Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme26f2ALTN Structured version   Visualization version   GIF version

Theorem cdleme26f2ALTN 37659
Description: Part of proof of Lemma E in [Crawley] p. 113. cdleme26fALTN 37657 with s and t swapped (this case is not mentioned by them). If s t v, then f(s) fs(t) v. TODO: FIX COMMENT. (Contributed by NM, 1-Feb-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleme26.b 𝐵 = (Base‘𝐾)
cdleme26.l = (le‘𝐾)
cdleme26.j = (join‘𝐾)
cdleme26.m = (meet‘𝐾)
cdleme26.a 𝐴 = (Atoms‘𝐾)
cdleme26.h 𝐻 = (LHyp‘𝐾)
cdleme26f2.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme26f2.f 𝐺 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
cdleme26f2.n 𝑂 = ((𝑃 𝑄) (𝐺 ((𝑇 𝑠) 𝑊)))
cdleme26f2.e 𝐸 = (𝑢𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ ¬ 𝑠 (𝑃 𝑄)) → 𝑢 = 𝑂))
Assertion
Ref Expression
cdleme26f2ALTN ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝑄𝑇 (𝑃 𝑄)) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((¬ 𝑠 𝑊 ∧ ¬ 𝑠 (𝑃 𝑄)) ∧ (𝑠𝑇𝑠 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐺 (𝐸 𝑉))
Distinct variable groups:   𝑢,𝑠,𝐴   𝐵,𝑠,𝑢   𝐻,𝑠   ,𝑠,𝑢   𝐾,𝑠   ,𝑠,𝑢   ,𝑠,𝑢   𝑢,𝑂   𝑃,𝑠,𝑢   𝑄,𝑠,𝑢   𝑇,𝑠,𝑢   𝑈,𝑠,𝑢   𝑊,𝑠,𝑢
Allowed substitution hints:   𝐸(𝑢,𝑠)   𝐺(𝑢,𝑠)   𝐻(𝑢)   𝐾(𝑢)   𝑂(𝑠)   𝑉(𝑢,𝑠)

Proof of Theorem cdleme26f2ALTN
StepHypRef Expression
1 simp11 1200 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝑄𝑇 (𝑃 𝑄)) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((¬ 𝑠 𝑊 ∧ ¬ 𝑠 (𝑃 𝑄)) ∧ (𝑠𝑇𝑠 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp23 1205 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝑄𝑇 (𝑃 𝑄)) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((¬ 𝑠 𝑊 ∧ ¬ 𝑠 (𝑃 𝑄)) ∧ (𝑠𝑇𝑠 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → (𝑇𝐴 ∧ ¬ 𝑇 𝑊))
3 simp31r 1294 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝑄𝑇 (𝑃 𝑄)) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((¬ 𝑠 𝑊 ∧ ¬ 𝑠 (𝑃 𝑄)) ∧ (𝑠𝑇𝑠 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → ¬ 𝑠 (𝑃 𝑄))
4 simp12r 1284 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝑄𝑇 (𝑃 𝑄)) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((¬ 𝑠 𝑊 ∧ ¬ 𝑠 (𝑃 𝑄)) ∧ (𝑠𝑇𝑠 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑇 (𝑃 𝑄))
5 simp12l 1283 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝑄𝑇 (𝑃 𝑄)) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((¬ 𝑠 𝑊 ∧ ¬ 𝑠 (𝑃 𝑄)) ∧ (𝑠𝑇𝑠 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑃𝑄)
63, 4, 53jca 1125 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝑄𝑇 (𝑃 𝑄)) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((¬ 𝑠 𝑊 ∧ ¬ 𝑠 (𝑃 𝑄)) ∧ (𝑠𝑇𝑠 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → (¬ 𝑠 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄) ∧ 𝑃𝑄))
7 simp21 1203 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝑄𝑇 (𝑃 𝑄)) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((¬ 𝑠 𝑊 ∧ ¬ 𝑠 (𝑃 𝑄)) ∧ (𝑠𝑇𝑠 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
8 simp22 1204 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝑄𝑇 (𝑃 𝑄)) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((¬ 𝑠 𝑊 ∧ ¬ 𝑠 (𝑃 𝑄)) ∧ (𝑠𝑇𝑠 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
9 simp13 1202 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝑄𝑇 (𝑃 𝑄)) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((¬ 𝑠 𝑊 ∧ ¬ 𝑠 (𝑃 𝑄)) ∧ (𝑠𝑇𝑠 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → (𝑠𝐴 ∧ ¬ 𝑠 𝑊))
10 simp32 1207 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝑄𝑇 (𝑃 𝑄)) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((¬ 𝑠 𝑊 ∧ ¬ 𝑠 (𝑃 𝑄)) ∧ (𝑠𝑇𝑠 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → (𝑠𝑇𝑠 (𝑇 𝑉)))
11 simp33 1208 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝑄𝑇 (𝑃 𝑄)) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((¬ 𝑠 𝑊 ∧ ¬ 𝑠 (𝑃 𝑄)) ∧ (𝑠𝑇𝑠 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → (𝑉𝐴𝑉 𝑊))
12 cdleme26.l . . . 4 = (le‘𝐾)
13 cdleme26.j . . . 4 = (join‘𝐾)
14 cdleme26.m . . . 4 = (meet‘𝐾)
15 cdleme26.a . . . 4 𝐴 = (Atoms‘𝐾)
16 cdleme26.h . . . 4 𝐻 = (LHyp‘𝐾)
17 cdleme26f2.u . . . 4 𝑈 = ((𝑃 𝑄) 𝑊)
18 cdleme26f2.f . . . 4 𝐺 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
19 cdleme26f2.n . . . 4 𝑂 = ((𝑃 𝑄) (𝐺 ((𝑇 𝑠) 𝑊)))
2012, 13, 14, 15, 16, 17, 18, 19cdleme22f2 37642 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (¬ 𝑠 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠𝑇𝑠 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐺 (𝑂 𝑉))
211, 2, 6, 7, 8, 9, 10, 11, 20syl323anc 1397 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝑄𝑇 (𝑃 𝑄)) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((¬ 𝑠 𝑊 ∧ ¬ 𝑠 (𝑃 𝑄)) ∧ (𝑠𝑇𝑠 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐺 (𝑂 𝑉))
22 simp23l 1291 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝑄𝑇 (𝑃 𝑄)) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((¬ 𝑠 𝑊 ∧ ¬ 𝑠 (𝑃 𝑄)) ∧ (𝑠𝑇𝑠 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑇𝐴)
23 simp23r 1292 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝑄𝑇 (𝑃 𝑄)) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((¬ 𝑠 𝑊 ∧ ¬ 𝑠 (𝑃 𝑄)) ∧ (𝑠𝑇𝑠 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → ¬ 𝑇 𝑊)
24 cdleme26.b . . . . . 6 𝐵 = (Base‘𝐾)
25 cdleme26f2.e . . . . . 6 𝐸 = (𝑢𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ ¬ 𝑠 (𝑃 𝑄)) → 𝑢 = 𝑂))
2624, 12, 13, 14, 15, 16, 17, 18, 19, 25cdleme25cl 37652 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑇 (𝑃 𝑄))) → 𝐸𝐵)
271, 7, 8, 22, 23, 5, 4, 26syl322anc 1395 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝑄𝑇 (𝑃 𝑄)) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((¬ 𝑠 𝑊 ∧ ¬ 𝑠 (𝑃 𝑄)) ∧ (𝑠𝑇𝑠 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐸𝐵)
28 simp13l 1285 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝑄𝑇 (𝑃 𝑄)) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((¬ 𝑠 𝑊 ∧ ¬ 𝑠 (𝑃 𝑄)) ∧ (𝑠𝑇𝑠 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑠𝐴)
29 simp31 1206 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝑄𝑇 (𝑃 𝑄)) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((¬ 𝑠 𝑊 ∧ ¬ 𝑠 (𝑃 𝑄)) ∧ (𝑠𝑇𝑠 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → (¬ 𝑠 𝑊 ∧ ¬ 𝑠 (𝑃 𝑄)))
3024fvexi 6663 . . . . 5 𝐵 ∈ V
3130, 25riotasv 36254 . . . 4 ((𝐸𝐵𝑠𝐴 ∧ (¬ 𝑠 𝑊 ∧ ¬ 𝑠 (𝑃 𝑄))) → 𝐸 = 𝑂)
3227, 28, 29, 31syl3anc 1368 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝑄𝑇 (𝑃 𝑄)) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((¬ 𝑠 𝑊 ∧ ¬ 𝑠 (𝑃 𝑄)) ∧ (𝑠𝑇𝑠 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐸 = 𝑂)
3332oveq1d 7154 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝑄𝑇 (𝑃 𝑄)) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((¬ 𝑠 𝑊 ∧ ¬ 𝑠 (𝑃 𝑄)) ∧ (𝑠𝑇𝑠 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → (𝐸 𝑉) = (𝑂 𝑉))
3421, 33breqtrrd 5061 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝑄𝑇 (𝑃 𝑄)) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((¬ 𝑠 𝑊 ∧ ¬ 𝑠 (𝑃 𝑄)) ∧ (𝑠𝑇𝑠 (𝑇 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐺 (𝐸 𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2112  wne 2990  wral 3109   class class class wbr 5033  cfv 6328  crio 7096  (class class class)co 7139  Basecbs 16479  lecple 16568  joincjn 17550  meetcmee 17551  Atomscatm 36558  HLchlt 36645  LHypclh 37279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-riotaBAD 36248
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-1st 7675  df-2nd 7676  df-undef 7926  df-proset 17534  df-poset 17552  df-plt 17564  df-lub 17580  df-glb 17581  df-join 17582  df-meet 17583  df-p0 17645  df-p1 17646  df-lat 17652  df-clat 17714  df-oposet 36471  df-ol 36473  df-oml 36474  df-covers 36561  df-ats 36562  df-atl 36593  df-cvlat 36617  df-hlat 36646  df-llines 36793  df-lplanes 36794  df-lvols 36795  df-lines 36796  df-psubsp 36798  df-pmap 36799  df-padd 37091  df-lhyp 37283
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator