Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalawlem1 Structured version   Visualization version   GIF version

Theorem dalawlem1 35941
 Description: Lemma for dalaw 35956. Special case of dath2 35807, where 𝐶 is replaced by ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)). The remaining lemmas will eliminate the conditions on the atoms imposed by dath2 35807. (Contributed by NM, 6-Oct-2012.)
Hypotheses
Ref Expression
dalawlem.l = (le‘𝐾)
dalawlem.j = (join‘𝐾)
dalawlem.m = (meet‘𝐾)
dalawlem.a 𝐴 = (Atoms‘𝐾)
dalawlem.o 𝑂 = (LPlanes‘𝐾)
Assertion
Ref Expression
dalawlem1 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (((𝑃 𝑄) 𝑅) ∈ 𝑂 ∧ ((𝑆 𝑇) 𝑈) ∈ 𝑂) ∧ ((¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑃)) ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆)) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈))) → ((𝑃 𝑄) (𝑆 𝑇)) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))))

Proof of Theorem dalawlem1
StepHypRef Expression
1 simp11 1264 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (((𝑃 𝑄) 𝑅) ∈ 𝑂 ∧ ((𝑆 𝑇) 𝑈) ∈ 𝑂) ∧ ((¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑃)) ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆)) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈))) → 𝐾 ∈ HL)
21hllatd 35434 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (((𝑃 𝑄) 𝑅) ∈ 𝑂 ∧ ((𝑆 𝑇) 𝑈) ∈ 𝑂) ∧ ((¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑃)) ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆)) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈))) → 𝐾 ∈ Lat)
3 simp121 1408 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (((𝑃 𝑄) 𝑅) ∈ 𝑂 ∧ ((𝑆 𝑇) 𝑈) ∈ 𝑂) ∧ ((¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑃)) ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆)) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈))) → 𝑃𝐴)
4 simp131 1411 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (((𝑃 𝑄) 𝑅) ∈ 𝑂 ∧ ((𝑆 𝑇) 𝑈) ∈ 𝑂) ∧ ((¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑃)) ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆)) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈))) → 𝑆𝐴)
5 eqid 2825 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
6 dalawlem.j . . . . . 6 = (join‘𝐾)
7 dalawlem.a . . . . . 6 𝐴 = (Atoms‘𝐾)
85, 6, 7hlatjcl 35437 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴) → (𝑃 𝑆) ∈ (Base‘𝐾))
91, 3, 4, 8syl3anc 1494 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (((𝑃 𝑄) 𝑅) ∈ 𝑂 ∧ ((𝑆 𝑇) 𝑈) ∈ 𝑂) ∧ ((¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑃)) ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆)) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈))) → (𝑃 𝑆) ∈ (Base‘𝐾))
10 simp122 1409 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (((𝑃 𝑄) 𝑅) ∈ 𝑂 ∧ ((𝑆 𝑇) 𝑈) ∈ 𝑂) ∧ ((¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑃)) ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆)) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈))) → 𝑄𝐴)
11 simp132 1412 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (((𝑃 𝑄) 𝑅) ∈ 𝑂 ∧ ((𝑆 𝑇) 𝑈) ∈ 𝑂) ∧ ((¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑃)) ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆)) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈))) → 𝑇𝐴)
125, 6, 7hlatjcl 35437 . . . . 5 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑇𝐴) → (𝑄 𝑇) ∈ (Base‘𝐾))
131, 10, 11, 12syl3anc 1494 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (((𝑃 𝑄) 𝑅) ∈ 𝑂 ∧ ((𝑆 𝑇) 𝑈) ∈ 𝑂) ∧ ((¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑃)) ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆)) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈))) → (𝑄 𝑇) ∈ (Base‘𝐾))
14 dalawlem.m . . . . 5 = (meet‘𝐾)
155, 14latmcl 17412 . . . 4 ((𝐾 ∈ Lat ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ (𝑄 𝑇) ∈ (Base‘𝐾)) → ((𝑃 𝑆) (𝑄 𝑇)) ∈ (Base‘𝐾))
162, 9, 13, 15syl3anc 1494 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (((𝑃 𝑄) 𝑅) ∈ 𝑂 ∧ ((𝑆 𝑇) 𝑈) ∈ 𝑂) ∧ ((¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑃)) ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆)) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈))) → ((𝑃 𝑆) (𝑄 𝑇)) ∈ (Base‘𝐾))
171, 16jca 507 . 2 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (((𝑃 𝑄) 𝑅) ∈ 𝑂 ∧ ((𝑆 𝑇) 𝑈) ∈ 𝑂) ∧ ((¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑃)) ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆)) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈))) → (𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) ∈ (Base‘𝐾)))
18 simp12 1265 . 2 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (((𝑃 𝑄) 𝑅) ∈ 𝑂 ∧ ((𝑆 𝑇) 𝑈) ∈ 𝑂) ∧ ((¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑃)) ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆)) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈))) → (𝑃𝐴𝑄𝐴𝑅𝐴))
19 simp13 1266 . 2 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (((𝑃 𝑄) 𝑅) ∈ 𝑂 ∧ ((𝑆 𝑇) 𝑈) ∈ 𝑂) ∧ ((¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑃)) ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆)) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈))) → (𝑆𝐴𝑇𝐴𝑈𝐴))
20 simp2l 1260 . 2 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (((𝑃 𝑄) 𝑅) ∈ 𝑂 ∧ ((𝑆 𝑇) 𝑈) ∈ 𝑂) ∧ ((¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑃)) ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆)) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈))) → ((𝑃 𝑄) 𝑅) ∈ 𝑂)
21 simp2r 1261 . 2 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (((𝑃 𝑄) 𝑅) ∈ 𝑂 ∧ ((𝑆 𝑇) 𝑈) ∈ 𝑂) ∧ ((¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑃)) ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆)) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈))) → ((𝑆 𝑇) 𝑈) ∈ 𝑂)
22 simp31 1270 . 2 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (((𝑃 𝑄) 𝑅) ∈ 𝑂 ∧ ((𝑆 𝑇) 𝑈) ∈ 𝑂) ∧ ((¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑃)) ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆)) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈))) → (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑃)))
23 simp32 1271 . 2 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (((𝑃 𝑄) 𝑅) ∈ 𝑂 ∧ ((𝑆 𝑇) 𝑈) ∈ 𝑂) ∧ ((¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑃)) ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆)) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈))) → (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆)))
24 dalawlem.l . . . . 5 = (le‘𝐾)
255, 24, 14latmle1 17436 . . . 4 ((𝐾 ∈ Lat ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ (𝑄 𝑇) ∈ (Base‘𝐾)) → ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑆))
262, 9, 13, 25syl3anc 1494 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (((𝑃 𝑄) 𝑅) ∈ 𝑂 ∧ ((𝑆 𝑇) 𝑈) ∈ 𝑂) ∧ ((¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑃)) ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆)) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈))) → ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑆))
275, 24, 14latmle2 17437 . . . 4 ((𝐾 ∈ Lat ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ (𝑄 𝑇) ∈ (Base‘𝐾)) → ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑇))
282, 9, 13, 27syl3anc 1494 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (((𝑃 𝑄) 𝑅) ∈ 𝑂 ∧ ((𝑆 𝑇) 𝑈) ∈ 𝑂) ∧ ((¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑃)) ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆)) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈))) → ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑇))
29 simp33 1272 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (((𝑃 𝑄) 𝑅) ∈ 𝑂 ∧ ((𝑆 𝑇) 𝑈) ∈ 𝑂) ∧ ((¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑃)) ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆)) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈))) → ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈))
3026, 28, 293jca 1162 . 2 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (((𝑃 𝑄) 𝑅) ∈ 𝑂 ∧ ((𝑆 𝑇) 𝑈) ∈ 𝑂) ∧ ((¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑃)) ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆)) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈))) → (((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑆) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑇) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)))
31 dalawlem.o . . 3 𝑂 = (LPlanes‘𝐾)
32 eqid 2825 . . 3 ((𝑃 𝑄) (𝑆 𝑇)) = ((𝑃 𝑄) (𝑆 𝑇))
33 eqid 2825 . . 3 ((𝑄 𝑅) (𝑇 𝑈)) = ((𝑄 𝑅) (𝑇 𝑈))
34 eqid 2825 . . 3 ((𝑅 𝑃) (𝑈 𝑆)) = ((𝑅 𝑃) (𝑈 𝑆))
355, 24, 6, 7, 14, 31, 32, 33, 34dath2 35807 . 2 ((((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (((𝑃 𝑄) 𝑅) ∈ 𝑂 ∧ ((𝑆 𝑇) 𝑈) ∈ 𝑂) ∧ ((¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑃)) ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆)) ∧ (((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑆) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑇) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)))) → ((𝑃 𝑄) (𝑆 𝑇)) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))))
3617, 18, 19, 20, 21, 22, 23, 30, 35syl323anc 1523 1 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (((𝑃 𝑄) 𝑅) ∈ 𝑂 ∧ ((𝑆 𝑇) 𝑈) ∈ 𝑂) ∧ ((¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑃)) ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆)) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈))) → ((𝑃 𝑄) (𝑆 𝑇)) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 386   ∧ w3a 1111   = wceq 1656   ∈ wcel 2164   class class class wbr 4875  ‘cfv 6127  (class class class)co 6910  Basecbs 16229  lecple 16319  joincjn 17304  meetcmee 17305  Latclat 17405  Atomscatm 35333  HLchlt 35420  LPlanesclpl 35562 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-id 5252  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-proset 17288  df-poset 17306  df-plt 17318  df-lub 17334  df-glb 17335  df-join 17336  df-meet 17337  df-p0 17399  df-p1 17400  df-lat 17406  df-clat 17468  df-oposet 35246  df-ol 35248  df-oml 35249  df-covers 35336  df-ats 35337  df-atl 35368  df-cvlat 35392  df-hlat 35421  df-llines 35568  df-lplanes 35569  df-lvols 35570 This theorem is referenced by:  dalaw  35956
 Copyright terms: Public domain W3C validator