MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzofzim Structured version   Visualization version   GIF version

Theorem fzofzim 13679
Description: If a nonnegative integer in a finite interval of integers is not the upper bound of the interval, it is contained in the corresponding half-open integer range. (Contributed by Alexander van der Vekens, 15-Jun-2018.)
Assertion
Ref Expression
fzofzim ((𝐾𝑀𝐾 ∈ (0...𝑀)) → 𝐾 ∈ (0..^𝑀))

Proof of Theorem fzofzim
StepHypRef Expression
1 elfz2nn0 13592 . . . 4 (𝐾 ∈ (0...𝑀) ↔ (𝐾 ∈ ℕ0𝑀 ∈ ℕ0𝐾𝑀))
2 simpl1 1192 . . . . . 6 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0𝐾𝑀) ∧ 𝐾𝑀) → 𝐾 ∈ ℕ0)
3 necom 2995 . . . . . . . . 9 (𝐾𝑀𝑀𝐾)
4 nn0re 12481 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
5 nn0re 12481 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
6 ltlen 11315 . . . . . . . . . . . . 13 ((𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝐾 < 𝑀 ↔ (𝐾𝑀𝑀𝐾)))
74, 5, 6syl2an 597 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝐾 < 𝑀 ↔ (𝐾𝑀𝑀𝐾)))
87bicomd 222 . . . . . . . . . . 11 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → ((𝐾𝑀𝑀𝐾) ↔ 𝐾 < 𝑀))
9 elnn0z 12571 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ0 ↔ (𝐾 ∈ ℤ ∧ 0 ≤ 𝐾))
10 0red 11217 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 0 ∈ ℝ)
11 zre 12562 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
1211adantr 482 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 𝐾 ∈ ℝ)
135adantl 483 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 𝑀 ∈ ℝ)
14 lelttr 11304 . . . . . . . . . . . . . . . . 17 ((0 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((0 ≤ 𝐾𝐾 < 𝑀) → 0 < 𝑀))
1510, 12, 13, 14syl3anc 1372 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((0 ≤ 𝐾𝐾 < 𝑀) → 0 < 𝑀))
16 nn0z 12583 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℕ0𝑀 ∈ ℤ)
17 elnnz 12568 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℕ ↔ (𝑀 ∈ ℤ ∧ 0 < 𝑀))
1817simplbi2 502 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℤ → (0 < 𝑀𝑀 ∈ ℕ))
1916, 18syl 17 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ0 → (0 < 𝑀𝑀 ∈ ℕ))
2019adantl 483 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (0 < 𝑀𝑀 ∈ ℕ))
2115, 20syld 47 . . . . . . . . . . . . . . 15 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((0 ≤ 𝐾𝐾 < 𝑀) → 𝑀 ∈ ℕ))
2221expd 417 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (0 ≤ 𝐾 → (𝐾 < 𝑀𝑀 ∈ ℕ)))
2322impancom 453 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 0 ≤ 𝐾) → (𝑀 ∈ ℕ0 → (𝐾 < 𝑀𝑀 ∈ ℕ)))
249, 23sylbi 216 . . . . . . . . . . . 12 (𝐾 ∈ ℕ0 → (𝑀 ∈ ℕ0 → (𝐾 < 𝑀𝑀 ∈ ℕ)))
2524imp 408 . . . . . . . . . . 11 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝐾 < 𝑀𝑀 ∈ ℕ))
268, 25sylbid 239 . . . . . . . . . 10 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → ((𝐾𝑀𝑀𝐾) → 𝑀 ∈ ℕ))
2726expd 417 . . . . . . . . 9 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝐾𝑀 → (𝑀𝐾𝑀 ∈ ℕ)))
283, 27syl7bi 255 . . . . . . . 8 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝐾𝑀 → (𝐾𝑀𝑀 ∈ ℕ)))
29283impia 1118 . . . . . . 7 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0𝐾𝑀) → (𝐾𝑀𝑀 ∈ ℕ))
3029imp 408 . . . . . 6 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0𝐾𝑀) ∧ 𝐾𝑀) → 𝑀 ∈ ℕ)
318biimpd 228 . . . . . . . . . 10 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → ((𝐾𝑀𝑀𝐾) → 𝐾 < 𝑀))
3231exp4b 432 . . . . . . . . 9 (𝐾 ∈ ℕ0 → (𝑀 ∈ ℕ0 → (𝐾𝑀 → (𝑀𝐾𝐾 < 𝑀))))
33323imp 1112 . . . . . . . 8 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0𝐾𝑀) → (𝑀𝐾𝐾 < 𝑀))
343, 33biimtrid 241 . . . . . . 7 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0𝐾𝑀) → (𝐾𝑀𝐾 < 𝑀))
3534imp 408 . . . . . 6 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0𝐾𝑀) ∧ 𝐾𝑀) → 𝐾 < 𝑀)
362, 30, 353jca 1129 . . . . 5 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0𝐾𝑀) ∧ 𝐾𝑀) → (𝐾 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐾 < 𝑀))
3736ex 414 . . . 4 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0𝐾𝑀) → (𝐾𝑀 → (𝐾 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐾 < 𝑀)))
381, 37sylbi 216 . . 3 (𝐾 ∈ (0...𝑀) → (𝐾𝑀 → (𝐾 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐾 < 𝑀)))
3938impcom 409 . 2 ((𝐾𝑀𝐾 ∈ (0...𝑀)) → (𝐾 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐾 < 𝑀))
40 elfzo0 13673 . 2 (𝐾 ∈ (0..^𝑀) ↔ (𝐾 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐾 < 𝑀))
4139, 40sylibr 233 1 ((𝐾𝑀𝐾 ∈ (0...𝑀)) → 𝐾 ∈ (0..^𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088  wcel 2107  wne 2941   class class class wbr 5149  (class class class)co 7409  cr 11109  0cc0 11110   < clt 11248  cle 11249  cn 12212  0cn0 12472  cz 12558  ...cfz 13484  ..^cfzo 13627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-n0 12473  df-z 12559  df-uz 12823  df-fz 13485  df-fzo 13628
This theorem is referenced by:  cshwshashlem1  17029  clwwisshclwwsn  29269
  Copyright terms: Public domain W3C validator