Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihord4 Structured version   Visualization version   GIF version

Theorem dihord4 41241
Description: The isomorphism H for a lattice 𝐾 is order-preserving in the region not under co-atom 𝑊. TODO: reformat (𝑞𝐴 ∧ ¬ 𝑞 𝑊) to eliminate adant*. (Contributed by NM, 6-Mar-2014.)
Hypotheses
Ref Expression
dihord3.b 𝐵 = (Base‘𝐾)
dihord3.l = (le‘𝐾)
dihord3.h 𝐻 = (LHyp‘𝐾)
dihord3.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
Assertion
Ref Expression
dihord4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) → ((𝐼𝑋) ⊆ (𝐼𝑌) ↔ 𝑋 𝑌))

Proof of Theorem dihord4
Dummy variables 𝑟 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dihord3.b . . . . 5 𝐵 = (Base‘𝐾)
2 dihord3.l . . . . 5 = (le‘𝐾)
3 eqid 2729 . . . . 5 (join‘𝐾) = (join‘𝐾)
4 eqid 2729 . . . . 5 (meet‘𝐾) = (meet‘𝐾)
5 eqid 2729 . . . . 5 (Atoms‘𝐾) = (Atoms‘𝐾)
6 dihord3.h . . . . 5 𝐻 = (LHyp‘𝐾)
71, 2, 3, 4, 5, 6lhpmcvr2 40007 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ∃𝑞 ∈ (Atoms‘𝐾)(¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋))
873adant3 1132 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) → ∃𝑞 ∈ (Atoms‘𝐾)(¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋))
91, 2, 3, 4, 5, 6lhpmcvr2 40007 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) → ∃𝑟 ∈ (Atoms‘𝐾)(¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))
1093adant2 1131 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) → ∃𝑟 ∈ (Atoms‘𝐾)(¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))
11 reeanv 3201 . . 3 (∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌)) ↔ (∃𝑞 ∈ (Atoms‘𝐾)(¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ ∃𝑟 ∈ (Atoms‘𝐾)(¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌)))
128, 10, 11sylanbrc 583 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) → ∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌)))
13 simp11 1204 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
14 simp12 1205 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) → (𝑋𝐵 ∧ ¬ 𝑋 𝑊))
15 simp2l 1200 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) → 𝑞 ∈ (Atoms‘𝐾))
16 simp3ll 1245 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) → ¬ 𝑞 𝑊)
1715, 16jca 511 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) → (𝑞 ∈ (Atoms‘𝐾) ∧ ¬ 𝑞 𝑊))
18 simp3lr 1246 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) → (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)
19 dihord3.i . . . . . . . 8 𝐼 = ((DIsoH‘𝐾)‘𝑊)
20 eqid 2729 . . . . . . . 8 ((DIsoB‘𝐾)‘𝑊) = ((DIsoB‘𝐾)‘𝑊)
21 eqid 2729 . . . . . . . 8 ((DIsoC‘𝐾)‘𝑊) = ((DIsoC‘𝐾)‘𝑊)
22 eqid 2729 . . . . . . . 8 ((DVecH‘𝐾)‘𝑊) = ((DVecH‘𝐾)‘𝑊)
23 eqid 2729 . . . . . . . 8 (LSSum‘((DVecH‘𝐾)‘𝑊)) = (LSSum‘((DVecH‘𝐾)‘𝑊))
241, 2, 3, 4, 5, 6, 19, 20, 21, 22, 23dihvalcq 41219 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ ¬ 𝑞 𝑊) ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → (𝐼𝑋) = ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))))
2513, 14, 17, 18, 24syl112anc 1376 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) → (𝐼𝑋) = ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))))
26 simp13 1206 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) → (𝑌𝐵 ∧ ¬ 𝑌 𝑊))
27 simp2r 1201 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) → 𝑟 ∈ (Atoms‘𝐾))
28 simp3rl 1247 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) → ¬ 𝑟 𝑊)
2927, 28jca 511 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) → (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 𝑊))
30 simp3rr 1248 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) → (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌)
311, 2, 3, 4, 5, 6, 19, 20, 21, 22, 23dihvalcq 41219 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊) ∧ ((𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 𝑊) ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌)) → (𝐼𝑌) = ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊))))
3213, 26, 29, 30, 31syl112anc 1376 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) → (𝐼𝑌) = ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊))))
3325, 32sseq12d 3969 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) → ((𝐼𝑋) ⊆ (𝐼𝑌) ↔ ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)))))
34 simpl11 1249 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
35 simpl2l 1227 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)))) → 𝑞 ∈ (Atoms‘𝐾))
3616adantr 480 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)))) → ¬ 𝑞 𝑊)
3735, 36jca 511 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)))) → (𝑞 ∈ (Atoms‘𝐾) ∧ ¬ 𝑞 𝑊))
38 simpl2r 1228 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)))) → 𝑟 ∈ (Atoms‘𝐾))
3928adantr 480 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)))) → ¬ 𝑟 𝑊)
4038, 39jca 511 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)))) → (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 𝑊))
41 simp12l 1287 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) → 𝑋𝐵)
4241adantr 480 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)))) → 𝑋𝐵)
43 simp13l 1289 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) → 𝑌𝐵)
4443adantr 480 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)))) → 𝑌𝐵)
4518adantr 480 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)))) → (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)
4630adantr 480 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)))) → (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌)
47 simpr 484 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)))) → ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊))))
481, 2, 3, 4, 5, 6, 20, 21, 22, 23dihord2 41210 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ ¬ 𝑞 𝑊) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌 ∧ ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊))))) → 𝑋 𝑌)
4934, 37, 40, 42, 44, 45, 46, 47, 48syl323anc 1402 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)))) → 𝑋 𝑌)
50 simpl11 1249 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ 𝑋 𝑌) → (𝐾 ∈ HL ∧ 𝑊𝐻))
51 simpl2l 1227 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ 𝑋 𝑌) → 𝑞 ∈ (Atoms‘𝐾))
5216adantr 480 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ 𝑋 𝑌) → ¬ 𝑞 𝑊)
5351, 52jca 511 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ 𝑋 𝑌) → (𝑞 ∈ (Atoms‘𝐾) ∧ ¬ 𝑞 𝑊))
54 simpl2r 1228 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ 𝑋 𝑌) → 𝑟 ∈ (Atoms‘𝐾))
5528adantr 480 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ 𝑋 𝑌) → ¬ 𝑟 𝑊)
5654, 55jca 511 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ 𝑋 𝑌) → (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 𝑊))
5741adantr 480 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ 𝑋 𝑌) → 𝑋𝐵)
5843adantr 480 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ 𝑋 𝑌) → 𝑌𝐵)
5918adantr 480 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ 𝑋 𝑌) → (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)
6030adantr 480 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ 𝑋 𝑌) → (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌)
61 simpr 484 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ 𝑋 𝑌) → 𝑋 𝑌)
621, 2, 3, 4, 5, 6, 20, 21, 22, 23dihord1 41201 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ ¬ 𝑞 𝑊) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌𝑋 𝑌)) → ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊))))
6350, 53, 56, 57, 58, 59, 60, 61, 62syl323anc 1402 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) ∧ 𝑋 𝑌) → ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊))))
6449, 63impbida 800 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) → (((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊))) ↔ 𝑋 𝑌))
6533, 64bitrd 279 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))) → ((𝐼𝑋) ⊆ (𝐼𝑌) ↔ 𝑋 𝑌))
66653exp 1119 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) → ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) → (((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌)) → ((𝐼𝑋) ⊆ (𝐼𝑌) ↔ 𝑋 𝑌))))
6766rexlimdvv 3185 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) → (∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌)) → ((𝐼𝑋) ⊆ (𝐼𝑌) ↔ 𝑋 𝑌)))
6812, 67mpd 15 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) → ((𝐼𝑋) ⊆ (𝐼𝑌) ↔ 𝑋 𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  wss 3903   class class class wbr 5092  cfv 6482  (class class class)co 7349  Basecbs 17120  lecple 17168  joincjn 18217  meetcmee 18218  LSSumclsm 19513  Atomscatm 39246  HLchlt 39333  LHypclh 39967  DVecHcdvh 41061  DIsoBcdib 41121  DIsoCcdic 41155  DIsoHcdih 41211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-riotaBAD 38936
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-tpos 8159  df-undef 8206  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-0g 17345  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-subg 19002  df-cntz 19196  df-lsm 19515  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-dvr 20286  df-drng 20616  df-lmod 20765  df-lss 20835  df-lsp 20875  df-lvec 21007  df-oposet 39159  df-ol 39161  df-oml 39162  df-covers 39249  df-ats 39250  df-atl 39281  df-cvlat 39305  df-hlat 39334  df-llines 39481  df-lplanes 39482  df-lvols 39483  df-lines 39484  df-psubsp 39486  df-pmap 39487  df-padd 39779  df-lhyp 39971  df-laut 39972  df-ldil 40087  df-ltrn 40088  df-trl 40142  df-tendo 40738  df-edring 40740  df-disoa 41012  df-dvech 41062  df-dib 41122  df-dic 41156  df-dih 41212
This theorem is referenced by:  dihord5apre  41245  dihord  41247
  Copyright terms: Public domain W3C validator