| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl332anc | Structured version Visualization version GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| syl3anc.1 | ⊢ (𝜑 → 𝜓) |
| syl3anc.2 | ⊢ (𝜑 → 𝜒) |
| syl3anc.3 | ⊢ (𝜑 → 𝜃) |
| syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
| syl23anc.5 | ⊢ (𝜑 → 𝜂) |
| syl33anc.6 | ⊢ (𝜑 → 𝜁) |
| syl133anc.7 | ⊢ (𝜑 → 𝜎) |
| syl233anc.8 | ⊢ (𝜑 → 𝜌) |
| syl332anc.9 | ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁) ∧ (𝜎 ∧ 𝜌)) → 𝜇) |
| Ref | Expression |
|---|---|
| syl332anc | ⊢ (𝜑 → 𝜇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 4 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
| 5 | syl23anc.5 | . 2 ⊢ (𝜑 → 𝜂) | |
| 6 | syl33anc.6 | . 2 ⊢ (𝜑 → 𝜁) | |
| 7 | syl133anc.7 | . . 3 ⊢ (𝜑 → 𝜎) | |
| 8 | syl233anc.8 | . . 3 ⊢ (𝜑 → 𝜌) | |
| 9 | 7, 8 | jca 511 | . 2 ⊢ (𝜑 → (𝜎 ∧ 𝜌)) |
| 10 | syl332anc.9 | . 2 ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁) ∧ (𝜎 ∧ 𝜌)) → 𝜇) | |
| 11 | 1, 2, 3, 4, 5, 6, 9, 10 | syl331anc 1397 | 1 ⊢ (𝜑 → 𝜇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: mdetunilem5 22529 mdetuni0 22534 lnjatN 39818 lncmp 39821 cdlema1N 39829 4atexlemex6 40112 cdlemd4 40239 cdleme18c 40331 cdleme18d 40333 cdleme19b 40342 cdleme21ct 40367 cdleme21d 40368 cdleme21e 40369 cdleme21k 40376 cdleme22g 40386 cdleme24 40390 cdleme27a 40405 cdleme27N 40407 cdleme28a 40408 cdleme40n 40506 cdlemg16zz 40698 cdlemg37 40727 cdlemk21-2N 40929 cdlemk20-2N 40930 cdlemk28-3 40946 cdlemk19xlem 40980 |
| Copyright terms: Public domain | W3C validator |