| Step | Hyp | Ref
| Expression |
| 1 | | dihord3.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐾) |
| 2 | | dihord3.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
| 3 | | eqid 2737 |
. . . . 5
⊢
(join‘𝐾) =
(join‘𝐾) |
| 4 | | eqid 2737 |
. . . . 5
⊢
(meet‘𝐾) =
(meet‘𝐾) |
| 5 | | eqid 2737 |
. . . . 5
⊢
(Atoms‘𝐾) =
(Atoms‘𝐾) |
| 6 | | dihord3.h |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
| 7 | 1, 2, 3, 4, 5, 6 | lhpmcvr2 40026 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → ∃𝑞 ∈ (Atoms‘𝐾)(¬ 𝑞 ≤ 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) |
| 8 | 7 | 3adant3 1133 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) → ∃𝑞 ∈ (Atoms‘𝐾)(¬ 𝑞 ≤ 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) |
| 9 | 1, 2, 3, 4, 5, 6 | lhpmcvr2 40026 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) → ∃𝑟 ∈ (Atoms‘𝐾)(¬ 𝑟 ≤ 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌)) |
| 10 | 9 | 3adant2 1132 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) → ∃𝑟 ∈ (Atoms‘𝐾)(¬ 𝑟 ≤ 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌)) |
| 11 | | reeanv 3229 |
. . 3
⊢
(∃𝑞 ∈
(Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)((¬ 𝑞 ≤ 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌)) ↔ (∃𝑞 ∈ (Atoms‘𝐾)(¬ 𝑞 ≤ 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ ∃𝑟 ∈ (Atoms‘𝐾)(¬ 𝑟 ≤ 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) |
| 12 | 8, 10, 11 | sylanbrc 583 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) → ∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)((¬ 𝑞 ≤ 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) |
| 13 | | simp11 1204 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 14 | | simp12 1205 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) → (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) |
| 15 | | simp2l 1200 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) → 𝑞 ∈ (Atoms‘𝐾)) |
| 16 | | simp3ll 1245 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) → ¬ 𝑞 ≤ 𝑊) |
| 17 | 15, 16 | jca 511 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) → (𝑞 ∈ (Atoms‘𝐾) ∧ ¬ 𝑞 ≤ 𝑊)) |
| 18 | | simp3lr 1246 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) → (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) |
| 19 | | dihord3.i |
. . . . . . . 8
⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
| 20 | | eqid 2737 |
. . . . . . . 8
⊢
((DIsoB‘𝐾)‘𝑊) = ((DIsoB‘𝐾)‘𝑊) |
| 21 | | eqid 2737 |
. . . . . . . 8
⊢
((DIsoC‘𝐾)‘𝑊) = ((DIsoC‘𝐾)‘𝑊) |
| 22 | | eqid 2737 |
. . . . . . . 8
⊢
((DVecH‘𝐾)‘𝑊) = ((DVecH‘𝐾)‘𝑊) |
| 23 | | eqid 2737 |
. . . . . . . 8
⊢
(LSSum‘((DVecH‘𝐾)‘𝑊)) = (LSSum‘((DVecH‘𝐾)‘𝑊)) |
| 24 | 1, 2, 3, 4, 5, 6, 19, 20, 21, 22, 23 | dihvalcq 41238 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ ¬ 𝑞 ≤ 𝑊) ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → (𝐼‘𝑋) = ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊)))) |
| 25 | 13, 14, 17, 18, 24 | syl112anc 1376 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) → (𝐼‘𝑋) = ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊)))) |
| 26 | | simp13 1206 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) → (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) |
| 27 | | simp2r 1201 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) → 𝑟 ∈ (Atoms‘𝐾)) |
| 28 | | simp3rl 1247 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) → ¬ 𝑟 ≤ 𝑊) |
| 29 | 27, 28 | jca 511 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) → (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 ≤ 𝑊)) |
| 30 | | simp3rr 1248 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) → (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) |
| 31 | 1, 2, 3, 4, 5, 6, 19, 20, 21, 22, 23 | dihvalcq 41238 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊) ∧ ((𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌)) → (𝐼‘𝑌) = ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)))) |
| 32 | 13, 26, 29, 30, 31 | syl112anc 1376 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) → (𝐼‘𝑌) = ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)))) |
| 33 | 25, 32 | sseq12d 4017 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) → ((𝐼‘𝑋) ⊆ (𝐼‘𝑌) ↔ ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊))))) |
| 34 | | simpl11 1249 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 35 | | simpl2l 1227 |
. . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)))) → 𝑞 ∈ (Atoms‘𝐾)) |
| 36 | 16 | adantr 480 |
. . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)))) → ¬ 𝑞 ≤ 𝑊) |
| 37 | 35, 36 | jca 511 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)))) → (𝑞 ∈ (Atoms‘𝐾) ∧ ¬ 𝑞 ≤ 𝑊)) |
| 38 | | simpl2r 1228 |
. . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)))) → 𝑟 ∈ (Atoms‘𝐾)) |
| 39 | 28 | adantr 480 |
. . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)))) → ¬ 𝑟 ≤ 𝑊) |
| 40 | 38, 39 | jca 511 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)))) → (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 ≤ 𝑊)) |
| 41 | | simp12l 1287 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) → 𝑋 ∈ 𝐵) |
| 42 | 41 | adantr 480 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)))) → 𝑋 ∈ 𝐵) |
| 43 | | simp13l 1289 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) → 𝑌 ∈ 𝐵) |
| 44 | 43 | adantr 480 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)))) → 𝑌 ∈ 𝐵) |
| 45 | 18 | adantr 480 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)))) → (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) |
| 46 | 30 | adantr 480 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)))) → (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) |
| 47 | | simpr 484 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)))) → ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)))) |
| 48 | 1, 2, 3, 4, 5, 6, 20, 21, 22, 23 | dihord2 41229 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ ¬ 𝑞 ≤ 𝑊) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌 ∧ ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊))))) → 𝑋 ≤ 𝑌) |
| 49 | 34, 37, 40, 42, 44, 45, 46, 47, 48 | syl323anc 1402 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)))) → 𝑋 ≤ 𝑌) |
| 50 | | simpl11 1249 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ 𝑋 ≤ 𝑌) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 51 | | simpl2l 1227 |
. . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ 𝑋 ≤ 𝑌) → 𝑞 ∈ (Atoms‘𝐾)) |
| 52 | 16 | adantr 480 |
. . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ 𝑋 ≤ 𝑌) → ¬ 𝑞 ≤ 𝑊) |
| 53 | 51, 52 | jca 511 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ 𝑋 ≤ 𝑌) → (𝑞 ∈ (Atoms‘𝐾) ∧ ¬ 𝑞 ≤ 𝑊)) |
| 54 | | simpl2r 1228 |
. . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ 𝑋 ≤ 𝑌) → 𝑟 ∈ (Atoms‘𝐾)) |
| 55 | 28 | adantr 480 |
. . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ 𝑋 ≤ 𝑌) → ¬ 𝑟 ≤ 𝑊) |
| 56 | 54, 55 | jca 511 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ 𝑋 ≤ 𝑌) → (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 ≤ 𝑊)) |
| 57 | 41 | adantr 480 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ 𝑋 ≤ 𝑌) → 𝑋 ∈ 𝐵) |
| 58 | 43 | adantr 480 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ 𝑋 ≤ 𝑌) → 𝑌 ∈ 𝐵) |
| 59 | 18 | adantr 480 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ 𝑋 ≤ 𝑌) → (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) |
| 60 | 30 | adantr 480 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ 𝑋 ≤ 𝑌) → (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) |
| 61 | | simpr 484 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ 𝑋 ≤ 𝑌) → 𝑋 ≤ 𝑌) |
| 62 | 1, 2, 3, 4, 5, 6, 20, 21, 22, 23 | dihord1 41220 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ ¬ 𝑞 ≤ 𝑊) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)))) |
| 63 | 50, 53, 56, 57, 58, 59, 60, 61, 62 | syl323anc 1402 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ 𝑋 ≤ 𝑌) → ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)))) |
| 64 | 49, 63 | impbida 801 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) → (((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊))) ↔ 𝑋 ≤ 𝑌)) |
| 65 | 33, 64 | bitrd 279 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) → ((𝐼‘𝑋) ⊆ (𝐼‘𝑌) ↔ 𝑋 ≤ 𝑌)) |
| 66 | 65 | 3exp 1120 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) → ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) → (((¬ 𝑞 ≤ 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌)) → ((𝐼‘𝑋) ⊆ (𝐼‘𝑌) ↔ 𝑋 ≤ 𝑌)))) |
| 67 | 66 | rexlimdvv 3212 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) → (∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)((¬ 𝑞 ≤ 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌)) → ((𝐼‘𝑋) ⊆ (𝐼‘𝑌) ↔ 𝑋 ≤ 𝑌))) |
| 68 | 12, 67 | mpd 15 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) → ((𝐼‘𝑋) ⊆ (𝐼‘𝑌) ↔ 𝑋 ≤ 𝑌)) |