Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gruen | Structured version Visualization version GIF version |
Description: A Grothendieck universe contains all subsets of itself that are equipotent to an element of the universe. (Contributed by Mario Carneiro, 9-Jun-2013.) |
Ref | Expression |
---|---|
gruen | ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ⊆ 𝑈 ∧ (𝐵 ∈ 𝑈 ∧ 𝐵 ≈ 𝐴)) → 𝐴 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bren 8743 | . . . . 5 ⊢ (𝐵 ≈ 𝐴 ↔ ∃𝑦 𝑦:𝐵–1-1-onto→𝐴) | |
2 | f1ofo 6723 | . . . . . . . . 9 ⊢ (𝑦:𝐵–1-1-onto→𝐴 → 𝑦:𝐵–onto→𝐴) | |
3 | simp3l 1200 | . . . . . . . . . . . . 13 ⊢ ((𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈 ∧ (𝑦:𝐵–onto→𝐴 ∧ 𝐴 ⊆ 𝑈)) → 𝑦:𝐵–onto→𝐴) | |
4 | forn 6691 | . . . . . . . . . . . . 13 ⊢ (𝑦:𝐵–onto→𝐴 → ran 𝑦 = 𝐴) | |
5 | 3, 4 | syl 17 | . . . . . . . . . . . 12 ⊢ ((𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈 ∧ (𝑦:𝐵–onto→𝐴 ∧ 𝐴 ⊆ 𝑈)) → ran 𝑦 = 𝐴) |
6 | fof 6688 | . . . . . . . . . . . . . 14 ⊢ (𝑦:𝐵–onto→𝐴 → 𝑦:𝐵⟶𝐴) | |
7 | fss 6617 | . . . . . . . . . . . . . 14 ⊢ ((𝑦:𝐵⟶𝐴 ∧ 𝐴 ⊆ 𝑈) → 𝑦:𝐵⟶𝑈) | |
8 | 6, 7 | sylan 580 | . . . . . . . . . . . . 13 ⊢ ((𝑦:𝐵–onto→𝐴 ∧ 𝐴 ⊆ 𝑈) → 𝑦:𝐵⟶𝑈) |
9 | grurn 10557 | . . . . . . . . . . . . 13 ⊢ ((𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈 ∧ 𝑦:𝐵⟶𝑈) → ran 𝑦 ∈ 𝑈) | |
10 | 8, 9 | syl3an3 1164 | . . . . . . . . . . . 12 ⊢ ((𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈 ∧ (𝑦:𝐵–onto→𝐴 ∧ 𝐴 ⊆ 𝑈)) → ran 𝑦 ∈ 𝑈) |
11 | 5, 10 | eqeltrrd 2840 | . . . . . . . . . . 11 ⊢ ((𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈 ∧ (𝑦:𝐵–onto→𝐴 ∧ 𝐴 ⊆ 𝑈)) → 𝐴 ∈ 𝑈) |
12 | 11 | 3expia 1120 | . . . . . . . . . 10 ⊢ ((𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈) → ((𝑦:𝐵–onto→𝐴 ∧ 𝐴 ⊆ 𝑈) → 𝐴 ∈ 𝑈)) |
13 | 12 | expd 416 | . . . . . . . . 9 ⊢ ((𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈) → (𝑦:𝐵–onto→𝐴 → (𝐴 ⊆ 𝑈 → 𝐴 ∈ 𝑈))) |
14 | 2, 13 | syl5 34 | . . . . . . . 8 ⊢ ((𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈) → (𝑦:𝐵–1-1-onto→𝐴 → (𝐴 ⊆ 𝑈 → 𝐴 ∈ 𝑈))) |
15 | 14 | exlimdv 1936 | . . . . . . 7 ⊢ ((𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈) → (∃𝑦 𝑦:𝐵–1-1-onto→𝐴 → (𝐴 ⊆ 𝑈 → 𝐴 ∈ 𝑈))) |
16 | 15 | com3r 87 | . . . . . 6 ⊢ (𝐴 ⊆ 𝑈 → ((𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈) → (∃𝑦 𝑦:𝐵–1-1-onto→𝐴 → 𝐴 ∈ 𝑈))) |
17 | 16 | expdimp 453 | . . . . 5 ⊢ ((𝐴 ⊆ 𝑈 ∧ 𝑈 ∈ Univ) → (𝐵 ∈ 𝑈 → (∃𝑦 𝑦:𝐵–1-1-onto→𝐴 → 𝐴 ∈ 𝑈))) |
18 | 1, 17 | syl7bi 254 | . . . 4 ⊢ ((𝐴 ⊆ 𝑈 ∧ 𝑈 ∈ Univ) → (𝐵 ∈ 𝑈 → (𝐵 ≈ 𝐴 → 𝐴 ∈ 𝑈))) |
19 | 18 | impd 411 | . . 3 ⊢ ((𝐴 ⊆ 𝑈 ∧ 𝑈 ∈ Univ) → ((𝐵 ∈ 𝑈 ∧ 𝐵 ≈ 𝐴) → 𝐴 ∈ 𝑈)) |
20 | 19 | ancoms 459 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ⊆ 𝑈) → ((𝐵 ∈ 𝑈 ∧ 𝐵 ≈ 𝐴) → 𝐴 ∈ 𝑈)) |
21 | 20 | 3impia 1116 | 1 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ⊆ 𝑈 ∧ (𝐵 ∈ 𝑈 ∧ 𝐵 ≈ 𝐴)) → 𝐴 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ⊆ wss 3887 class class class wbr 5074 ran crn 5590 ⟶wf 6429 –onto→wfo 6431 –1-1-onto→wf1o 6432 ≈ cen 8730 Univcgru 10546 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-tr 5192 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-map 8617 df-en 8734 df-gru 10547 |
This theorem is referenced by: grudomon 10573 gruina 10574 |
Copyright terms: Public domain | W3C validator |