Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem52 Structured version   Visualization version   GIF version

Theorem dalem52 39707
Description: Lemma for dath 39719. Lines 𝐺𝐻 and 𝑃𝑄 intersect at an atom. (Contributed by NM, 8-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalem.l = (le‘𝐾)
dalem.j = (join‘𝐾)
dalem.a 𝐴 = (Atoms‘𝐾)
dalem.ps (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
dalem44.m = (meet‘𝐾)
dalem44.o 𝑂 = (LPlanes‘𝐾)
dalem44.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem44.z 𝑍 = ((𝑆 𝑇) 𝑈)
dalem44.g 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
dalem44.h 𝐻 = ((𝑐 𝑄) (𝑑 𝑇))
dalem44.i 𝐼 = ((𝑐 𝑅) (𝑑 𝑈))
Assertion
Ref Expression
dalem52 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) (𝑃 𝑄)) ∈ 𝐴)

Proof of Theorem dalem52
StepHypRef Expression
1 dalem.ph . . . . 5 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
21dalemkehl 39606 . . . 4 (𝜑𝐾 ∈ HL)
323ad2ant1 1133 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ HL)
4 dalem.ps . . . . 5 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
5 dalem.a . . . . 5 𝐴 = (Atoms‘𝐾)
64, 5dalemcceb 39672 . . . 4 (𝜓𝑐 ∈ (Base‘𝐾))
763ad2ant3 1135 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝑐 ∈ (Base‘𝐾))
83, 7jca 511 . 2 ((𝜑𝑌 = 𝑍𝜓) → (𝐾 ∈ HL ∧ 𝑐 ∈ (Base‘𝐾)))
9 dalem.l . . . 4 = (le‘𝐾)
10 dalem.j . . . 4 = (join‘𝐾)
11 dalem44.m . . . 4 = (meet‘𝐾)
12 dalem44.o . . . 4 𝑂 = (LPlanes‘𝐾)
13 dalem44.y . . . 4 𝑌 = ((𝑃 𝑄) 𝑅)
14 dalem44.z . . . 4 𝑍 = ((𝑆 𝑇) 𝑈)
15 dalem44.g . . . 4 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
161, 9, 10, 5, 4, 11, 12, 13, 14, 15dalem23 39679 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝐺𝐴)
17 dalem44.h . . . 4 𝐻 = ((𝑐 𝑄) (𝑑 𝑇))
181, 9, 10, 5, 4, 11, 12, 13, 14, 17dalem29 39684 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝐻𝐴)
19 dalem44.i . . . 4 𝐼 = ((𝑐 𝑅) (𝑑 𝑈))
201, 9, 10, 5, 4, 11, 12, 13, 14, 19dalem34 39689 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝐼𝐴)
2116, 18, 203jca 1128 . 2 ((𝜑𝑌 = 𝑍𝜓) → (𝐺𝐴𝐻𝐴𝐼𝐴))
221dalempea 39609 . . . 4 (𝜑𝑃𝐴)
231dalemqea 39610 . . . 4 (𝜑𝑄𝐴)
241dalemrea 39611 . . . 4 (𝜑𝑅𝐴)
2522, 23, 243jca 1128 . . 3 (𝜑 → (𝑃𝐴𝑄𝐴𝑅𝐴))
26253ad2ant1 1133 . 2 ((𝜑𝑌 = 𝑍𝜓) → (𝑃𝐴𝑄𝐴𝑅𝐴))
271, 9, 10, 5, 4, 11, 12, 13, 14, 15, 17, 19dalem42 39697 . 2 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐼) ∈ 𝑂)
281dalemyeo 39615 . . 3 (𝜑𝑌𝑂)
29283ad2ant1 1133 . 2 ((𝜑𝑌 = 𝑍𝜓) → 𝑌𝑂)
301, 9, 10, 5, 4, 11, 12, 13, 14, 15, 17, 19dalem45 39700 . . 3 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝑐 (𝐺 𝐻))
311, 9, 10, 5, 4, 11, 12, 13, 14, 15, 17, 19dalem46 39701 . . 3 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝑐 (𝐻 𝐼))
321, 9, 10, 5, 4, 11, 12, 13, 14, 15, 17, 19dalem47 39702 . . 3 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝑐 (𝐼 𝐺))
3330, 31, 323jca 1128 . 2 ((𝜑𝑌 = 𝑍𝜓) → (¬ 𝑐 (𝐺 𝐻) ∧ ¬ 𝑐 (𝐻 𝐼) ∧ ¬ 𝑐 (𝐼 𝐺)))
341, 9, 10, 5, 4, 11, 12, 13, 14, 15, 17, 19dalem48 39703 . . . 4 ((𝜑𝜓) → ¬ 𝑐 (𝑃 𝑄))
351, 9, 10, 5, 4, 11, 12, 13, 14, 15, 17, 19dalem49 39704 . . . 4 ((𝜑𝜓) → ¬ 𝑐 (𝑄 𝑅))
361, 9, 10, 5, 4, 11, 12, 13, 14, 15, 17, 19dalem50 39705 . . . 4 ((𝜑𝜓) → ¬ 𝑐 (𝑅 𝑃))
3734, 35, 363jca 1128 . . 3 ((𝜑𝜓) → (¬ 𝑐 (𝑃 𝑄) ∧ ¬ 𝑐 (𝑄 𝑅) ∧ ¬ 𝑐 (𝑅 𝑃)))
38373adant2 1131 . 2 ((𝜑𝑌 = 𝑍𝜓) → (¬ 𝑐 (𝑃 𝑄) ∧ ¬ 𝑐 (𝑄 𝑅) ∧ ¬ 𝑐 (𝑅 𝑃)))
391, 9, 10, 5, 4, 11, 12, 13, 14, 15dalem27 39682 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝑐 (𝐺 𝑃))
401, 9, 10, 5, 4, 11, 12, 13, 14, 17dalem32 39687 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝑐 (𝐻 𝑄))
411, 9, 10, 5, 4, 11, 12, 13, 14, 19dalem36 39691 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝑐 (𝐼 𝑅))
4239, 40, 413jca 1128 . 2 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 (𝐺 𝑃) ∧ 𝑐 (𝐻 𝑄) ∧ 𝑐 (𝐼 𝑅)))
43 biid 261 . . 3 ((((𝐾 ∈ HL ∧ 𝑐 ∈ (Base‘𝐾)) ∧ (𝐺𝐴𝐻𝐴𝐼𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (((𝐺 𝐻) 𝐼) ∈ 𝑂𝑌𝑂) ∧ ((¬ 𝑐 (𝐺 𝐻) ∧ ¬ 𝑐 (𝐻 𝐼) ∧ ¬ 𝑐 (𝐼 𝐺)) ∧ (¬ 𝑐 (𝑃 𝑄) ∧ ¬ 𝑐 (𝑄 𝑅) ∧ ¬ 𝑐 (𝑅 𝑃)) ∧ (𝑐 (𝐺 𝑃) ∧ 𝑐 (𝐻 𝑄) ∧ 𝑐 (𝐼 𝑅)))) ↔ (((𝐾 ∈ HL ∧ 𝑐 ∈ (Base‘𝐾)) ∧ (𝐺𝐴𝐻𝐴𝐼𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (((𝐺 𝐻) 𝐼) ∈ 𝑂𝑌𝑂) ∧ ((¬ 𝑐 (𝐺 𝐻) ∧ ¬ 𝑐 (𝐻 𝐼) ∧ ¬ 𝑐 (𝐼 𝐺)) ∧ (¬ 𝑐 (𝑃 𝑄) ∧ ¬ 𝑐 (𝑄 𝑅) ∧ ¬ 𝑐 (𝑅 𝑃)) ∧ (𝑐 (𝐺 𝑃) ∧ 𝑐 (𝐻 𝑄) ∧ 𝑐 (𝐼 𝑅)))))
44 eqid 2729 . . 3 ((𝐺 𝐻) 𝐼) = ((𝐺 𝐻) 𝐼)
45 eqid 2729 . . 3 ((𝐺 𝐻) (𝑃 𝑄)) = ((𝐺 𝐻) (𝑃 𝑄))
4643, 9, 10, 5, 11, 12, 44, 13, 45dalemdea 39645 . 2 ((((𝐾 ∈ HL ∧ 𝑐 ∈ (Base‘𝐾)) ∧ (𝐺𝐴𝐻𝐴𝐼𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (((𝐺 𝐻) 𝐼) ∈ 𝑂𝑌𝑂) ∧ ((¬ 𝑐 (𝐺 𝐻) ∧ ¬ 𝑐 (𝐻 𝐼) ∧ ¬ 𝑐 (𝐼 𝐺)) ∧ (¬ 𝑐 (𝑃 𝑄) ∧ ¬ 𝑐 (𝑄 𝑅) ∧ ¬ 𝑐 (𝑅 𝑃)) ∧ (𝑐 (𝐺 𝑃) ∧ 𝑐 (𝐻 𝑄) ∧ 𝑐 (𝐼 𝑅)))) → ((𝐺 𝐻) (𝑃 𝑄)) ∈ 𝐴)
478, 21, 26, 27, 29, 33, 38, 42, 46syl323anc 1402 1 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) (𝑃 𝑄)) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5092  cfv 6482  (class class class)co 7349  Basecbs 17120  lecple 17168  joincjn 18217  meetcmee 18218  Atomscatm 39246  HLchlt 39333  LPlanesclpl 39475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-lat 18338  df-clat 18405  df-oposet 39159  df-ol 39161  df-oml 39162  df-covers 39249  df-ats 39250  df-atl 39281  df-cvlat 39305  df-hlat 39334  df-llines 39481  df-lplanes 39482  df-lvols 39483
This theorem is referenced by:  dalem54  39709  dalem55  39710
  Copyright terms: Public domain W3C validator