Proof of Theorem cdlemg18a
| Step | Hyp | Ref
| Expression |
| 1 | | simp3r 1203 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄))) → ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄)) |
| 2 | | simpl1l 1225 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑄)) = (𝑄 ∨ (𝐹‘𝑃))) → 𝐾 ∈ HL) |
| 3 | | simpl21 1252 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑄)) = (𝑄 ∨ (𝐹‘𝑃))) → 𝑃 ∈ 𝐴) |
| 4 | | simpl1 1192 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑄)) = (𝑄 ∨ (𝐹‘𝑃))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 5 | | simpl23 1254 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑄)) = (𝑄 ∨ (𝐹‘𝑃))) → 𝐹 ∈ 𝑇) |
| 6 | | simpl22 1253 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑄)) = (𝑄 ∨ (𝐹‘𝑃))) → 𝑄 ∈ 𝐴) |
| 7 | | cdlemg12.l |
. . . . . . . 8
⊢ ≤ =
(le‘𝐾) |
| 8 | | cdlemg12.a |
. . . . . . . 8
⊢ 𝐴 = (Atoms‘𝐾) |
| 9 | | cdlemg12.h |
. . . . . . . 8
⊢ 𝐻 = (LHyp‘𝐾) |
| 10 | | cdlemg12.t |
. . . . . . . 8
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| 11 | 7, 8, 9, 10 | ltrnat 40164 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐴) → (𝐹‘𝑄) ∈ 𝐴) |
| 12 | 4, 5, 6, 11 | syl3anc 1373 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑄)) = (𝑄 ∨ (𝐹‘𝑃))) → (𝐹‘𝑄) ∈ 𝐴) |
| 13 | 7, 8, 9, 10 | ltrnat 40164 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → (𝐹‘𝑃) ∈ 𝐴) |
| 14 | 4, 5, 3, 13 | syl3anc 1373 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑄)) = (𝑄 ∨ (𝐹‘𝑃))) → (𝐹‘𝑃) ∈ 𝐴) |
| 15 | | simpl3l 1229 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑄)) = (𝑄 ∨ (𝐹‘𝑃))) → 𝑃 ≠ 𝑄) |
| 16 | 8, 9, 10 | ltrn11at 40171 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄)) → (𝐹‘𝑃) ≠ (𝐹‘𝑄)) |
| 17 | 4, 5, 3, 6, 15, 16 | syl113anc 1384 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑄)) = (𝑄 ∨ (𝐹‘𝑃))) → (𝐹‘𝑃) ≠ (𝐹‘𝑄)) |
| 18 | 17 | necomd 2988 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑄)) = (𝑄 ∨ (𝐹‘𝑃))) → (𝐹‘𝑄) ≠ (𝐹‘𝑃)) |
| 19 | | simpr 484 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑄)) = (𝑄 ∨ (𝐹‘𝑃))) → (𝑃 ∨ (𝐹‘𝑄)) = (𝑄 ∨ (𝐹‘𝑃))) |
| 20 | | cdlemg12.j |
. . . . . . 7
⊢ ∨ =
(join‘𝐾) |
| 21 | 20, 8 | hlatexch4 39505 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ (𝐹‘𝑄) ∈ 𝐴) ∧ (𝑄 ∈ 𝐴 ∧ (𝐹‘𝑃) ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ (𝐹‘𝑄) ≠ (𝐹‘𝑃) ∧ (𝑃 ∨ (𝐹‘𝑄)) = (𝑄 ∨ (𝐹‘𝑃)))) → (𝑃 ∨ 𝑄) = ((𝐹‘𝑄) ∨ (𝐹‘𝑃))) |
| 22 | 2, 3, 12, 6, 14, 15, 18, 19, 21 | syl323anc 1402 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑄)) = (𝑄 ∨ (𝐹‘𝑃))) → (𝑃 ∨ 𝑄) = ((𝐹‘𝑄) ∨ (𝐹‘𝑃))) |
| 23 | 22 | eqcomd 2742 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑄)) = (𝑄 ∨ (𝐹‘𝑃))) → ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) = (𝑃 ∨ 𝑄)) |
| 24 | 23 | ex 412 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄))) → ((𝑃 ∨ (𝐹‘𝑄)) = (𝑄 ∨ (𝐹‘𝑃)) → ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) = (𝑃 ∨ 𝑄))) |
| 25 | 24 | necon3d 2954 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄))) → (((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄) → (𝑃 ∨ (𝐹‘𝑄)) ≠ (𝑄 ∨ (𝐹‘𝑃)))) |
| 26 | 1, 25 | mpd 15 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄))) → (𝑃 ∨ (𝐹‘𝑄)) ≠ (𝑄 ∨ (𝐹‘𝑃))) |