![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemg48 | Structured version Visualization version GIF version |
Description: Eliminate ℎ from cdlemg47 40120. (Contributed by NM, 5-Jun-2013.) |
Ref | Expression |
---|---|
cdlemg46.b | ⊢ 𝐵 = (Base‘𝐾) |
cdlemg46.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemg46.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
cdlemg46.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
cdlemg48 | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) = (𝑅‘𝐺))) → (𝐹 ∘ 𝐺) = (𝐺 ∘ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemg46.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | cdlemg46.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | cdlemg46.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
4 | cdlemg46.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
5 | 1, 2, 3, 4 | cdlemftr1 39951 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃ℎ ∈ 𝑇 (ℎ ≠ ( I ↾ 𝐵) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹))) |
6 | 5 | 3ad2ant1 1130 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) = (𝑅‘𝐺))) → ∃ℎ ∈ 𝑇 (ℎ ≠ ( I ↾ 𝐵) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹))) |
7 | simp11 1200 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) = (𝑅‘𝐺))) ∧ ℎ ∈ 𝑇 ∧ (ℎ ≠ ( I ↾ 𝐵) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
8 | simp12l 1283 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) = (𝑅‘𝐺))) ∧ ℎ ∈ 𝑇 ∧ (ℎ ≠ ( I ↾ 𝐵) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹))) → 𝐹 ∈ 𝑇) | |
9 | simp12r 1284 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) = (𝑅‘𝐺))) ∧ ℎ ∈ 𝑇 ∧ (ℎ ≠ ( I ↾ 𝐵) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹))) → 𝐺 ∈ 𝑇) | |
10 | simp2 1134 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) = (𝑅‘𝐺))) ∧ ℎ ∈ 𝑇 ∧ (ℎ ≠ ( I ↾ 𝐵) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹))) → ℎ ∈ 𝑇) | |
11 | simp13r 1286 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) = (𝑅‘𝐺))) ∧ ℎ ∈ 𝑇 ∧ (ℎ ≠ ( I ↾ 𝐵) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹))) → (𝑅‘𝐹) = (𝑅‘𝐺)) | |
12 | simp13l 1285 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) = (𝑅‘𝐺))) ∧ ℎ ∈ 𝑇 ∧ (ℎ ≠ ( I ↾ 𝐵) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹))) → 𝐹 ≠ ( I ↾ 𝐵)) | |
13 | simp3l 1198 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) = (𝑅‘𝐺))) ∧ ℎ ∈ 𝑇 ∧ (ℎ ≠ ( I ↾ 𝐵) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹))) → ℎ ≠ ( I ↾ 𝐵)) | |
14 | simp3r 1199 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) = (𝑅‘𝐺))) ∧ ℎ ∈ 𝑇 ∧ (ℎ ≠ ( I ↾ 𝐵) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹))) → (𝑅‘ℎ) ≠ (𝑅‘𝐹)) | |
15 | 1, 2, 3, 4 | cdlemg47 40120 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (ℎ ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ≠ ( I ↾ 𝐵) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹))) → (𝐹 ∘ 𝐺) = (𝐺 ∘ 𝐹)) |
16 | 7, 8, 9, 10, 11, 12, 13, 14, 15 | syl323anc 1397 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) = (𝑅‘𝐺))) ∧ ℎ ∈ 𝑇 ∧ (ℎ ≠ ( I ↾ 𝐵) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹))) → (𝐹 ∘ 𝐺) = (𝐺 ∘ 𝐹)) |
17 | 16 | rexlimdv3a 3153 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) = (𝑅‘𝐺))) → (∃ℎ ∈ 𝑇 (ℎ ≠ ( I ↾ 𝐵) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹)) → (𝐹 ∘ 𝐺) = (𝐺 ∘ 𝐹))) |
18 | 6, 17 | mpd 15 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) = (𝑅‘𝐺))) → (𝐹 ∘ 𝐺) = (𝐺 ∘ 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2934 ∃wrex 3064 I cid 5566 ↾ cres 5671 ∘ ccom 5673 ‘cfv 6537 Basecbs 17153 HLchlt 38733 LHypclh 39368 LTrncltrn 39485 trLctrl 39542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-riotaBAD 38336 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7974 df-2nd 7975 df-undef 8259 df-map 8824 df-proset 18260 df-poset 18278 df-plt 18295 df-lub 18311 df-glb 18312 df-join 18313 df-meet 18314 df-p0 18390 df-p1 18391 df-lat 18397 df-clat 18464 df-oposet 38559 df-ol 38561 df-oml 38562 df-covers 38649 df-ats 38650 df-atl 38681 df-cvlat 38705 df-hlat 38734 df-llines 38882 df-lplanes 38883 df-lvols 38884 df-lines 38885 df-psubsp 38887 df-pmap 38888 df-padd 39180 df-lhyp 39372 df-laut 39373 df-ldil 39488 df-ltrn 39489 df-trl 39543 |
This theorem is referenced by: ltrncom 40122 |
Copyright terms: Public domain | W3C validator |