Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg18a Structured version   Visualization version   GIF version

Theorem cdlemg18a 40645
Description: Show two lines are different. TODO: fix comment. (Contributed by NM, 14-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l = (le‘𝐾)
cdlemg12.j = (join‘𝐾)
cdlemg12.m = (meet‘𝐾)
cdlemg12.a 𝐴 = (Atoms‘𝐾)
cdlemg12.h 𝐻 = (LHyp‘𝐾)
cdlemg12.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg12b.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemg18a (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝐹𝑇) ∧ (𝑃𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) → (𝑃 (𝐹𝑄)) ≠ (𝑄 (𝐹𝑃)))

Proof of Theorem cdlemg18a
StepHypRef Expression
1 simp3r 1203 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝐹𝑇) ∧ (𝑃𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) → ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))
2 simpl1l 1225 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝐹𝑇) ∧ (𝑃𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑄)) = (𝑄 (𝐹𝑃))) → 𝐾 ∈ HL)
3 simpl21 1252 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝐹𝑇) ∧ (𝑃𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑄)) = (𝑄 (𝐹𝑃))) → 𝑃𝐴)
4 simpl1 1192 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝐹𝑇) ∧ (𝑃𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑄)) = (𝑄 (𝐹𝑃))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
5 simpl23 1254 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝐹𝑇) ∧ (𝑃𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑄)) = (𝑄 (𝐹𝑃))) → 𝐹𝑇)
6 simpl22 1253 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝐹𝑇) ∧ (𝑃𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑄)) = (𝑄 (𝐹𝑃))) → 𝑄𝐴)
7 cdlemg12.l . . . . . . . 8 = (le‘𝐾)
8 cdlemg12.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
9 cdlemg12.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
10 cdlemg12.t . . . . . . . 8 𝑇 = ((LTrn‘𝐾)‘𝑊)
117, 8, 9, 10ltrnat 40107 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑄𝐴) → (𝐹𝑄) ∈ 𝐴)
124, 5, 6, 11syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝐹𝑇) ∧ (𝑃𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑄)) = (𝑄 (𝐹𝑃))) → (𝐹𝑄) ∈ 𝐴)
137, 8, 9, 10ltrnat 40107 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐴) → (𝐹𝑃) ∈ 𝐴)
144, 5, 3, 13syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝐹𝑇) ∧ (𝑃𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑄)) = (𝑄 (𝐹𝑃))) → (𝐹𝑃) ∈ 𝐴)
15 simpl3l 1229 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝐹𝑇) ∧ (𝑃𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑄)) = (𝑄 (𝐹𝑃))) → 𝑃𝑄)
168, 9, 10ltrn11at 40114 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴𝑄𝐴𝑃𝑄)) → (𝐹𝑃) ≠ (𝐹𝑄))
174, 5, 3, 6, 15, 16syl113anc 1384 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝐹𝑇) ∧ (𝑃𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑄)) = (𝑄 (𝐹𝑃))) → (𝐹𝑃) ≠ (𝐹𝑄))
1817necomd 2980 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝐹𝑇) ∧ (𝑃𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑄)) = (𝑄 (𝐹𝑃))) → (𝐹𝑄) ≠ (𝐹𝑃))
19 simpr 484 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝐹𝑇) ∧ (𝑃𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑄)) = (𝑄 (𝐹𝑃))) → (𝑃 (𝐹𝑄)) = (𝑄 (𝐹𝑃)))
20 cdlemg12.j . . . . . . 7 = (join‘𝐾)
2120, 8hlatexch4 39448 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝐹𝑄) ∈ 𝐴) ∧ (𝑄𝐴 ∧ (𝐹𝑃) ∈ 𝐴) ∧ (𝑃𝑄 ∧ (𝐹𝑄) ≠ (𝐹𝑃) ∧ (𝑃 (𝐹𝑄)) = (𝑄 (𝐹𝑃)))) → (𝑃 𝑄) = ((𝐹𝑄) (𝐹𝑃)))
222, 3, 12, 6, 14, 15, 18, 19, 21syl323anc 1402 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝐹𝑇) ∧ (𝑃𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑄)) = (𝑄 (𝐹𝑃))) → (𝑃 𝑄) = ((𝐹𝑄) (𝐹𝑃)))
2322eqcomd 2735 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝐹𝑇) ∧ (𝑃𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑄)) = (𝑄 (𝐹𝑃))) → ((𝐹𝑄) (𝐹𝑃)) = (𝑃 𝑄))
2423ex 412 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝐹𝑇) ∧ (𝑃𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) → ((𝑃 (𝐹𝑄)) = (𝑄 (𝐹𝑃)) → ((𝐹𝑄) (𝐹𝑃)) = (𝑃 𝑄)))
2524necon3d 2946 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝐹𝑇) ∧ (𝑃𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) → (((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄) → (𝑃 (𝐹𝑄)) ≠ (𝑄 (𝐹𝑃))))
261, 25mpd 15 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝐹𝑇) ∧ (𝑃𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) → (𝑃 (𝐹𝑄)) ≠ (𝑄 (𝐹𝑃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cfv 6499  (class class class)co 7369  lecple 17203  joincjn 18248  meetcmee 18249  Atomscatm 39229  HLchlt 39316  LHypclh 39951  LTrncltrn 40068  trLctrl 40125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-map 8778  df-proset 18231  df-poset 18250  df-plt 18265  df-lub 18281  df-glb 18282  df-join 18283  df-meet 18284  df-p0 18360  df-lat 18367  df-oposet 39142  df-ol 39144  df-oml 39145  df-covers 39232  df-ats 39233  df-atl 39264  df-cvlat 39288  df-hlat 39317  df-lhyp 39955  df-laut 39956  df-ldil 40071  df-ltrn 40072
This theorem is referenced by:  cdlemg18c  40647
  Copyright terms: Public domain W3C validator