Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg18a Structured version   Visualization version   GIF version

Theorem cdlemg18a 38280
Description: Show two lines are different. TODO: fix comment. (Contributed by NM, 14-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l = (le‘𝐾)
cdlemg12.j = (join‘𝐾)
cdlemg12.m = (meet‘𝐾)
cdlemg12.a 𝐴 = (Atoms‘𝐾)
cdlemg12.h 𝐻 = (LHyp‘𝐾)
cdlemg12.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg12b.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemg18a (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝐹𝑇) ∧ (𝑃𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) → (𝑃 (𝐹𝑄)) ≠ (𝑄 (𝐹𝑃)))

Proof of Theorem cdlemg18a
StepHypRef Expression
1 simp3r 1199 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝐹𝑇) ∧ (𝑃𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) → ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))
2 simpl1l 1221 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝐹𝑇) ∧ (𝑃𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑄)) = (𝑄 (𝐹𝑃))) → 𝐾 ∈ HL)
3 simpl21 1248 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝐹𝑇) ∧ (𝑃𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑄)) = (𝑄 (𝐹𝑃))) → 𝑃𝐴)
4 simpl1 1188 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝐹𝑇) ∧ (𝑃𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑄)) = (𝑄 (𝐹𝑃))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
5 simpl23 1250 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝐹𝑇) ∧ (𝑃𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑄)) = (𝑄 (𝐹𝑃))) → 𝐹𝑇)
6 simpl22 1249 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝐹𝑇) ∧ (𝑃𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑄)) = (𝑄 (𝐹𝑃))) → 𝑄𝐴)
7 cdlemg12.l . . . . . . . 8 = (le‘𝐾)
8 cdlemg12.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
9 cdlemg12.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
10 cdlemg12.t . . . . . . . 8 𝑇 = ((LTrn‘𝐾)‘𝑊)
117, 8, 9, 10ltrnat 37742 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑄𝐴) → (𝐹𝑄) ∈ 𝐴)
124, 5, 6, 11syl3anc 1368 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝐹𝑇) ∧ (𝑃𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑄)) = (𝑄 (𝐹𝑃))) → (𝐹𝑄) ∈ 𝐴)
137, 8, 9, 10ltrnat 37742 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐴) → (𝐹𝑃) ∈ 𝐴)
144, 5, 3, 13syl3anc 1368 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝐹𝑇) ∧ (𝑃𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑄)) = (𝑄 (𝐹𝑃))) → (𝐹𝑃) ∈ 𝐴)
15 simpl3l 1225 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝐹𝑇) ∧ (𝑃𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑄)) = (𝑄 (𝐹𝑃))) → 𝑃𝑄)
168, 9, 10ltrn11at 37749 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴𝑄𝐴𝑃𝑄)) → (𝐹𝑃) ≠ (𝐹𝑄))
174, 5, 3, 6, 15, 16syl113anc 1379 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝐹𝑇) ∧ (𝑃𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑄)) = (𝑄 (𝐹𝑃))) → (𝐹𝑃) ≠ (𝐹𝑄))
1817necomd 3006 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝐹𝑇) ∧ (𝑃𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑄)) = (𝑄 (𝐹𝑃))) → (𝐹𝑄) ≠ (𝐹𝑃))
19 simpr 488 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝐹𝑇) ∧ (𝑃𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑄)) = (𝑄 (𝐹𝑃))) → (𝑃 (𝐹𝑄)) = (𝑄 (𝐹𝑃)))
20 cdlemg12.j . . . . . . 7 = (join‘𝐾)
2120, 8hlatexch4 37083 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝐹𝑄) ∈ 𝐴) ∧ (𝑄𝐴 ∧ (𝐹𝑃) ∈ 𝐴) ∧ (𝑃𝑄 ∧ (𝐹𝑄) ≠ (𝐹𝑃) ∧ (𝑃 (𝐹𝑄)) = (𝑄 (𝐹𝑃)))) → (𝑃 𝑄) = ((𝐹𝑄) (𝐹𝑃)))
222, 3, 12, 6, 14, 15, 18, 19, 21syl323anc 1397 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝐹𝑇) ∧ (𝑃𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑄)) = (𝑄 (𝐹𝑃))) → (𝑃 𝑄) = ((𝐹𝑄) (𝐹𝑃)))
2322eqcomd 2764 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝐹𝑇) ∧ (𝑃𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑄)) = (𝑄 (𝐹𝑃))) → ((𝐹𝑄) (𝐹𝑃)) = (𝑃 𝑄))
2423ex 416 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝐹𝑇) ∧ (𝑃𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) → ((𝑃 (𝐹𝑄)) = (𝑄 (𝐹𝑃)) → ((𝐹𝑄) (𝐹𝑃)) = (𝑃 𝑄)))
2524necon3d 2972 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝐹𝑇) ∧ (𝑃𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) → (((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄) → (𝑃 (𝐹𝑄)) ≠ (𝑄 (𝐹𝑃))))
261, 25mpd 15 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝐹𝑇) ∧ (𝑃𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) → (𝑃 (𝐹𝑄)) ≠ (𝑄 (𝐹𝑃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2951  cfv 6339  (class class class)co 7155  lecple 16635  joincjn 17625  meetcmee 17626  Atomscatm 36865  HLchlt 36952  LHypclh 37586  LTrncltrn 37703  trLctrl 37760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-id 5433  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-map 8423  df-proset 17609  df-poset 17627  df-plt 17639  df-lub 17655  df-glb 17656  df-join 17657  df-meet 17658  df-p0 17720  df-lat 17727  df-oposet 36778  df-ol 36780  df-oml 36781  df-covers 36868  df-ats 36869  df-atl 36900  df-cvlat 36924  df-hlat 36953  df-lhyp 37590  df-laut 37591  df-ldil 37706  df-ltrn 37707
This theorem is referenced by:  cdlemg18c  38282
  Copyright terms: Public domain W3C validator