Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg31d Structured version   Visualization version   GIF version

Theorem cdlemg31d 37851
Description: Eliminate (𝐹𝑃) ≠ 𝑃 from cdlemg31c 37850. TODO: Prove directly. TODO: do we need to eliminate (𝐹𝑃) ≠ 𝑃? It might be better to do this all at once at the end. See also cdlemg29 37856 versus cdlemg28 37855. (Contributed by NM, 29-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l = (le‘𝐾)
cdlemg12.j = (join‘𝐾)
cdlemg12.m = (meet‘𝐾)
cdlemg12.a 𝐴 = (Atoms‘𝐾)
cdlemg12.h 𝐻 = (LHyp‘𝐾)
cdlemg12.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg12b.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemg31.n 𝑁 = ((𝑃 𝑣) (𝑄 (𝑅𝐹)))
Assertion
Ref Expression
cdlemg31d (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝐹𝑇𝑣 ≠ (𝑅𝐹) ∧ 𝑁𝐴)) → ¬ 𝑁 𝑊)

Proof of Theorem cdlemg31d
StepHypRef Expression
1 simp22r 1289 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝐹𝑇𝑣 ≠ (𝑅𝐹) ∧ 𝑁𝐴)) → ¬ 𝑄 𝑊)
21adantr 483 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝐹𝑇𝑣 ≠ (𝑅𝐹) ∧ 𝑁𝐴)) ∧ (𝐹𝑃) = 𝑃) → ¬ 𝑄 𝑊)
3 simpl1 1187 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝐹𝑇𝑣 ≠ (𝑅𝐹) ∧ 𝑁𝐴)) ∧ (𝐹𝑃) = 𝑃) → (𝐾 ∈ HL ∧ 𝑊𝐻))
4 simp21l 1286 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝐹𝑇𝑣 ≠ (𝑅𝐹) ∧ 𝑁𝐴)) → 𝑃𝐴)
54adantr 483 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝐹𝑇𝑣 ≠ (𝑅𝐹) ∧ 𝑁𝐴)) ∧ (𝐹𝑃) = 𝑃) → 𝑃𝐴)
6 simp22l 1288 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝐹𝑇𝑣 ≠ (𝑅𝐹) ∧ 𝑁𝐴)) → 𝑄𝐴)
76adantr 483 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝐹𝑇𝑣 ≠ (𝑅𝐹) ∧ 𝑁𝐴)) ∧ (𝐹𝑃) = 𝑃) → 𝑄𝐴)
8 simp23l 1290 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝐹𝑇𝑣 ≠ (𝑅𝐹) ∧ 𝑁𝐴)) → 𝑣𝐴)
98adantr 483 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝐹𝑇𝑣 ≠ (𝑅𝐹) ∧ 𝑁𝐴)) ∧ (𝐹𝑃) = 𝑃) → 𝑣𝐴)
10 simpl31 1250 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝐹𝑇𝑣 ≠ (𝑅𝐹) ∧ 𝑁𝐴)) ∧ (𝐹𝑃) = 𝑃) → 𝐹𝑇)
11 cdlemg12.l . . . . . . . 8 = (le‘𝐾)
12 cdlemg12.j . . . . . . . 8 = (join‘𝐾)
13 cdlemg12.m . . . . . . . 8 = (meet‘𝐾)
14 cdlemg12.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
15 cdlemg12.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
16 cdlemg12.t . . . . . . . 8 𝑇 = ((LTrn‘𝐾)‘𝑊)
17 cdlemg12b.r . . . . . . . 8 𝑅 = ((trL‘𝐾)‘𝑊)
18 cdlemg31.n . . . . . . . 8 𝑁 = ((𝑃 𝑣) (𝑄 (𝑅𝐹)))
1911, 12, 13, 14, 15, 16, 17, 18cdlemg31b 37849 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑣𝐴𝐹𝑇)) → 𝑁 (𝑄 (𝑅𝐹)))
203, 5, 7, 9, 10, 19syl122anc 1375 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝐹𝑇𝑣 ≠ (𝑅𝐹) ∧ 𝑁𝐴)) ∧ (𝐹𝑃) = 𝑃) → 𝑁 (𝑄 (𝑅𝐹)))
21 simpl21 1247 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝐹𝑇𝑣 ≠ (𝑅𝐹) ∧ 𝑁𝐴)) ∧ (𝐹𝑃) = 𝑃) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
22 simpr 487 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝐹𝑇𝑣 ≠ (𝑅𝐹) ∧ 𝑁𝐴)) ∧ (𝐹𝑃) = 𝑃) → (𝐹𝑃) = 𝑃)
23 eqid 2821 . . . . . . . . . 10 (0.‘𝐾) = (0.‘𝐾)
2411, 23, 14, 15, 16, 17trl0 37321 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑃)) → (𝑅𝐹) = (0.‘𝐾))
253, 21, 10, 22, 24syl112anc 1370 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝐹𝑇𝑣 ≠ (𝑅𝐹) ∧ 𝑁𝐴)) ∧ (𝐹𝑃) = 𝑃) → (𝑅𝐹) = (0.‘𝐾))
2625oveq2d 7172 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝐹𝑇𝑣 ≠ (𝑅𝐹) ∧ 𝑁𝐴)) ∧ (𝐹𝑃) = 𝑃) → (𝑄 (𝑅𝐹)) = (𝑄 (0.‘𝐾)))
27 simp1l 1193 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝐹𝑇𝑣 ≠ (𝑅𝐹) ∧ 𝑁𝐴)) → 𝐾 ∈ HL)
28 hlol 36512 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ OL)
2927, 28syl 17 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝐹𝑇𝑣 ≠ (𝑅𝐹) ∧ 𝑁𝐴)) → 𝐾 ∈ OL)
3029adantr 483 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝐹𝑇𝑣 ≠ (𝑅𝐹) ∧ 𝑁𝐴)) ∧ (𝐹𝑃) = 𝑃) → 𝐾 ∈ OL)
31 eqid 2821 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
3231, 14atbase 36440 . . . . . . . . 9 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
337, 32syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝐹𝑇𝑣 ≠ (𝑅𝐹) ∧ 𝑁𝐴)) ∧ (𝐹𝑃) = 𝑃) → 𝑄 ∈ (Base‘𝐾))
3431, 12, 23olj01 36376 . . . . . . . 8 ((𝐾 ∈ OL ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑄 (0.‘𝐾)) = 𝑄)
3530, 33, 34syl2anc 586 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝐹𝑇𝑣 ≠ (𝑅𝐹) ∧ 𝑁𝐴)) ∧ (𝐹𝑃) = 𝑃) → (𝑄 (0.‘𝐾)) = 𝑄)
3626, 35eqtrd 2856 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝐹𝑇𝑣 ≠ (𝑅𝐹) ∧ 𝑁𝐴)) ∧ (𝐹𝑃) = 𝑃) → (𝑄 (𝑅𝐹)) = 𝑄)
3720, 36breqtrd 5092 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝐹𝑇𝑣 ≠ (𝑅𝐹) ∧ 𝑁𝐴)) ∧ (𝐹𝑃) = 𝑃) → 𝑁 𝑄)
38 hlatl 36511 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
3927, 38syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝐹𝑇𝑣 ≠ (𝑅𝐹) ∧ 𝑁𝐴)) → 𝐾 ∈ AtLat)
4039adantr 483 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝐹𝑇𝑣 ≠ (𝑅𝐹) ∧ 𝑁𝐴)) ∧ (𝐹𝑃) = 𝑃) → 𝐾 ∈ AtLat)
41 simpl33 1252 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝐹𝑇𝑣 ≠ (𝑅𝐹) ∧ 𝑁𝐴)) ∧ (𝐹𝑃) = 𝑃) → 𝑁𝐴)
4211, 14atcmp 36462 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑁𝐴𝑄𝐴) → (𝑁 𝑄𝑁 = 𝑄))
4340, 41, 7, 42syl3anc 1367 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝐹𝑇𝑣 ≠ (𝑅𝐹) ∧ 𝑁𝐴)) ∧ (𝐹𝑃) = 𝑃) → (𝑁 𝑄𝑁 = 𝑄))
4437, 43mpbid 234 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝐹𝑇𝑣 ≠ (𝑅𝐹) ∧ 𝑁𝐴)) ∧ (𝐹𝑃) = 𝑃) → 𝑁 = 𝑄)
4544breq1d 5076 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝐹𝑇𝑣 ≠ (𝑅𝐹) ∧ 𝑁𝐴)) ∧ (𝐹𝑃) = 𝑃) → (𝑁 𝑊𝑄 𝑊))
462, 45mtbird 327 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝐹𝑇𝑣 ≠ (𝑅𝐹) ∧ 𝑁𝐴)) ∧ (𝐹𝑃) = 𝑃) → ¬ 𝑁 𝑊)
47 simpl1 1187 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝐹𝑇𝑣 ≠ (𝑅𝐹) ∧ 𝑁𝐴)) ∧ (𝐹𝑃) ≠ 𝑃) → (𝐾 ∈ HL ∧ 𝑊𝐻))
48 simpl21 1247 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝐹𝑇𝑣 ≠ (𝑅𝐹) ∧ 𝑁𝐴)) ∧ (𝐹𝑃) ≠ 𝑃) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
49 simpl22 1248 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝐹𝑇𝑣 ≠ (𝑅𝐹) ∧ 𝑁𝐴)) ∧ (𝐹𝑃) ≠ 𝑃) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
50 simpl23 1249 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝐹𝑇𝑣 ≠ (𝑅𝐹) ∧ 𝑁𝐴)) ∧ (𝐹𝑃) ≠ 𝑃) → (𝑣𝐴𝑣 𝑊))
51 simpl31 1250 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝐹𝑇𝑣 ≠ (𝑅𝐹) ∧ 𝑁𝐴)) ∧ (𝐹𝑃) ≠ 𝑃) → 𝐹𝑇)
52 simpl32 1251 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝐹𝑇𝑣 ≠ (𝑅𝐹) ∧ 𝑁𝐴)) ∧ (𝐹𝑃) ≠ 𝑃) → 𝑣 ≠ (𝑅𝐹))
53 simpr 487 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝐹𝑇𝑣 ≠ (𝑅𝐹) ∧ 𝑁𝐴)) ∧ (𝐹𝑃) ≠ 𝑃) → (𝐹𝑃) ≠ 𝑃)
54 simpl33 1252 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝐹𝑇𝑣 ≠ (𝑅𝐹) ∧ 𝑁𝐴)) ∧ (𝐹𝑃) ≠ 𝑃) → 𝑁𝐴)
5511, 12, 13, 14, 15, 16, 17, 18cdlemg31c 37850 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → ¬ 𝑁 𝑊)
5647, 48, 49, 50, 51, 52, 53, 54, 55syl323anc 1396 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝐹𝑇𝑣 ≠ (𝑅𝐹) ∧ 𝑁𝐴)) ∧ (𝐹𝑃) ≠ 𝑃) → ¬ 𝑁 𝑊)
5746, 56pm2.61dane 3104 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝐹𝑇𝑣 ≠ (𝑅𝐹) ∧ 𝑁𝐴)) → ¬ 𝑁 𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016   class class class wbr 5066  cfv 6355  (class class class)co 7156  Basecbs 16483  lecple 16572  joincjn 17554  meetcmee 17555  0.cp0 17647  OLcol 36325  Atomscatm 36414  AtLatcal 36415  HLchlt 36501  LHypclh 37135  LTrncltrn 37252  trLctrl 37309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7689  df-2nd 7690  df-map 8408  df-proset 17538  df-poset 17556  df-plt 17568  df-lub 17584  df-glb 17585  df-join 17586  df-meet 17587  df-p0 17649  df-p1 17650  df-lat 17656  df-clat 17718  df-oposet 36327  df-ol 36329  df-oml 36330  df-covers 36417  df-ats 36418  df-atl 36449  df-cvlat 36473  df-hlat 36502  df-psubsp 36654  df-pmap 36655  df-padd 36947  df-lhyp 37139  df-laut 37140  df-ldil 37255  df-ltrn 37256  df-trl 37310
This theorem is referenced by:  cdlemg33b0  37852  cdlemg33a  37857
  Copyright terms: Public domain W3C validator