| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl332anc | Structured version Visualization version GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| syl3anc.1 | ⊢ (𝜑 → 𝜓) |
| syl3anc.2 | ⊢ (𝜑 → 𝜒) |
| syl3anc.3 | ⊢ (𝜑 → 𝜃) |
| syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
| syl23anc.5 | ⊢ (𝜑 → 𝜂) |
| syl33anc.6 | ⊢ (𝜑 → 𝜁) |
| syl133anc.7 | ⊢ (𝜑 → 𝜎) |
| syl233anc.8 | ⊢ (𝜑 → 𝜌) |
| syl332anc.9 | ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁) ∧ (𝜎 ∧ 𝜌)) → 𝜇) |
| Ref | Expression |
|---|---|
| syl332anc | ⊢ (𝜑 → 𝜇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 4 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
| 5 | syl23anc.5 | . 2 ⊢ (𝜑 → 𝜂) | |
| 6 | syl33anc.6 | . 2 ⊢ (𝜑 → 𝜁) | |
| 7 | syl133anc.7 | . . 3 ⊢ (𝜑 → 𝜎) | |
| 8 | syl233anc.8 | . . 3 ⊢ (𝜑 → 𝜌) | |
| 9 | 7, 8 | jca 511 | . 2 ⊢ (𝜑 → (𝜎 ∧ 𝜌)) |
| 10 | syl332anc.9 | . 2 ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁) ∧ (𝜎 ∧ 𝜌)) → 𝜇) | |
| 11 | 1, 2, 3, 4, 5, 6, 9, 10 | syl331anc 1397 | 1 ⊢ (𝜑 → 𝜇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: mdetunilem5 22532 mdetuni0 22537 lnjatN 39899 lncmp 39902 cdlema1N 39910 4atexlemex6 40193 cdlemd4 40320 cdleme18c 40412 cdleme18d 40414 cdleme19b 40423 cdleme21ct 40448 cdleme21d 40449 cdleme21e 40450 cdleme21k 40457 cdleme22g 40467 cdleme24 40471 cdleme27a 40486 cdleme27N 40488 cdleme28a 40489 cdleme40n 40587 cdlemg16zz 40779 cdlemg37 40808 cdlemk21-2N 41010 cdlemk20-2N 41011 cdlemk28-3 41027 cdlemk19xlem 41061 |
| Copyright terms: Public domain | W3C validator |