Proof of Theorem cdleme26f2ALTN
Step | Hyp | Ref
| Expression |
1 | | simp11 1201 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ≠ 𝑄 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) ∧ ((¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑠 ≠ 𝑇 ∧ 𝑠 ≤ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
2 | | simp23 1206 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ≠ 𝑄 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) ∧ ((¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑠 ≠ 𝑇 ∧ 𝑠 ≤ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) |
3 | | simp31r 1295 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ≠ 𝑄 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) ∧ ((¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑠 ≠ 𝑇 ∧ 𝑠 ≤ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)) |
4 | | simp12r 1285 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ≠ 𝑄 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) ∧ ((¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑠 ≠ 𝑇 ∧ 𝑠 ≤ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → 𝑇 ≤ (𝑃 ∨ 𝑄)) |
5 | | simp12l 1284 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ≠ 𝑄 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) ∧ ((¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑠 ≠ 𝑇 ∧ 𝑠 ≤ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → 𝑃 ≠ 𝑄) |
6 | 3, 4, 5 | 3jca 1126 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ≠ 𝑄 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) ∧ ((¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑠 ≠ 𝑇 ∧ 𝑠 ≤ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → (¬ 𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄)) |
7 | | simp21 1204 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ≠ 𝑄 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) ∧ ((¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑠 ≠ 𝑇 ∧ 𝑠 ≤ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
8 | | simp22 1205 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ≠ 𝑄 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) ∧ ((¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑠 ≠ 𝑇 ∧ 𝑠 ≤ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
9 | | simp13 1203 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ≠ 𝑄 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) ∧ ((¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑠 ≠ 𝑇 ∧ 𝑠 ≤ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) |
10 | | simp32 1208 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ≠ 𝑄 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) ∧ ((¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑠 ≠ 𝑇 ∧ 𝑠 ≤ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → (𝑠 ≠ 𝑇 ∧ 𝑠 ≤ (𝑇 ∨ 𝑉))) |
11 | | simp33 1209 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ≠ 𝑄 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) ∧ ((¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑠 ≠ 𝑇 ∧ 𝑠 ≤ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) |
12 | | cdleme26.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
13 | | cdleme26.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
14 | | cdleme26.m |
. . . 4
⊢ ∧ =
(meet‘𝐾) |
15 | | cdleme26.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
16 | | cdleme26.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
17 | | cdleme26f2.u |
. . . 4
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
18 | | cdleme26f2.f |
. . . 4
⊢ 𝐺 = ((𝑠 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ 𝑊))) |
19 | | cdleme26f2.n |
. . . 4
⊢ 𝑂 = ((𝑃 ∨ 𝑄) ∧ (𝐺 ∨ ((𝑇 ∨ 𝑠) ∧ 𝑊))) |
20 | 12, 13, 14, 15, 16, 17, 18, 19 | cdleme22f2 38288 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (¬ 𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑠 ≠ 𝑇 ∧ 𝑠 ≤ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → 𝐺 ≤ (𝑂 ∨ 𝑉)) |
21 | 1, 2, 6, 7, 8, 9, 10, 11, 20 | syl323anc 1398 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ≠ 𝑄 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) ∧ ((¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑠 ≠ 𝑇 ∧ 𝑠 ≤ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → 𝐺 ≤ (𝑂 ∨ 𝑉)) |
22 | | simp23l 1292 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ≠ 𝑄 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) ∧ ((¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑠 ≠ 𝑇 ∧ 𝑠 ≤ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → 𝑇 ∈ 𝐴) |
23 | | simp23r 1293 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ≠ 𝑄 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) ∧ ((¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑠 ≠ 𝑇 ∧ 𝑠 ≤ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → ¬ 𝑇 ≤ 𝑊) |
24 | | cdleme26.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐾) |
25 | | cdleme26f2.e |
. . . . . 6
⊢ 𝐸 = (℩𝑢 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = 𝑂)) |
26 | 24, 12, 13, 14, 15, 16, 17, 18, 19, 25 | cdleme25cl 38298 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄))) → 𝐸 ∈ 𝐵) |
27 | 1, 7, 8, 22, 23, 5, 4, 26 | syl322anc 1396 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ≠ 𝑄 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) ∧ ((¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑠 ≠ 𝑇 ∧ 𝑠 ≤ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → 𝐸 ∈ 𝐵) |
28 | | simp13l 1286 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ≠ 𝑄 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) ∧ ((¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑠 ≠ 𝑇 ∧ 𝑠 ≤ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → 𝑠 ∈ 𝐴) |
29 | | simp31 1207 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ≠ 𝑄 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) ∧ ((¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑠 ≠ 𝑇 ∧ 𝑠 ≤ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → (¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄))) |
30 | 24 | fvexi 6770 |
. . . . 5
⊢ 𝐵 ∈ V |
31 | 30, 25 | riotasv 36900 |
. . . 4
⊢ ((𝐸 ∈ 𝐵 ∧ 𝑠 ∈ 𝐴 ∧ (¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄))) → 𝐸 = 𝑂) |
32 | 27, 28, 29, 31 | syl3anc 1369 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ≠ 𝑄 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) ∧ ((¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑠 ≠ 𝑇 ∧ 𝑠 ≤ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → 𝐸 = 𝑂) |
33 | 32 | oveq1d 7270 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ≠ 𝑄 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) ∧ ((¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑠 ≠ 𝑇 ∧ 𝑠 ≤ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → (𝐸 ∨ 𝑉) = (𝑂 ∨ 𝑉)) |
34 | 21, 33 | breqtrrd 5098 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ≠ 𝑄 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) ∧ ((¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑠 ≠ 𝑇 ∧ 𝑠 ≤ (𝑇 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → 𝐺 ≤ (𝐸 ∨ 𝑉)) |