𝑅))) → ((𝑉)‘𝑝) = ((𝑝(join‘𝐾)(𝑅))(meet‘𝐾)(((𝑉𝑔)‘𝑝)(join‘𝐾)(𝑅‘(𝑔)))))
405, 7, 32, 25, 9, 11, 33, 34, 39syl323anc 1402 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ( ≠ ( I ↾ 𝐵) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐹) ≠ (𝑅𝑔) ∧ (𝑅𝑔) ≠ (𝑅) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊))) → ((𝑉)‘𝑝) = ((𝑝(join‘𝐾)(𝑅))(meet‘𝐾)(((𝑉𝑔)‘𝑝)(join‘𝐾)(𝑅‘(𝑔)))))
4131, 37, 403eqtr4d 2787 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ( ≠ ( I ↾ 𝐵) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐹) ≠ (𝑅𝑔) ∧ (𝑅𝑔) ≠ (𝑅) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊))) → ((𝑈)‘𝑝) = ((𝑉)‘𝑝))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940   class class class wbr 5143   I cid 5577  ccnv 5684  cres 5687  ccom 5689  cfv 6561  (class class class)co 7431  Basecbs 17247  lecple 17304  joincjn 18357  meetcmee 18358  Atomscatm 39264  HLchlt 39351  LHypclh 39986  LTrncltrn 40103  trLctrl 40160  TEndoctendo 40754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-riotaBAD 38954
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-undef 8298  df-map 8868  df-proset 18340  df-poset 18359  df-plt 18375  df-lub 18391  df-glb 18392  df-join 18393  df-meet 18394  df-p0 18470  df-p1 18471  df-lat 18477  df-clat 18544  df-oposet 39177  df-ol 39179  df-oml 39180  df-covers 39267  df-ats 39268  df-atl 39299  df-cvlat 39323  df-hlat 39352  df-llines 39500  df-lplanes 39501  df-lvols 39502  df-lines 39503  df-psubsp 39505  df-pmap 39506  df-padd 39798  df-lhyp 39990  df-laut 39991  df-ldil 40106  df-ltrn 40107  df-trl 40161  df-tendo 40757
This theorem is referenced by:  cdlemj2  40824
  Copyright terms: Public domain W3C validator