![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl332anc | Structured version Visualization version GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
syl3anc.1 | ⊢ (𝜑 → 𝜓) |
syl3anc.2 | ⊢ (𝜑 → 𝜒) |
syl3anc.3 | ⊢ (𝜑 → 𝜃) |
syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
syl23anc.5 | ⊢ (𝜑 → 𝜂) |
syl33anc.6 | ⊢ (𝜑 → 𝜁) |
syl133anc.7 | ⊢ (𝜑 → 𝜎) |
syl233anc.8 | ⊢ (𝜑 → 𝜌) |
syl332anc.9 | ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁) ∧ (𝜎 ∧ 𝜌)) → 𝜇) |
Ref | Expression |
---|---|
syl332anc | ⊢ (𝜑 → 𝜇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
3 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
4 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
5 | syl23anc.5 | . 2 ⊢ (𝜑 → 𝜂) | |
6 | syl33anc.6 | . 2 ⊢ (𝜑 → 𝜁) | |
7 | syl133anc.7 | . . 3 ⊢ (𝜑 → 𝜎) | |
8 | syl233anc.8 | . . 3 ⊢ (𝜑 → 𝜌) | |
9 | 7, 8 | jca 513 | . 2 ⊢ (𝜑 → (𝜎 ∧ 𝜌)) |
10 | syl332anc.9 | . 2 ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁) ∧ (𝜎 ∧ 𝜌)) → 𝜇) | |
11 | 1, 2, 3, 4, 5, 6, 9, 10 | syl331anc 1396 | 1 ⊢ (𝜑 → 𝜇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1090 |
This theorem is referenced by: mdetunilem5 22118 mdetuni0 22123 lnjatN 38651 lncmp 38654 cdlema1N 38662 4atexlemex6 38945 cdlemd4 39072 cdleme18c 39164 cdleme18d 39166 cdleme19b 39175 cdleme21ct 39200 cdleme21d 39201 cdleme21e 39202 cdleme21k 39209 cdleme22g 39219 cdleme24 39223 cdleme27a 39238 cdleme27N 39240 cdleme28a 39241 cdleme40n 39339 cdlemg16zz 39531 cdlemg37 39560 cdlemk21-2N 39762 cdlemk20-2N 39763 cdlemk28-3 39779 cdlemk19xlem 39813 |
Copyright terms: Public domain | W3C validator |