Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg48 Structured version   Visualization version   GIF version

Theorem cdlemg48 40250
Description: Eliminate from cdlemg47 40249. (Contributed by NM, 5-Jun-2013.)
Hypotheses
Ref Expression
cdlemg46.b 𝐵 = (Base‘𝐾)
cdlemg46.h 𝐻 = (LHyp‘𝐾)
cdlemg46.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg46.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemg48 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) = (𝑅𝐺))) → (𝐹𝐺) = (𝐺𝐹))

Proof of Theorem cdlemg48
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 cdlemg46.b . . . 4 𝐵 = (Base‘𝐾)
2 cdlemg46.h . . . 4 𝐻 = (LHyp‘𝐾)
3 cdlemg46.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
4 cdlemg46.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
51, 2, 3, 4cdlemftr1 40080 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑇 ( ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹)))
653ad2ant1 1130 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) = (𝑅𝐺))) → ∃𝑇 ( ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹)))
7 simp11 1200 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) = (𝑅𝐺))) ∧ 𝑇 ∧ ( ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
8 simp12l 1283 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) = (𝑅𝐺))) ∧ 𝑇 ∧ ( ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → 𝐹𝑇)
9 simp12r 1284 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) = (𝑅𝐺))) ∧ 𝑇 ∧ ( ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → 𝐺𝑇)
10 simp2 1134 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) = (𝑅𝐺))) ∧ 𝑇 ∧ ( ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → 𝑇)
11 simp13r 1286 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) = (𝑅𝐺))) ∧ 𝑇 ∧ ( ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝑅𝐹) = (𝑅𝐺))
12 simp13l 1285 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) = (𝑅𝐺))) ∧ 𝑇 ∧ ( ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → 𝐹 ≠ ( I ↾ 𝐵))
13 simp3l 1198 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) = (𝑅𝐺))) ∧ 𝑇 ∧ ( ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → ≠ ( I ↾ 𝐵))
14 simp3r 1199 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) = (𝑅𝐺))) ∧ 𝑇 ∧ ( ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝑅) ≠ (𝑅𝐹))
151, 2, 3, 4cdlemg47 40249 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝐹𝐺) = (𝐺𝐹))
167, 8, 9, 10, 11, 12, 13, 14, 15syl323anc 1397 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) = (𝑅𝐺))) ∧ 𝑇 ∧ ( ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝐹𝐺) = (𝐺𝐹))
1716rexlimdv3a 3156 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) = (𝑅𝐺))) → (∃𝑇 ( ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹)) → (𝐹𝐺) = (𝐺𝐹)))
186, 17mpd 15 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) = (𝑅𝐺))) → (𝐹𝐺) = (𝐺𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2937  wrex 3067   I cid 5579  cres 5684  ccom 5686  cfv 6553  Basecbs 17189  HLchlt 38862  LHypclh 39497  LTrncltrn 39614  trLctrl 39671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7748  ax-riotaBAD 38465
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-iin 5003  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-1st 8001  df-2nd 8002  df-undef 8287  df-map 8855  df-proset 18296  df-poset 18314  df-plt 18331  df-lub 18347  df-glb 18348  df-join 18349  df-meet 18350  df-p0 18426  df-p1 18427  df-lat 18433  df-clat 18500  df-oposet 38688  df-ol 38690  df-oml 38691  df-covers 38778  df-ats 38779  df-atl 38810  df-cvlat 38834  df-hlat 38863  df-llines 39011  df-lplanes 39012  df-lvols 39013  df-lines 39014  df-psubsp 39016  df-pmap 39017  df-padd 39309  df-lhyp 39501  df-laut 39502  df-ldil 39617  df-ltrn 39618  df-trl 39672
This theorem is referenced by:  ltrncom  40251
  Copyright terms: Public domain W3C validator