Proof of Theorem dalem52
| Step | Hyp | Ref
| Expression |
| 1 | | dalem.ph |
. . . . 5
⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) |
| 2 | 1 | dalemkehl 39625 |
. . . 4
⊢ (𝜑 → 𝐾 ∈ HL) |
| 3 | 2 | 3ad2ant1 1134 |
. . 3
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐾 ∈ HL) |
| 4 | | dalem.ps |
. . . . 5
⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) |
| 5 | | dalem.a |
. . . . 5
⊢ 𝐴 = (Atoms‘𝐾) |
| 6 | 4, 5 | dalemcceb 39691 |
. . . 4
⊢ (𝜓 → 𝑐 ∈ (Base‘𝐾)) |
| 7 | 6 | 3ad2ant3 1136 |
. . 3
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑐 ∈ (Base‘𝐾)) |
| 8 | 3, 7 | jca 511 |
. 2
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (𝐾 ∈ HL ∧ 𝑐 ∈ (Base‘𝐾))) |
| 9 | | dalem.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
| 10 | | dalem.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
| 11 | | dalem44.m |
. . . 4
⊢ ∧ =
(meet‘𝐾) |
| 12 | | dalem44.o |
. . . 4
⊢ 𝑂 = (LPlanes‘𝐾) |
| 13 | | dalem44.y |
. . . 4
⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) |
| 14 | | dalem44.z |
. . . 4
⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) |
| 15 | | dalem44.g |
. . . 4
⊢ 𝐺 = ((𝑐 ∨ 𝑃) ∧ (𝑑 ∨ 𝑆)) |
| 16 | 1, 9, 10, 5, 4, 11, 12, 13, 14, 15 | dalem23 39698 |
. . 3
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐺 ∈ 𝐴) |
| 17 | | dalem44.h |
. . . 4
⊢ 𝐻 = ((𝑐 ∨ 𝑄) ∧ (𝑑 ∨ 𝑇)) |
| 18 | 1, 9, 10, 5, 4, 11, 12, 13, 14, 17 | dalem29 39703 |
. . 3
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐻 ∈ 𝐴) |
| 19 | | dalem44.i |
. . . 4
⊢ 𝐼 = ((𝑐 ∨ 𝑅) ∧ (𝑑 ∨ 𝑈)) |
| 20 | 1, 9, 10, 5, 4, 11, 12, 13, 14, 19 | dalem34 39708 |
. . 3
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐼 ∈ 𝐴) |
| 21 | 16, 18, 20 | 3jca 1129 |
. 2
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐴 ∧ 𝐼 ∈ 𝐴)) |
| 22 | 1 | dalempea 39628 |
. . . 4
⊢ (𝜑 → 𝑃 ∈ 𝐴) |
| 23 | 1 | dalemqea 39629 |
. . . 4
⊢ (𝜑 → 𝑄 ∈ 𝐴) |
| 24 | 1 | dalemrea 39630 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ 𝐴) |
| 25 | 22, 23, 24 | 3jca 1129 |
. . 3
⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) |
| 26 | 25 | 3ad2ant1 1134 |
. 2
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) |
| 27 | 1, 9, 10, 5, 4, 11, 12, 13, 14, 15, 17, 19 | dalem42 39716 |
. 2
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ((𝐺 ∨ 𝐻) ∨ 𝐼) ∈ 𝑂) |
| 28 | 1 | dalemyeo 39634 |
. . 3
⊢ (𝜑 → 𝑌 ∈ 𝑂) |
| 29 | 28 | 3ad2ant1 1134 |
. 2
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑌 ∈ 𝑂) |
| 30 | 1, 9, 10, 5, 4, 11, 12, 13, 14, 15, 17, 19 | dalem45 39719 |
. . 3
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ¬ 𝑐 ≤ (𝐺 ∨ 𝐻)) |
| 31 | 1, 9, 10, 5, 4, 11, 12, 13, 14, 15, 17, 19 | dalem46 39720 |
. . 3
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ¬ 𝑐 ≤ (𝐻 ∨ 𝐼)) |
| 32 | 1, 9, 10, 5, 4, 11, 12, 13, 14, 15, 17, 19 | dalem47 39721 |
. . 3
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ¬ 𝑐 ≤ (𝐼 ∨ 𝐺)) |
| 33 | 30, 31, 32 | 3jca 1129 |
. 2
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (¬ 𝑐 ≤ (𝐺 ∨ 𝐻) ∧ ¬ 𝑐 ≤ (𝐻 ∨ 𝐼) ∧ ¬ 𝑐 ≤ (𝐼 ∨ 𝐺))) |
| 34 | 1, 9, 10, 5, 4, 11, 12, 13, 14, 15, 17, 19 | dalem48 39722 |
. . . 4
⊢ ((𝜑 ∧ 𝜓) → ¬ 𝑐 ≤ (𝑃 ∨ 𝑄)) |
| 35 | 1, 9, 10, 5, 4, 11, 12, 13, 14, 15, 17, 19 | dalem49 39723 |
. . . 4
⊢ ((𝜑 ∧ 𝜓) → ¬ 𝑐 ≤ (𝑄 ∨ 𝑅)) |
| 36 | 1, 9, 10, 5, 4, 11, 12, 13, 14, 15, 17, 19 | dalem50 39724 |
. . . 4
⊢ ((𝜑 ∧ 𝜓) → ¬ 𝑐 ≤ (𝑅 ∨ 𝑃)) |
| 37 | 34, 35, 36 | 3jca 1129 |
. . 3
⊢ ((𝜑 ∧ 𝜓) → (¬ 𝑐 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑐 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑐 ≤ (𝑅 ∨ 𝑃))) |
| 38 | 37 | 3adant2 1132 |
. 2
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (¬ 𝑐 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑐 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑐 ≤ (𝑅 ∨ 𝑃))) |
| 39 | 1, 9, 10, 5, 4, 11, 12, 13, 14, 15 | dalem27 39701 |
. . 3
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑐 ≤ (𝐺 ∨ 𝑃)) |
| 40 | 1, 9, 10, 5, 4, 11, 12, 13, 14, 17 | dalem32 39706 |
. . 3
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑐 ≤ (𝐻 ∨ 𝑄)) |
| 41 | 1, 9, 10, 5, 4, 11, 12, 13, 14, 19 | dalem36 39710 |
. . 3
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑐 ≤ (𝐼 ∨ 𝑅)) |
| 42 | 39, 40, 41 | 3jca 1129 |
. 2
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (𝑐 ≤ (𝐺 ∨ 𝑃) ∧ 𝑐 ≤ (𝐻 ∨ 𝑄) ∧ 𝑐 ≤ (𝐼 ∨ 𝑅))) |
| 43 | | biid 261 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑐 ∈ (Base‘𝐾)) ∧ (𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐴 ∧ 𝐼 ∈ 𝐴) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (((𝐺 ∨ 𝐻) ∨ 𝐼) ∈ 𝑂 ∧ 𝑌 ∈ 𝑂) ∧ ((¬ 𝑐 ≤ (𝐺 ∨ 𝐻) ∧ ¬ 𝑐 ≤ (𝐻 ∨ 𝐼) ∧ ¬ 𝑐 ≤ (𝐼 ∨ 𝐺)) ∧ (¬ 𝑐 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑐 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑐 ≤ (𝑅 ∨ 𝑃)) ∧ (𝑐 ≤ (𝐺 ∨ 𝑃) ∧ 𝑐 ≤ (𝐻 ∨ 𝑄) ∧ 𝑐 ≤ (𝐼 ∨ 𝑅)))) ↔ (((𝐾 ∈ HL ∧ 𝑐 ∈ (Base‘𝐾)) ∧ (𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐴 ∧ 𝐼 ∈ 𝐴) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (((𝐺 ∨ 𝐻) ∨ 𝐼) ∈ 𝑂 ∧ 𝑌 ∈ 𝑂) ∧ ((¬ 𝑐 ≤ (𝐺 ∨ 𝐻) ∧ ¬ 𝑐 ≤ (𝐻 ∨ 𝐼) ∧ ¬ 𝑐 ≤ (𝐼 ∨ 𝐺)) ∧ (¬ 𝑐 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑐 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑐 ≤ (𝑅 ∨ 𝑃)) ∧ (𝑐 ≤ (𝐺 ∨ 𝑃) ∧ 𝑐 ≤ (𝐻 ∨ 𝑄) ∧ 𝑐 ≤ (𝐼 ∨ 𝑅))))) |
| 44 | | eqid 2737 |
. . 3
⊢ ((𝐺 ∨ 𝐻) ∨ 𝐼) = ((𝐺 ∨ 𝐻) ∨ 𝐼) |
| 45 | | eqid 2737 |
. . 3
⊢ ((𝐺 ∨ 𝐻) ∧ (𝑃 ∨ 𝑄)) = ((𝐺 ∨ 𝐻) ∧ (𝑃 ∨ 𝑄)) |
| 46 | 43, 9, 10, 5, 11, 12, 44, 13, 45 | dalemdea 39664 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑐 ∈ (Base‘𝐾)) ∧ (𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐴 ∧ 𝐼 ∈ 𝐴) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (((𝐺 ∨ 𝐻) ∨ 𝐼) ∈ 𝑂 ∧ 𝑌 ∈ 𝑂) ∧ ((¬ 𝑐 ≤ (𝐺 ∨ 𝐻) ∧ ¬ 𝑐 ≤ (𝐻 ∨ 𝐼) ∧ ¬ 𝑐 ≤ (𝐼 ∨ 𝐺)) ∧ (¬ 𝑐 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑐 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑐 ≤ (𝑅 ∨ 𝑃)) ∧ (𝑐 ≤ (𝐺 ∨ 𝑃) ∧ 𝑐 ≤ (𝐻 ∨ 𝑄) ∧ 𝑐 ≤ (𝐼 ∨ 𝑅)))) → ((𝐺 ∨ 𝐻) ∧ (𝑃 ∨ 𝑄)) ∈ 𝐴) |
| 47 | 8, 21, 26, 27, 29, 33, 38, 42, 46 | syl323anc 1402 |
1
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ((𝐺 ∨ 𝐻) ∧ (𝑃 ∨ 𝑄)) ∈ 𝐴) |