Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg48 Structured version   Visualization version   GIF version

Theorem cdlemg48 40724
Description: Eliminate from cdlemg47 40723. (Contributed by NM, 5-Jun-2013.)
Hypotheses
Ref Expression
cdlemg46.b 𝐵 = (Base‘𝐾)
cdlemg46.h 𝐻 = (LHyp‘𝐾)
cdlemg46.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg46.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemg48 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) = (𝑅𝐺))) → (𝐹𝐺) = (𝐺𝐹))

Proof of Theorem cdlemg48
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 cdlemg46.b . . . 4 𝐵 = (Base‘𝐾)
2 cdlemg46.h . . . 4 𝐻 = (LHyp‘𝐾)
3 cdlemg46.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
4 cdlemg46.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
51, 2, 3, 4cdlemftr1 40554 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑇 ( ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹)))
653ad2ant1 1133 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) = (𝑅𝐺))) → ∃𝑇 ( ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹)))
7 simp11 1204 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) = (𝑅𝐺))) ∧ 𝑇 ∧ ( ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
8 simp12l 1287 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) = (𝑅𝐺))) ∧ 𝑇 ∧ ( ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → 𝐹𝑇)
9 simp12r 1288 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) = (𝑅𝐺))) ∧ 𝑇 ∧ ( ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → 𝐺𝑇)
10 simp2 1137 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) = (𝑅𝐺))) ∧ 𝑇 ∧ ( ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → 𝑇)
11 simp13r 1290 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) = (𝑅𝐺))) ∧ 𝑇 ∧ ( ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝑅𝐹) = (𝑅𝐺))
12 simp13l 1289 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) = (𝑅𝐺))) ∧ 𝑇 ∧ ( ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → 𝐹 ≠ ( I ↾ 𝐵))
13 simp3l 1202 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) = (𝑅𝐺))) ∧ 𝑇 ∧ ( ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → ≠ ( I ↾ 𝐵))
14 simp3r 1203 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) = (𝑅𝐺))) ∧ 𝑇 ∧ ( ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝑅) ≠ (𝑅𝐹))
151, 2, 3, 4cdlemg47 40723 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝐹𝐺) = (𝐺𝐹))
167, 8, 9, 10, 11, 12, 13, 14, 15syl323anc 1402 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) = (𝑅𝐺))) ∧ 𝑇 ∧ ( ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝐹𝐺) = (𝐺𝐹))
1716rexlimdv3a 3138 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) = (𝑅𝐺))) → (∃𝑇 ( ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹)) → (𝐹𝐺) = (𝐺𝐹)))
186, 17mpd 15 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) = (𝑅𝐺))) → (𝐹𝐺) = (𝐺𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053   I cid 5525  cres 5633  ccom 5635  cfv 6499  Basecbs 17155  HLchlt 39336  LHypclh 39971  LTrncltrn 40088  trLctrl 40145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-riotaBAD 38939
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-undef 8229  df-map 8778  df-proset 18235  df-poset 18254  df-plt 18269  df-lub 18285  df-glb 18286  df-join 18287  df-meet 18288  df-p0 18364  df-p1 18365  df-lat 18373  df-clat 18440  df-oposet 39162  df-ol 39164  df-oml 39165  df-covers 39252  df-ats 39253  df-atl 39284  df-cvlat 39308  df-hlat 39337  df-llines 39485  df-lplanes 39486  df-lvols 39487  df-lines 39488  df-psubsp 39490  df-pmap 39491  df-padd 39783  df-lhyp 39975  df-laut 39976  df-ldil 40091  df-ltrn 40092  df-trl 40146
This theorem is referenced by:  ltrncom  40725
  Copyright terms: Public domain W3C validator