MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzofzim Structured version   Visualization version   GIF version

Theorem fzofzim 13763
Description: If a nonnegative integer in a finite interval of integers is not the upper bound of the interval, it is contained in the corresponding half-open integer range. (Contributed by Alexander van der Vekens, 15-Jun-2018.)
Assertion
Ref Expression
fzofzim ((𝐾𝑀𝐾 ∈ (0...𝑀)) → 𝐾 ∈ (0..^𝑀))

Proof of Theorem fzofzim
StepHypRef Expression
1 elfz2nn0 13675 . . . 4 (𝐾 ∈ (0...𝑀) ↔ (𝐾 ∈ ℕ0𝑀 ∈ ℕ0𝐾𝑀))
2 simpl1 1191 . . . . . 6 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0𝐾𝑀) ∧ 𝐾𝑀) → 𝐾 ∈ ℕ0)
3 necom 3000 . . . . . . . . 9 (𝐾𝑀𝑀𝐾)
4 nn0re 12562 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
5 nn0re 12562 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
6 ltlen 11391 . . . . . . . . . . . . 13 ((𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝐾 < 𝑀 ↔ (𝐾𝑀𝑀𝐾)))
74, 5, 6syl2an 595 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝐾 < 𝑀 ↔ (𝐾𝑀𝑀𝐾)))
87bicomd 223 . . . . . . . . . . 11 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → ((𝐾𝑀𝑀𝐾) ↔ 𝐾 < 𝑀))
9 elnn0z 12652 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ0 ↔ (𝐾 ∈ ℤ ∧ 0 ≤ 𝐾))
10 0red 11293 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 0 ∈ ℝ)
11 zre 12643 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
1211adantr 480 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 𝐾 ∈ ℝ)
135adantl 481 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 𝑀 ∈ ℝ)
14 lelttr 11380 . . . . . . . . . . . . . . . . 17 ((0 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((0 ≤ 𝐾𝐾 < 𝑀) → 0 < 𝑀))
1510, 12, 13, 14syl3anc 1371 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((0 ≤ 𝐾𝐾 < 𝑀) → 0 < 𝑀))
16 nn0z 12664 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℕ0𝑀 ∈ ℤ)
17 elnnz 12649 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℕ ↔ (𝑀 ∈ ℤ ∧ 0 < 𝑀))
1817simplbi2 500 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℤ → (0 < 𝑀𝑀 ∈ ℕ))
1916, 18syl 17 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ0 → (0 < 𝑀𝑀 ∈ ℕ))
2019adantl 481 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (0 < 𝑀𝑀 ∈ ℕ))
2115, 20syld 47 . . . . . . . . . . . . . . 15 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((0 ≤ 𝐾𝐾 < 𝑀) → 𝑀 ∈ ℕ))
2221expd 415 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (0 ≤ 𝐾 → (𝐾 < 𝑀𝑀 ∈ ℕ)))
2322impancom 451 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 0 ≤ 𝐾) → (𝑀 ∈ ℕ0 → (𝐾 < 𝑀𝑀 ∈ ℕ)))
249, 23sylbi 217 . . . . . . . . . . . 12 (𝐾 ∈ ℕ0 → (𝑀 ∈ ℕ0 → (𝐾 < 𝑀𝑀 ∈ ℕ)))
2524imp 406 . . . . . . . . . . 11 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝐾 < 𝑀𝑀 ∈ ℕ))
268, 25sylbid 240 . . . . . . . . . 10 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → ((𝐾𝑀𝑀𝐾) → 𝑀 ∈ ℕ))
2726expd 415 . . . . . . . . 9 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝐾𝑀 → (𝑀𝐾𝑀 ∈ ℕ)))
283, 27syl7bi 255 . . . . . . . 8 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝐾𝑀 → (𝐾𝑀𝑀 ∈ ℕ)))
29283impia 1117 . . . . . . 7 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0𝐾𝑀) → (𝐾𝑀𝑀 ∈ ℕ))
3029imp 406 . . . . . 6 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0𝐾𝑀) ∧ 𝐾𝑀) → 𝑀 ∈ ℕ)
318biimpd 229 . . . . . . . . . 10 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → ((𝐾𝑀𝑀𝐾) → 𝐾 < 𝑀))
3231exp4b 430 . . . . . . . . 9 (𝐾 ∈ ℕ0 → (𝑀 ∈ ℕ0 → (𝐾𝑀 → (𝑀𝐾𝐾 < 𝑀))))
33323imp 1111 . . . . . . . 8 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0𝐾𝑀) → (𝑀𝐾𝐾 < 𝑀))
343, 33biimtrid 242 . . . . . . 7 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0𝐾𝑀) → (𝐾𝑀𝐾 < 𝑀))
3534imp 406 . . . . . 6 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0𝐾𝑀) ∧ 𝐾𝑀) → 𝐾 < 𝑀)
362, 30, 353jca 1128 . . . . 5 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0𝐾𝑀) ∧ 𝐾𝑀) → (𝐾 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐾 < 𝑀))
3736ex 412 . . . 4 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0𝐾𝑀) → (𝐾𝑀 → (𝐾 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐾 < 𝑀)))
381, 37sylbi 217 . . 3 (𝐾 ∈ (0...𝑀) → (𝐾𝑀 → (𝐾 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐾 < 𝑀)))
3938impcom 407 . 2 ((𝐾𝑀𝐾 ∈ (0...𝑀)) → (𝐾 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐾 < 𝑀))
40 elfzo0 13757 . 2 (𝐾 ∈ (0..^𝑀) ↔ (𝐾 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐾 < 𝑀))
4139, 40sylibr 234 1 ((𝐾𝑀𝐾 ∈ (0...𝑀)) → 𝐾 ∈ (0..^𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087  wcel 2108  wne 2946   class class class wbr 5166  (class class class)co 7448  cr 11183  0cc0 11184   < clt 11324  cle 11325  cn 12293  0cn0 12553  cz 12639  ...cfz 13567  ..^cfzo 13711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712
This theorem is referenced by:  cshwshashlem1  17143  clwwisshclwwsn  30048
  Copyright terms: Public domain W3C validator