Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl332anc | Structured version Visualization version GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
syl3anc.1 | ⊢ (𝜑 → 𝜓) |
syl3anc.2 | ⊢ (𝜑 → 𝜒) |
syl3anc.3 | ⊢ (𝜑 → 𝜃) |
syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
syl23anc.5 | ⊢ (𝜑 → 𝜂) |
syl33anc.6 | ⊢ (𝜑 → 𝜁) |
syl133anc.7 | ⊢ (𝜑 → 𝜎) |
syl233anc.8 | ⊢ (𝜑 → 𝜌) |
syl332anc.9 | ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁) ∧ (𝜎 ∧ 𝜌)) → 𝜇) |
Ref | Expression |
---|---|
syl332anc | ⊢ (𝜑 → 𝜇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
3 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
4 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
5 | syl23anc.5 | . 2 ⊢ (𝜑 → 𝜂) | |
6 | syl33anc.6 | . 2 ⊢ (𝜑 → 𝜁) | |
7 | syl133anc.7 | . . 3 ⊢ (𝜑 → 𝜎) | |
8 | syl233anc.8 | . . 3 ⊢ (𝜑 → 𝜌) | |
9 | 7, 8 | jca 511 | . 2 ⊢ (𝜑 → (𝜎 ∧ 𝜌)) |
10 | syl332anc.9 | . 2 ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁) ∧ (𝜎 ∧ 𝜌)) → 𝜇) | |
11 | 1, 2, 3, 4, 5, 6, 9, 10 | syl331anc 1393 | 1 ⊢ (𝜑 → 𝜇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: mdetunilem5 21673 mdetuni0 21678 lnjatN 37721 lncmp 37724 cdlema1N 37732 4atexlemex6 38015 cdlemd4 38142 cdleme18c 38234 cdleme18d 38236 cdleme19b 38245 cdleme21ct 38270 cdleme21d 38271 cdleme21e 38272 cdleme21k 38279 cdleme22g 38289 cdleme24 38293 cdleme27a 38308 cdleme27N 38310 cdleme28a 38311 cdleme40n 38409 cdlemg16zz 38601 cdlemg37 38630 cdlemk21-2N 38832 cdlemk20-2N 38833 cdlemk28-3 38849 cdlemk19xlem 38883 |
Copyright terms: Public domain | W3C validator |