Proof of Theorem cdlemg18a
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simp3r 1202 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄))) → ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄)) | 
| 2 |  | simpl1l 1224 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑄)) = (𝑄 ∨ (𝐹‘𝑃))) → 𝐾 ∈ HL) | 
| 3 |  | simpl21 1251 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑄)) = (𝑄 ∨ (𝐹‘𝑃))) → 𝑃 ∈ 𝐴) | 
| 4 |  | simpl1 1191 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑄)) = (𝑄 ∨ (𝐹‘𝑃))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 5 |  | simpl23 1253 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑄)) = (𝑄 ∨ (𝐹‘𝑃))) → 𝐹 ∈ 𝑇) | 
| 6 |  | simpl22 1252 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑄)) = (𝑄 ∨ (𝐹‘𝑃))) → 𝑄 ∈ 𝐴) | 
| 7 |  | cdlemg12.l | . . . . . . . 8
⊢  ≤ =
(le‘𝐾) | 
| 8 |  | cdlemg12.a | . . . . . . . 8
⊢ 𝐴 = (Atoms‘𝐾) | 
| 9 |  | cdlemg12.h | . . . . . . . 8
⊢ 𝐻 = (LHyp‘𝐾) | 
| 10 |  | cdlemg12.t | . . . . . . . 8
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | 
| 11 | 7, 8, 9, 10 | ltrnat 40143 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐴) → (𝐹‘𝑄) ∈ 𝐴) | 
| 12 | 4, 5, 6, 11 | syl3anc 1372 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑄)) = (𝑄 ∨ (𝐹‘𝑃))) → (𝐹‘𝑄) ∈ 𝐴) | 
| 13 | 7, 8, 9, 10 | ltrnat 40143 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → (𝐹‘𝑃) ∈ 𝐴) | 
| 14 | 4, 5, 3, 13 | syl3anc 1372 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑄)) = (𝑄 ∨ (𝐹‘𝑃))) → (𝐹‘𝑃) ∈ 𝐴) | 
| 15 |  | simpl3l 1228 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑄)) = (𝑄 ∨ (𝐹‘𝑃))) → 𝑃 ≠ 𝑄) | 
| 16 | 8, 9, 10 | ltrn11at 40150 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄)) → (𝐹‘𝑃) ≠ (𝐹‘𝑄)) | 
| 17 | 4, 5, 3, 6, 15, 16 | syl113anc 1383 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑄)) = (𝑄 ∨ (𝐹‘𝑃))) → (𝐹‘𝑃) ≠ (𝐹‘𝑄)) | 
| 18 | 17 | necomd 2995 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑄)) = (𝑄 ∨ (𝐹‘𝑃))) → (𝐹‘𝑄) ≠ (𝐹‘𝑃)) | 
| 19 |  | simpr 484 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑄)) = (𝑄 ∨ (𝐹‘𝑃))) → (𝑃 ∨ (𝐹‘𝑄)) = (𝑄 ∨ (𝐹‘𝑃))) | 
| 20 |  | cdlemg12.j | . . . . . . 7
⊢  ∨ =
(join‘𝐾) | 
| 21 | 20, 8 | hlatexch4 39484 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ (𝐹‘𝑄) ∈ 𝐴) ∧ (𝑄 ∈ 𝐴 ∧ (𝐹‘𝑃) ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ (𝐹‘𝑄) ≠ (𝐹‘𝑃) ∧ (𝑃 ∨ (𝐹‘𝑄)) = (𝑄 ∨ (𝐹‘𝑃)))) → (𝑃 ∨ 𝑄) = ((𝐹‘𝑄) ∨ (𝐹‘𝑃))) | 
| 22 | 2, 3, 12, 6, 14, 15, 18, 19, 21 | syl323anc 1401 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑄)) = (𝑄 ∨ (𝐹‘𝑃))) → (𝑃 ∨ 𝑄) = ((𝐹‘𝑄) ∨ (𝐹‘𝑃))) | 
| 23 | 22 | eqcomd 2742 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑄)) = (𝑄 ∨ (𝐹‘𝑃))) → ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) = (𝑃 ∨ 𝑄)) | 
| 24 | 23 | ex 412 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄))) → ((𝑃 ∨ (𝐹‘𝑄)) = (𝑄 ∨ (𝐹‘𝑃)) → ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) = (𝑃 ∨ 𝑄))) | 
| 25 | 24 | necon3d 2960 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄))) → (((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄) → (𝑃 ∨ (𝐹‘𝑄)) ≠ (𝑄 ∨ (𝐹‘𝑃)))) | 
| 26 | 1, 25 | mpd 15 | 1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄))) → (𝑃 ∨ (𝐹‘𝑄)) ≠ (𝑄 ∨ (𝐹‘𝑃))) |