| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemb2 | Structured version Visualization version GIF version | ||
| Description: Given two atoms not under the fiducial (reference) co-atom 𝑊, there is a third. Lemma B in [Crawley] p. 112. (Contributed by NM, 30-May-2012.) |
| Ref | Expression |
|---|---|
| cdlemb2.l | ⊢ ≤ = (le‘𝐾) |
| cdlemb2.j | ⊢ ∨ = (join‘𝐾) |
| cdlemb2.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| cdlemb2.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| Ref | Expression |
|---|---|
| cdlemb2 | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ ¬ 𝑟 ≤ (𝑃 ∨ 𝑄))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1l 1197 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → 𝐾 ∈ HL) | |
| 2 | simp2ll 1240 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → 𝑃 ∈ 𝐴) | |
| 3 | simp2rl 1242 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → 𝑄 ∈ 𝐴) | |
| 4 | simp1r 1198 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → 𝑊 ∈ 𝐻) | |
| 5 | eqid 2736 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 6 | cdlemb2.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 7 | 5, 6 | lhpbase 40001 | . . 3 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
| 8 | 4, 7 | syl 17 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → 𝑊 ∈ (Base‘𝐾)) |
| 9 | simp3 1138 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → 𝑃 ≠ 𝑄) | |
| 10 | eqid 2736 | . . . 4 ⊢ (1.‘𝐾) = (1.‘𝐾) | |
| 11 | eqid 2736 | . . . 4 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
| 12 | 10, 11, 6 | lhp1cvr 40002 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑊( ⋖ ‘𝐾)(1.‘𝐾)) |
| 13 | 12 | 3ad2ant1 1133 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → 𝑊( ⋖ ‘𝐾)(1.‘𝐾)) |
| 14 | simp2lr 1241 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → ¬ 𝑃 ≤ 𝑊) | |
| 15 | simp2rr 1243 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → ¬ 𝑄 ≤ 𝑊) | |
| 16 | cdlemb2.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 17 | cdlemb2.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
| 18 | cdlemb2.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 19 | 5, 16, 17, 10, 11, 18 | cdlemb 39797 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑊 ∈ (Base‘𝐾) ∧ 𝑃 ≠ 𝑄) ∧ (𝑊( ⋖ ‘𝐾)(1.‘𝐾) ∧ ¬ 𝑃 ≤ 𝑊 ∧ ¬ 𝑄 ≤ 𝑊)) → ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ ¬ 𝑟 ≤ (𝑃 ∨ 𝑄))) |
| 20 | 1, 2, 3, 8, 9, 13, 14, 15, 19 | syl323anc 1401 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ ¬ 𝑟 ≤ (𝑃 ∨ 𝑄))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 ∃wrex 3069 class class class wbr 5142 ‘cfv 6560 (class class class)co 7432 Basecbs 17248 lecple 17305 joincjn 18358 1.cp1 18470 ⋖ ccvr 39264 Atomscatm 39265 HLchlt 39352 LHypclh 39987 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-proset 18341 df-poset 18360 df-plt 18376 df-lub 18392 df-glb 18393 df-join 18394 df-meet 18395 df-p0 18471 df-p1 18472 df-lat 18478 df-clat 18545 df-oposet 39178 df-ol 39180 df-oml 39181 df-covers 39268 df-ats 39269 df-atl 39300 df-cvlat 39324 df-hlat 39353 df-lhyp 39991 |
| This theorem is referenced by: cdlemd4 40204 cdlemd9 40209 cdleme25a 40356 cdleme25c 40358 cdleme25dN 40359 cdleme26ee 40363 cdlemefs32sn1aw 40417 cdleme43fsv1snlem 40423 cdleme41sn3a 40436 cdleme40m 40470 cdleme40n 40471 cdleme17d3 40499 cdlemeg46gfre 40535 cdleme50trn2 40554 cdlemb3 40609 |
| Copyright terms: Public domain | W3C validator |