Proof of Theorem cdlemg31d
Step | Hyp | Ref
| Expression |
1 | | simp22r 1291 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ 𝑁 ∈ 𝐴)) → ¬ 𝑄 ≤ 𝑊) |
2 | 1 | adantr 480 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ 𝑁 ∈ 𝐴)) ∧ (𝐹‘𝑃) = 𝑃) → ¬ 𝑄 ≤ 𝑊) |
3 | | simpl1 1189 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ 𝑁 ∈ 𝐴)) ∧ (𝐹‘𝑃) = 𝑃) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
4 | | simp21l 1288 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ 𝑁 ∈ 𝐴)) → 𝑃 ∈ 𝐴) |
5 | 4 | adantr 480 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ 𝑁 ∈ 𝐴)) ∧ (𝐹‘𝑃) = 𝑃) → 𝑃 ∈ 𝐴) |
6 | | simp22l 1290 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ 𝑁 ∈ 𝐴)) → 𝑄 ∈ 𝐴) |
7 | 6 | adantr 480 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ 𝑁 ∈ 𝐴)) ∧ (𝐹‘𝑃) = 𝑃) → 𝑄 ∈ 𝐴) |
8 | | simp23l 1292 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ 𝑁 ∈ 𝐴)) → 𝑣 ∈ 𝐴) |
9 | 8 | adantr 480 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ 𝑁 ∈ 𝐴)) ∧ (𝐹‘𝑃) = 𝑃) → 𝑣 ∈ 𝐴) |
10 | | simpl31 1252 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ 𝑁 ∈ 𝐴)) ∧ (𝐹‘𝑃) = 𝑃) → 𝐹 ∈ 𝑇) |
11 | | cdlemg12.l |
. . . . . . . 8
⊢ ≤ =
(le‘𝐾) |
12 | | cdlemg12.j |
. . . . . . . 8
⊢ ∨ =
(join‘𝐾) |
13 | | cdlemg12.m |
. . . . . . . 8
⊢ ∧ =
(meet‘𝐾) |
14 | | cdlemg12.a |
. . . . . . . 8
⊢ 𝐴 = (Atoms‘𝐾) |
15 | | cdlemg12.h |
. . . . . . . 8
⊢ 𝐻 = (LHyp‘𝐾) |
16 | | cdlemg12.t |
. . . . . . . 8
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
17 | | cdlemg12b.r |
. . . . . . . 8
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
18 | | cdlemg31.n |
. . . . . . . 8
⊢ 𝑁 = ((𝑃 ∨ 𝑣) ∧ (𝑄 ∨ (𝑅‘𝐹))) |
19 | 11, 12, 13, 14, 15, 16, 17, 18 | cdlemg31b 38639 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑣 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇)) → 𝑁 ≤ (𝑄 ∨ (𝑅‘𝐹))) |
20 | 3, 5, 7, 9, 10, 19 | syl122anc 1377 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ 𝑁 ∈ 𝐴)) ∧ (𝐹‘𝑃) = 𝑃) → 𝑁 ≤ (𝑄 ∨ (𝑅‘𝐹))) |
21 | | simpl21 1249 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ 𝑁 ∈ 𝐴)) ∧ (𝐹‘𝑃) = 𝑃) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
22 | | simpr 484 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ 𝑁 ∈ 𝐴)) ∧ (𝐹‘𝑃) = 𝑃) → (𝐹‘𝑃) = 𝑃) |
23 | | eqid 2738 |
. . . . . . . . . 10
⊢
(0.‘𝐾) =
(0.‘𝐾) |
24 | 11, 23, 14, 15, 16, 17 | trl0 38111 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) = 𝑃)) → (𝑅‘𝐹) = (0.‘𝐾)) |
25 | 3, 21, 10, 22, 24 | syl112anc 1372 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ 𝑁 ∈ 𝐴)) ∧ (𝐹‘𝑃) = 𝑃) → (𝑅‘𝐹) = (0.‘𝐾)) |
26 | 25 | oveq2d 7271 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ 𝑁 ∈ 𝐴)) ∧ (𝐹‘𝑃) = 𝑃) → (𝑄 ∨ (𝑅‘𝐹)) = (𝑄 ∨ (0.‘𝐾))) |
27 | | simp1l 1195 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ 𝑁 ∈ 𝐴)) → 𝐾 ∈ HL) |
28 | | hlol 37302 |
. . . . . . . . . 10
⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) |
29 | 27, 28 | syl 17 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ 𝑁 ∈ 𝐴)) → 𝐾 ∈ OL) |
30 | 29 | adantr 480 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ 𝑁 ∈ 𝐴)) ∧ (𝐹‘𝑃) = 𝑃) → 𝐾 ∈ OL) |
31 | | eqid 2738 |
. . . . . . . . . 10
⊢
(Base‘𝐾) =
(Base‘𝐾) |
32 | 31, 14 | atbase 37230 |
. . . . . . . . 9
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
33 | 7, 32 | syl 17 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ 𝑁 ∈ 𝐴)) ∧ (𝐹‘𝑃) = 𝑃) → 𝑄 ∈ (Base‘𝐾)) |
34 | 31, 12, 23 | olj01 37166 |
. . . . . . . 8
⊢ ((𝐾 ∈ OL ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑄 ∨ (0.‘𝐾)) = 𝑄) |
35 | 30, 33, 34 | syl2anc 583 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ 𝑁 ∈ 𝐴)) ∧ (𝐹‘𝑃) = 𝑃) → (𝑄 ∨ (0.‘𝐾)) = 𝑄) |
36 | 26, 35 | eqtrd 2778 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ 𝑁 ∈ 𝐴)) ∧ (𝐹‘𝑃) = 𝑃) → (𝑄 ∨ (𝑅‘𝐹)) = 𝑄) |
37 | 20, 36 | breqtrd 5096 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ 𝑁 ∈ 𝐴)) ∧ (𝐹‘𝑃) = 𝑃) → 𝑁 ≤ 𝑄) |
38 | | hlatl 37301 |
. . . . . . . 8
⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
39 | 27, 38 | syl 17 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ 𝑁 ∈ 𝐴)) → 𝐾 ∈ AtLat) |
40 | 39 | adantr 480 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ 𝑁 ∈ 𝐴)) ∧ (𝐹‘𝑃) = 𝑃) → 𝐾 ∈ AtLat) |
41 | | simpl33 1254 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ 𝑁 ∈ 𝐴)) ∧ (𝐹‘𝑃) = 𝑃) → 𝑁 ∈ 𝐴) |
42 | 11, 14 | atcmp 37252 |
. . . . . 6
⊢ ((𝐾 ∈ AtLat ∧ 𝑁 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑁 ≤ 𝑄 ↔ 𝑁 = 𝑄)) |
43 | 40, 41, 7, 42 | syl3anc 1369 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ 𝑁 ∈ 𝐴)) ∧ (𝐹‘𝑃) = 𝑃) → (𝑁 ≤ 𝑄 ↔ 𝑁 = 𝑄)) |
44 | 37, 43 | mpbid 231 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ 𝑁 ∈ 𝐴)) ∧ (𝐹‘𝑃) = 𝑃) → 𝑁 = 𝑄) |
45 | 44 | breq1d 5080 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ 𝑁 ∈ 𝐴)) ∧ (𝐹‘𝑃) = 𝑃) → (𝑁 ≤ 𝑊 ↔ 𝑄 ≤ 𝑊)) |
46 | 2, 45 | mtbird 324 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ 𝑁 ∈ 𝐴)) ∧ (𝐹‘𝑃) = 𝑃) → ¬ 𝑁 ≤ 𝑊) |
47 | | simpl1 1189 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ 𝑁 ∈ 𝐴)) ∧ (𝐹‘𝑃) ≠ 𝑃) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
48 | | simpl21 1249 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ 𝑁 ∈ 𝐴)) ∧ (𝐹‘𝑃) ≠ 𝑃) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
49 | | simpl22 1250 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ 𝑁 ∈ 𝐴)) ∧ (𝐹‘𝑃) ≠ 𝑃) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
50 | | simpl23 1251 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ 𝑁 ∈ 𝐴)) ∧ (𝐹‘𝑃) ≠ 𝑃) → (𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊)) |
51 | | simpl31 1252 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ 𝑁 ∈ 𝐴)) ∧ (𝐹‘𝑃) ≠ 𝑃) → 𝐹 ∈ 𝑇) |
52 | | simpl32 1253 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ 𝑁 ∈ 𝐴)) ∧ (𝐹‘𝑃) ≠ 𝑃) → 𝑣 ≠ (𝑅‘𝐹)) |
53 | | simpr 484 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ 𝑁 ∈ 𝐴)) ∧ (𝐹‘𝑃) ≠ 𝑃) → (𝐹‘𝑃) ≠ 𝑃) |
54 | | simpl33 1254 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ 𝑁 ∈ 𝐴)) ∧ (𝐹‘𝑃) ≠ 𝑃) → 𝑁 ∈ 𝐴) |
55 | 11, 12, 13, 14, 15, 16, 17, 18 | cdlemg31c 38640 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝑣 ≠ (𝑅‘𝐹) ∧ (𝐹‘𝑃) ≠ 𝑃 ∧ 𝑁 ∈ 𝐴)) → ¬ 𝑁 ≤ 𝑊) |
56 | 47, 48, 49, 50, 51, 52, 53, 54, 55 | syl323anc 1398 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ 𝑁 ∈ 𝐴)) ∧ (𝐹‘𝑃) ≠ 𝑃) → ¬ 𝑁 ≤ 𝑊) |
57 | 46, 56 | pm2.61dane 3031 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ 𝑁 ∈ 𝐴)) → ¬ 𝑁 ≤ 𝑊) |