![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gruen | Structured version Visualization version GIF version |
Description: A Grothendieck universe contains all subsets of itself that are equipotent to an element of the universe. (Contributed by Mario Carneiro, 9-Jun-2013.) |
Ref | Expression |
---|---|
gruen | ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ⊆ 𝑈 ∧ (𝐵 ∈ 𝑈 ∧ 𝐵 ≈ 𝐴)) → 𝐴 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bren 9013 | . . . . 5 ⊢ (𝐵 ≈ 𝐴 ↔ ∃𝑦 𝑦:𝐵–1-1-onto→𝐴) | |
2 | f1ofo 6869 | . . . . . . . . 9 ⊢ (𝑦:𝐵–1-1-onto→𝐴 → 𝑦:𝐵–onto→𝐴) | |
3 | simp3l 1201 | . . . . . . . . . . . . 13 ⊢ ((𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈 ∧ (𝑦:𝐵–onto→𝐴 ∧ 𝐴 ⊆ 𝑈)) → 𝑦:𝐵–onto→𝐴) | |
4 | forn 6837 | . . . . . . . . . . . . 13 ⊢ (𝑦:𝐵–onto→𝐴 → ran 𝑦 = 𝐴) | |
5 | 3, 4 | syl 17 | . . . . . . . . . . . 12 ⊢ ((𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈 ∧ (𝑦:𝐵–onto→𝐴 ∧ 𝐴 ⊆ 𝑈)) → ran 𝑦 = 𝐴) |
6 | fof 6834 | . . . . . . . . . . . . . 14 ⊢ (𝑦:𝐵–onto→𝐴 → 𝑦:𝐵⟶𝐴) | |
7 | fss 6763 | . . . . . . . . . . . . . 14 ⊢ ((𝑦:𝐵⟶𝐴 ∧ 𝐴 ⊆ 𝑈) → 𝑦:𝐵⟶𝑈) | |
8 | 6, 7 | sylan 579 | . . . . . . . . . . . . 13 ⊢ ((𝑦:𝐵–onto→𝐴 ∧ 𝐴 ⊆ 𝑈) → 𝑦:𝐵⟶𝑈) |
9 | grurn 10870 | . . . . . . . . . . . . 13 ⊢ ((𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈 ∧ 𝑦:𝐵⟶𝑈) → ran 𝑦 ∈ 𝑈) | |
10 | 8, 9 | syl3an3 1165 | . . . . . . . . . . . 12 ⊢ ((𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈 ∧ (𝑦:𝐵–onto→𝐴 ∧ 𝐴 ⊆ 𝑈)) → ran 𝑦 ∈ 𝑈) |
11 | 5, 10 | eqeltrrd 2845 | . . . . . . . . . . 11 ⊢ ((𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈 ∧ (𝑦:𝐵–onto→𝐴 ∧ 𝐴 ⊆ 𝑈)) → 𝐴 ∈ 𝑈) |
12 | 11 | 3expia 1121 | . . . . . . . . . 10 ⊢ ((𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈) → ((𝑦:𝐵–onto→𝐴 ∧ 𝐴 ⊆ 𝑈) → 𝐴 ∈ 𝑈)) |
13 | 12 | expd 415 | . . . . . . . . 9 ⊢ ((𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈) → (𝑦:𝐵–onto→𝐴 → (𝐴 ⊆ 𝑈 → 𝐴 ∈ 𝑈))) |
14 | 2, 13 | syl5 34 | . . . . . . . 8 ⊢ ((𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈) → (𝑦:𝐵–1-1-onto→𝐴 → (𝐴 ⊆ 𝑈 → 𝐴 ∈ 𝑈))) |
15 | 14 | exlimdv 1932 | . . . . . . 7 ⊢ ((𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈) → (∃𝑦 𝑦:𝐵–1-1-onto→𝐴 → (𝐴 ⊆ 𝑈 → 𝐴 ∈ 𝑈))) |
16 | 15 | com3r 87 | . . . . . 6 ⊢ (𝐴 ⊆ 𝑈 → ((𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈) → (∃𝑦 𝑦:𝐵–1-1-onto→𝐴 → 𝐴 ∈ 𝑈))) |
17 | 16 | expdimp 452 | . . . . 5 ⊢ ((𝐴 ⊆ 𝑈 ∧ 𝑈 ∈ Univ) → (𝐵 ∈ 𝑈 → (∃𝑦 𝑦:𝐵–1-1-onto→𝐴 → 𝐴 ∈ 𝑈))) |
18 | 1, 17 | syl7bi 255 | . . . 4 ⊢ ((𝐴 ⊆ 𝑈 ∧ 𝑈 ∈ Univ) → (𝐵 ∈ 𝑈 → (𝐵 ≈ 𝐴 → 𝐴 ∈ 𝑈))) |
19 | 18 | impd 410 | . . 3 ⊢ ((𝐴 ⊆ 𝑈 ∧ 𝑈 ∈ Univ) → ((𝐵 ∈ 𝑈 ∧ 𝐵 ≈ 𝐴) → 𝐴 ∈ 𝑈)) |
20 | 19 | ancoms 458 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ⊆ 𝑈) → ((𝐵 ∈ 𝑈 ∧ 𝐵 ≈ 𝐴) → 𝐴 ∈ 𝑈)) |
21 | 20 | 3impia 1117 | 1 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ⊆ 𝑈 ∧ (𝐵 ∈ 𝑈 ∧ 𝐵 ≈ 𝐴)) → 𝐴 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ⊆ wss 3976 class class class wbr 5166 ran crn 5701 ⟶wf 6569 –onto→wfo 6571 –1-1-onto→wf1o 6572 ≈ cen 9000 Univcgru 10859 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-map 8886 df-en 9004 df-gru 10860 |
This theorem is referenced by: grudomon 10886 gruina 10887 |
Copyright terms: Public domain | W3C validator |