Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihord4 Structured version   Visualization version   GIF version

Theorem dihord4 39251
Description: The isomorphism H for a lattice 𝐾 is order-preserving in the region not under co-atom 𝑊. TODO: reformat (𝑞𝐴 ∧ ¬ 𝑞 𝑊) to eliminate adant*. (Contributed by NM, 6-Mar-2014.)
Hypotheses
Ref Expression
dihord3.b 𝐵 = (Base‘𝐾)
dihord3.l = (le‘𝐾)
dihord3.h 𝐻 = (LHyp‘𝐾)
dihord3.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
Assertion
Ref Expression
dihord4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) → ((𝐼𝑋) ⊆ (𝐼𝑌) ↔ 𝑋 𝑌))

Proof of Theorem dihord4
Dummy variables 𝑟 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dihord3.b . . . . 5 𝐵 = (Base‘𝐾)
2 dihord3.l . . . . 5 = (le‘𝐾)
3 eqid 2739 . . . . 5 (join‘𝐾) = (join‘𝐾)
4 eqid 2739 . . . . 5 (meet‘𝐾) = (meet‘𝐾)
5 eqid 2739 . . . . 5 (Atoms‘𝐾) = (Atoms‘𝐾)
6 dihord3.h . . . . 5 𝐻 = (LHyp‘𝐾)
71, 2, 3, 4, 5, 6lhpmcvr2 38017 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ∃𝑞 ∈ (Atoms‘𝐾)(¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋))
873adant3 1130 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) → ∃𝑞 ∈ (Atoms‘𝐾)(¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋))
91, 2, 3, 4, 5, 6lhpmcvr2 38017 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) → ∃𝑟 ∈ (Atoms‘𝐾)(¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))
1093adant2 1129 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) → ∃𝑟 ∈ (Atoms‘𝐾)(¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))
11 reeanv 3294 . . 3 (∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌)) ↔ (∃𝑞 ∈ (Atoms‘𝐾)(¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ ∃𝑟 ∈ (Atoms‘𝐾)(¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌)))
128, 10, 11sylanbrc 582 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) → ∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌)))
13 simp11 1201 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
14 simp12 1202 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) → (𝑋𝐵 ∧ ¬ 𝑋 𝑊))
15 simp2l 1197 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) → 𝑞 ∈ (Atoms‘𝐾))
16 simp3ll 1242 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) → ¬ 𝑞 𝑊)
1715, 16jca 511 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) → (𝑞 ∈ (Atoms‘𝐾) ∧ ¬ 𝑞 𝑊))
18 simp3lr 1243 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) → (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)
19 dihord3.i . . . . . . . 8 𝐼 = ((DIsoH‘𝐾)‘𝑊)
20 eqid 2739 . . . . . . . 8 ((DIsoB‘𝐾)‘𝑊) = ((DIsoB‘𝐾)‘𝑊)
21 eqid 2739 . . . . . . . 8 ((DIsoC‘𝐾)‘𝑊) = ((DIsoC‘𝐾)‘𝑊)
22 eqid 2739 . . . . . . . 8 ((DVecH‘𝐾)‘𝑊) = ((DVecH‘𝐾)‘𝑊)
23 eqid 2739 . . . . . . . 8 (LSSum‘((DVecH‘𝐾)‘𝑊)) = (LSSum‘((DVecH‘𝐾)‘𝑊))
241, 2, 3, 4, 5, 6, 19, 20, 21, 22, 23dihvalcq 39229 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ ¬ 𝑞 𝑊) ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → (𝐼𝑋) = ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))))
2513, 14, 17, 18, 24syl112anc 1372 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) → (𝐼𝑋) = ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))))
26 simp13 1203 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) → (𝑌𝐵 ∧ ¬ 𝑌 𝑊))
27 simp2r 1198 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) → 𝑟 ∈ (Atoms‘𝐾))
28 simp3rl 1244 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) → ¬ 𝑟 𝑊)
2927, 28jca 511 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) → (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 𝑊))
30 simp3rr 1245 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) → (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌)
311, 2, 3, 4, 5, 6, 19, 20, 21, 22, 23dihvalcq 39229 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊) ∧ ((𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 𝑊) ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌)) → (𝐼𝑌) = ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊))))
3213, 26, 29, 30, 31syl112anc 1372 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) → (𝐼𝑌) = ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊))))
3325, 32sseq12d 3958 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) → ((𝐼𝑋) ⊆ (𝐼𝑌) ↔ ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)))))
34 simpl11 1246 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
35 simpl2l 1224 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)))) → 𝑞 ∈ (Atoms‘𝐾))
3616adantr 480 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)))) → ¬ 𝑞 𝑊)
3735, 36jca 511 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)))) → (𝑞 ∈ (Atoms‘𝐾) ∧ ¬ 𝑞 𝑊))
38 simpl2r 1225 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)))) → 𝑟 ∈ (Atoms‘𝐾))
3928adantr 480 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)))) → ¬ 𝑟 𝑊)
4038, 39jca 511 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)))) → (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 𝑊))
41 simp12l 1284 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) → 𝑋𝐵)
4241adantr 480 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)))) → 𝑋𝐵)
43 simp13l 1286 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) → 𝑌𝐵)
4443adantr 480 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)))) → 𝑌𝐵)
4518adantr 480 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)))) → (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)
4630adantr 480 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)))) → (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌)
47 simpr 484 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)))) → ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊))))
481, 2, 3, 4, 5, 6, 20, 21, 22, 23dihord2 39220 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ ¬ 𝑞 𝑊) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌 ∧ ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊))))) → 𝑋 𝑌)
4934, 37, 40, 42, 44, 45, 46, 47, 48syl323anc 1398 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)))) → 𝑋 𝑌)
50 simpl11 1246 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ 𝑋 𝑌) → (𝐾 ∈ HL ∧ 𝑊𝐻))
51 simpl2l 1224 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ 𝑋 𝑌) → 𝑞 ∈ (Atoms‘𝐾))
5216adantr 480 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ 𝑋 𝑌) → ¬ 𝑞 𝑊)
5351, 52jca 511 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ 𝑋 𝑌) → (𝑞 ∈ (Atoms‘𝐾) ∧ ¬ 𝑞 𝑊))
54 simpl2r 1225 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ 𝑋 𝑌) → 𝑟 ∈ (Atoms‘𝐾))
5528adantr 480 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ 𝑋 𝑌) → ¬ 𝑟 𝑊)
5654, 55jca 511 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ 𝑋 𝑌) → (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 𝑊))
5741adantr 480 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ 𝑋 𝑌) → 𝑋𝐵)
5843adantr 480 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ 𝑋 𝑌) → 𝑌𝐵)
5918adantr 480 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ 𝑋 𝑌) → (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)
6030adantr 480 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ 𝑋 𝑌) → (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌)
61 simpr 484 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ 𝑋 𝑌) → 𝑋 𝑌)
621, 2, 3, 4, 5, 6, 20, 21, 22, 23dihord1 39211 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ ¬ 𝑞 𝑊) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌𝑋 𝑌)) → ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊))))
6350, 53, 56, 57, 58, 59, 60, 61, 62syl323anc 1398 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ 𝑋 𝑌) → ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊))))
6449, 63impbida 797 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) → (((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊))) ↔ 𝑋 𝑌))
6533, 64bitrd 278 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) → ((𝐼𝑋) ⊆ (𝐼𝑌) ↔ 𝑋 𝑌))
66653exp 1117 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) → ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) → (((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌)) → ((𝐼𝑋) ⊆ (𝐼𝑌) ↔ 𝑋 𝑌))))
6766rexlimdvv 3223 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) → (∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌)) → ((𝐼𝑋) ⊆ (𝐼𝑌) ↔ 𝑋 𝑌)))
6812, 67mpd 15 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) → ((𝐼𝑋) ⊆ (𝐼𝑌) ↔ 𝑋 𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1541  wcel 2109  wrex 3066  wss 3891   class class class wbr 5078  cfv 6430  (class class class)co 7268  Basecbs 16893  lecple 16950  joincjn 18010  meetcmee 18011  LSSumclsm 19220  Atomscatm 37256  HLchlt 37343  LHypclh 37977  DVecHcdvh 39071  DIsoBcdib 39131  DIsoCcdic 39165  DIsoHcdih 39221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932  ax-riotaBAD 36946
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-iin 4932  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-tpos 8026  df-undef 8073  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-er 8472  df-map 8591  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-nn 11957  df-2 12019  df-3 12020  df-4 12021  df-5 12022  df-6 12023  df-n0 12217  df-z 12303  df-uz 12565  df-fz 13222  df-struct 16829  df-sets 16846  df-slot 16864  df-ndx 16876  df-base 16894  df-ress 16923  df-plusg 16956  df-mulr 16957  df-sca 16959  df-vsca 16960  df-0g 17133  df-proset 17994  df-poset 18012  df-plt 18029  df-lub 18045  df-glb 18046  df-join 18047  df-meet 18048  df-p0 18124  df-p1 18125  df-lat 18131  df-clat 18198  df-mgm 18307  df-sgrp 18356  df-mnd 18367  df-submnd 18412  df-grp 18561  df-minusg 18562  df-sbg 18563  df-subg 18733  df-cntz 18904  df-lsm 19222  df-cmn 19369  df-abl 19370  df-mgp 19702  df-ur 19719  df-ring 19766  df-oppr 19843  df-dvdsr 19864  df-unit 19865  df-invr 19895  df-dvr 19906  df-drng 19974  df-lmod 20106  df-lss 20175  df-lsp 20215  df-lvec 20346  df-oposet 37169  df-ol 37171  df-oml 37172  df-covers 37259  df-ats 37260  df-atl 37291  df-cvlat 37315  df-hlat 37344  df-llines 37491  df-lplanes 37492  df-lvols 37493  df-lines 37494  df-psubsp 37496  df-pmap 37497  df-padd 37789  df-lhyp 37981  df-laut 37982  df-ldil 38097  df-ltrn 38098  df-trl 38152  df-tendo 38748  df-edring 38750  df-disoa 39022  df-dvech 39072  df-dib 39132  df-dic 39166  df-dih 39222
This theorem is referenced by:  dihord5apre  39255  dihord  39257
  Copyright terms: Public domain W3C validator