![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemg48 | Structured version Visualization version GIF version |
Description: Eliminate ℎ from cdlemg47 40249. (Contributed by NM, 5-Jun-2013.) |
Ref | Expression |
---|---|
cdlemg46.b | ⊢ 𝐵 = (Base‘𝐾) |
cdlemg46.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemg46.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
cdlemg46.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
cdlemg48 | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) = (𝑅‘𝐺))) → (𝐹 ∘ 𝐺) = (𝐺 ∘ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemg46.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | cdlemg46.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | cdlemg46.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
4 | cdlemg46.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
5 | 1, 2, 3, 4 | cdlemftr1 40080 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃ℎ ∈ 𝑇 (ℎ ≠ ( I ↾ 𝐵) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹))) |
6 | 5 | 3ad2ant1 1130 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) = (𝑅‘𝐺))) → ∃ℎ ∈ 𝑇 (ℎ ≠ ( I ↾ 𝐵) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹))) |
7 | simp11 1200 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) = (𝑅‘𝐺))) ∧ ℎ ∈ 𝑇 ∧ (ℎ ≠ ( I ↾ 𝐵) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
8 | simp12l 1283 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) = (𝑅‘𝐺))) ∧ ℎ ∈ 𝑇 ∧ (ℎ ≠ ( I ↾ 𝐵) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹))) → 𝐹 ∈ 𝑇) | |
9 | simp12r 1284 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) = (𝑅‘𝐺))) ∧ ℎ ∈ 𝑇 ∧ (ℎ ≠ ( I ↾ 𝐵) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹))) → 𝐺 ∈ 𝑇) | |
10 | simp2 1134 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) = (𝑅‘𝐺))) ∧ ℎ ∈ 𝑇 ∧ (ℎ ≠ ( I ↾ 𝐵) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹))) → ℎ ∈ 𝑇) | |
11 | simp13r 1286 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) = (𝑅‘𝐺))) ∧ ℎ ∈ 𝑇 ∧ (ℎ ≠ ( I ↾ 𝐵) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹))) → (𝑅‘𝐹) = (𝑅‘𝐺)) | |
12 | simp13l 1285 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) = (𝑅‘𝐺))) ∧ ℎ ∈ 𝑇 ∧ (ℎ ≠ ( I ↾ 𝐵) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹))) → 𝐹 ≠ ( I ↾ 𝐵)) | |
13 | simp3l 1198 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) = (𝑅‘𝐺))) ∧ ℎ ∈ 𝑇 ∧ (ℎ ≠ ( I ↾ 𝐵) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹))) → ℎ ≠ ( I ↾ 𝐵)) | |
14 | simp3r 1199 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) = (𝑅‘𝐺))) ∧ ℎ ∈ 𝑇 ∧ (ℎ ≠ ( I ↾ 𝐵) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹))) → (𝑅‘ℎ) ≠ (𝑅‘𝐹)) | |
15 | 1, 2, 3, 4 | cdlemg47 40249 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (ℎ ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ≠ ( I ↾ 𝐵) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹))) → (𝐹 ∘ 𝐺) = (𝐺 ∘ 𝐹)) |
16 | 7, 8, 9, 10, 11, 12, 13, 14, 15 | syl323anc 1397 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) = (𝑅‘𝐺))) ∧ ℎ ∈ 𝑇 ∧ (ℎ ≠ ( I ↾ 𝐵) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹))) → (𝐹 ∘ 𝐺) = (𝐺 ∘ 𝐹)) |
17 | 16 | rexlimdv3a 3156 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) = (𝑅‘𝐺))) → (∃ℎ ∈ 𝑇 (ℎ ≠ ( I ↾ 𝐵) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹)) → (𝐹 ∘ 𝐺) = (𝐺 ∘ 𝐹))) |
18 | 6, 17 | mpd 15 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) = (𝑅‘𝐺))) → (𝐹 ∘ 𝐺) = (𝐺 ∘ 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2937 ∃wrex 3067 I cid 5579 ↾ cres 5684 ∘ ccom 5686 ‘cfv 6553 Basecbs 17189 HLchlt 38862 LHypclh 39497 LTrncltrn 39614 trLctrl 39671 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 ax-riotaBAD 38465 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-iin 5003 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-1st 8001 df-2nd 8002 df-undef 8287 df-map 8855 df-proset 18296 df-poset 18314 df-plt 18331 df-lub 18347 df-glb 18348 df-join 18349 df-meet 18350 df-p0 18426 df-p1 18427 df-lat 18433 df-clat 18500 df-oposet 38688 df-ol 38690 df-oml 38691 df-covers 38778 df-ats 38779 df-atl 38810 df-cvlat 38834 df-hlat 38863 df-llines 39011 df-lplanes 39012 df-lvols 39013 df-lines 39014 df-psubsp 39016 df-pmap 39017 df-padd 39309 df-lhyp 39501 df-laut 39502 df-ldil 39617 df-ltrn 39618 df-trl 39672 |
This theorem is referenced by: ltrncom 40251 |
Copyright terms: Public domain | W3C validator |