| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl332anc | Structured version Visualization version GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| syl3anc.1 | ⊢ (𝜑 → 𝜓) |
| syl3anc.2 | ⊢ (𝜑 → 𝜒) |
| syl3anc.3 | ⊢ (𝜑 → 𝜃) |
| syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
| syl23anc.5 | ⊢ (𝜑 → 𝜂) |
| syl33anc.6 | ⊢ (𝜑 → 𝜁) |
| syl133anc.7 | ⊢ (𝜑 → 𝜎) |
| syl233anc.8 | ⊢ (𝜑 → 𝜌) |
| syl332anc.9 | ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁) ∧ (𝜎 ∧ 𝜌)) → 𝜇) |
| Ref | Expression |
|---|---|
| syl332anc | ⊢ (𝜑 → 𝜇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 4 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
| 5 | syl23anc.5 | . 2 ⊢ (𝜑 → 𝜂) | |
| 6 | syl33anc.6 | . 2 ⊢ (𝜑 → 𝜁) | |
| 7 | syl133anc.7 | . . 3 ⊢ (𝜑 → 𝜎) | |
| 8 | syl233anc.8 | . . 3 ⊢ (𝜑 → 𝜌) | |
| 9 | 7, 8 | jca 511 | . 2 ⊢ (𝜑 → (𝜎 ∧ 𝜌)) |
| 10 | syl332anc.9 | . 2 ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁) ∧ (𝜎 ∧ 𝜌)) → 𝜇) | |
| 11 | 1, 2, 3, 4, 5, 6, 9, 10 | syl331anc 1397 | 1 ⊢ (𝜑 → 𝜇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: mdetunilem5 22559 mdetuni0 22564 lnjatN 39804 lncmp 39807 cdlema1N 39815 4atexlemex6 40098 cdlemd4 40225 cdleme18c 40317 cdleme18d 40319 cdleme19b 40328 cdleme21ct 40353 cdleme21d 40354 cdleme21e 40355 cdleme21k 40362 cdleme22g 40372 cdleme24 40376 cdleme27a 40391 cdleme27N 40393 cdleme28a 40394 cdleme40n 40492 cdlemg16zz 40684 cdlemg37 40713 cdlemk21-2N 40915 cdlemk20-2N 40916 cdlemk28-3 40932 cdlemk19xlem 40966 |
| Copyright terms: Public domain | W3C validator |