Proof of Theorem cdlemg18a
Step | Hyp | Ref
| Expression |
1 | | simp3r 1200 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄))) → ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄)) |
2 | | simpl1l 1222 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑄)) = (𝑄 ∨ (𝐹‘𝑃))) → 𝐾 ∈ HL) |
3 | | simpl21 1249 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑄)) = (𝑄 ∨ (𝐹‘𝑃))) → 𝑃 ∈ 𝐴) |
4 | | simpl1 1189 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑄)) = (𝑄 ∨ (𝐹‘𝑃))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
5 | | simpl23 1251 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑄)) = (𝑄 ∨ (𝐹‘𝑃))) → 𝐹 ∈ 𝑇) |
6 | | simpl22 1250 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑄)) = (𝑄 ∨ (𝐹‘𝑃))) → 𝑄 ∈ 𝐴) |
7 | | cdlemg12.l |
. . . . . . . 8
⊢ ≤ =
(le‘𝐾) |
8 | | cdlemg12.a |
. . . . . . . 8
⊢ 𝐴 = (Atoms‘𝐾) |
9 | | cdlemg12.h |
. . . . . . . 8
⊢ 𝐻 = (LHyp‘𝐾) |
10 | | cdlemg12.t |
. . . . . . . 8
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
11 | 7, 8, 9, 10 | ltrnat 38133 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐴) → (𝐹‘𝑄) ∈ 𝐴) |
12 | 4, 5, 6, 11 | syl3anc 1369 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑄)) = (𝑄 ∨ (𝐹‘𝑃))) → (𝐹‘𝑄) ∈ 𝐴) |
13 | 7, 8, 9, 10 | ltrnat 38133 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → (𝐹‘𝑃) ∈ 𝐴) |
14 | 4, 5, 3, 13 | syl3anc 1369 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑄)) = (𝑄 ∨ (𝐹‘𝑃))) → (𝐹‘𝑃) ∈ 𝐴) |
15 | | simpl3l 1226 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑄)) = (𝑄 ∨ (𝐹‘𝑃))) → 𝑃 ≠ 𝑄) |
16 | 8, 9, 10 | ltrn11at 38140 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄)) → (𝐹‘𝑃) ≠ (𝐹‘𝑄)) |
17 | 4, 5, 3, 6, 15, 16 | syl113anc 1380 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑄)) = (𝑄 ∨ (𝐹‘𝑃))) → (𝐹‘𝑃) ≠ (𝐹‘𝑄)) |
18 | 17 | necomd 3000 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑄)) = (𝑄 ∨ (𝐹‘𝑃))) → (𝐹‘𝑄) ≠ (𝐹‘𝑃)) |
19 | | simpr 484 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑄)) = (𝑄 ∨ (𝐹‘𝑃))) → (𝑃 ∨ (𝐹‘𝑄)) = (𝑄 ∨ (𝐹‘𝑃))) |
20 | | cdlemg12.j |
. . . . . . 7
⊢ ∨ =
(join‘𝐾) |
21 | 20, 8 | hlatexch4 37474 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ (𝐹‘𝑄) ∈ 𝐴) ∧ (𝑄 ∈ 𝐴 ∧ (𝐹‘𝑃) ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ (𝐹‘𝑄) ≠ (𝐹‘𝑃) ∧ (𝑃 ∨ (𝐹‘𝑄)) = (𝑄 ∨ (𝐹‘𝑃)))) → (𝑃 ∨ 𝑄) = ((𝐹‘𝑄) ∨ (𝐹‘𝑃))) |
22 | 2, 3, 12, 6, 14, 15, 18, 19, 21 | syl323anc 1398 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑄)) = (𝑄 ∨ (𝐹‘𝑃))) → (𝑃 ∨ 𝑄) = ((𝐹‘𝑄) ∨ (𝐹‘𝑃))) |
23 | 22 | eqcomd 2745 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑄)) = (𝑄 ∨ (𝐹‘𝑃))) → ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) = (𝑃 ∨ 𝑄)) |
24 | 23 | ex 412 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄))) → ((𝑃 ∨ (𝐹‘𝑄)) = (𝑄 ∨ (𝐹‘𝑃)) → ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) = (𝑃 ∨ 𝑄))) |
25 | 24 | necon3d 2965 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄))) → (((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄) → (𝑃 ∨ (𝐹‘𝑄)) ≠ (𝑄 ∨ (𝐹‘𝑃)))) |
26 | 1, 25 | mpd 15 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄))) → (𝑃 ∨ (𝐹‘𝑄)) ≠ (𝑄 ∨ (𝐹‘𝑃))) |