MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl332anc Structured version   Visualization version   GIF version

Theorem syl332anc 1403
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
syl3anc.1 (𝜑𝜓)
syl3anc.2 (𝜑𝜒)
syl3anc.3 (𝜑𝜃)
syl3Xanc.4 (𝜑𝜏)
syl23anc.5 (𝜑𝜂)
syl33anc.6 (𝜑𝜁)
syl133anc.7 (𝜑𝜎)
syl233anc.8 (𝜑𝜌)
syl332anc.9 (((𝜓𝜒𝜃) ∧ (𝜏𝜂𝜁) ∧ (𝜎𝜌)) → 𝜇)
Assertion
Ref Expression
syl332anc (𝜑𝜇)

Proof of Theorem syl332anc
StepHypRef Expression
1 syl3anc.1 . 2 (𝜑𝜓)
2 syl3anc.2 . 2 (𝜑𝜒)
3 syl3anc.3 . 2 (𝜑𝜃)
4 syl3Xanc.4 . 2 (𝜑𝜏)
5 syl23anc.5 . 2 (𝜑𝜂)
6 syl33anc.6 . 2 (𝜑𝜁)
7 syl133anc.7 . . 3 (𝜑𝜎)
8 syl233anc.8 . . 3 (𝜑𝜌)
97, 8jca 511 . 2 (𝜑 → (𝜎𝜌))
10 syl332anc.9 . 2 (((𝜓𝜒𝜃) ∧ (𝜏𝜂𝜁) ∧ (𝜎𝜌)) → 𝜇)
111, 2, 3, 4, 5, 6, 9, 10syl331anc 1397 1 (𝜑𝜇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  mdetunilem5  22519  mdetuni0  22524  lnjatN  39759  lncmp  39762  cdlema1N  39770  4atexlemex6  40053  cdlemd4  40180  cdleme18c  40272  cdleme18d  40274  cdleme19b  40283  cdleme21ct  40308  cdleme21d  40309  cdleme21e  40310  cdleme21k  40317  cdleme22g  40327  cdleme24  40331  cdleme27a  40346  cdleme27N  40348  cdleme28a  40349  cdleme40n  40447  cdlemg16zz  40639  cdlemg37  40668  cdlemk21-2N  40870  cdlemk20-2N  40871  cdlemk28-3  40887  cdlemk19xlem  40921
  Copyright terms: Public domain W3C validator