![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gruen | Structured version Visualization version GIF version |
Description: A Grothendieck universe contains all subsets of itself that are equipotent to an element of the universe. (Contributed by Mario Carneiro, 9-Jun-2013.) |
Ref | Expression |
---|---|
gruen | ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ⊆ 𝑈 ∧ (𝐵 ∈ 𝑈 ∧ 𝐵 ≈ 𝐴)) → 𝐴 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bren 8896 | . . . . 5 ⊢ (𝐵 ≈ 𝐴 ↔ ∃𝑦 𝑦:𝐵–1-1-onto→𝐴) | |
2 | f1ofo 6792 | . . . . . . . . 9 ⊢ (𝑦:𝐵–1-1-onto→𝐴 → 𝑦:𝐵–onto→𝐴) | |
3 | simp3l 1202 | . . . . . . . . . . . . 13 ⊢ ((𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈 ∧ (𝑦:𝐵–onto→𝐴 ∧ 𝐴 ⊆ 𝑈)) → 𝑦:𝐵–onto→𝐴) | |
4 | forn 6760 | . . . . . . . . . . . . 13 ⊢ (𝑦:𝐵–onto→𝐴 → ran 𝑦 = 𝐴) | |
5 | 3, 4 | syl 17 | . . . . . . . . . . . 12 ⊢ ((𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈 ∧ (𝑦:𝐵–onto→𝐴 ∧ 𝐴 ⊆ 𝑈)) → ran 𝑦 = 𝐴) |
6 | fof 6757 | . . . . . . . . . . . . . 14 ⊢ (𝑦:𝐵–onto→𝐴 → 𝑦:𝐵⟶𝐴) | |
7 | fss 6686 | . . . . . . . . . . . . . 14 ⊢ ((𝑦:𝐵⟶𝐴 ∧ 𝐴 ⊆ 𝑈) → 𝑦:𝐵⟶𝑈) | |
8 | 6, 7 | sylan 581 | . . . . . . . . . . . . 13 ⊢ ((𝑦:𝐵–onto→𝐴 ∧ 𝐴 ⊆ 𝑈) → 𝑦:𝐵⟶𝑈) |
9 | grurn 10742 | . . . . . . . . . . . . 13 ⊢ ((𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈 ∧ 𝑦:𝐵⟶𝑈) → ran 𝑦 ∈ 𝑈) | |
10 | 8, 9 | syl3an3 1166 | . . . . . . . . . . . 12 ⊢ ((𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈 ∧ (𝑦:𝐵–onto→𝐴 ∧ 𝐴 ⊆ 𝑈)) → ran 𝑦 ∈ 𝑈) |
11 | 5, 10 | eqeltrrd 2835 | . . . . . . . . . . 11 ⊢ ((𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈 ∧ (𝑦:𝐵–onto→𝐴 ∧ 𝐴 ⊆ 𝑈)) → 𝐴 ∈ 𝑈) |
12 | 11 | 3expia 1122 | . . . . . . . . . 10 ⊢ ((𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈) → ((𝑦:𝐵–onto→𝐴 ∧ 𝐴 ⊆ 𝑈) → 𝐴 ∈ 𝑈)) |
13 | 12 | expd 417 | . . . . . . . . 9 ⊢ ((𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈) → (𝑦:𝐵–onto→𝐴 → (𝐴 ⊆ 𝑈 → 𝐴 ∈ 𝑈))) |
14 | 2, 13 | syl5 34 | . . . . . . . 8 ⊢ ((𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈) → (𝑦:𝐵–1-1-onto→𝐴 → (𝐴 ⊆ 𝑈 → 𝐴 ∈ 𝑈))) |
15 | 14 | exlimdv 1937 | . . . . . . 7 ⊢ ((𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈) → (∃𝑦 𝑦:𝐵–1-1-onto→𝐴 → (𝐴 ⊆ 𝑈 → 𝐴 ∈ 𝑈))) |
16 | 15 | com3r 87 | . . . . . 6 ⊢ (𝐴 ⊆ 𝑈 → ((𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈) → (∃𝑦 𝑦:𝐵–1-1-onto→𝐴 → 𝐴 ∈ 𝑈))) |
17 | 16 | expdimp 454 | . . . . 5 ⊢ ((𝐴 ⊆ 𝑈 ∧ 𝑈 ∈ Univ) → (𝐵 ∈ 𝑈 → (∃𝑦 𝑦:𝐵–1-1-onto→𝐴 → 𝐴 ∈ 𝑈))) |
18 | 1, 17 | syl7bi 255 | . . . 4 ⊢ ((𝐴 ⊆ 𝑈 ∧ 𝑈 ∈ Univ) → (𝐵 ∈ 𝑈 → (𝐵 ≈ 𝐴 → 𝐴 ∈ 𝑈))) |
19 | 18 | impd 412 | . . 3 ⊢ ((𝐴 ⊆ 𝑈 ∧ 𝑈 ∈ Univ) → ((𝐵 ∈ 𝑈 ∧ 𝐵 ≈ 𝐴) → 𝐴 ∈ 𝑈)) |
20 | 19 | ancoms 460 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ⊆ 𝑈) → ((𝐵 ∈ 𝑈 ∧ 𝐵 ≈ 𝐴) → 𝐴 ∈ 𝑈)) |
21 | 20 | 3impia 1118 | 1 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ⊆ 𝑈 ∧ (𝐵 ∈ 𝑈 ∧ 𝐵 ≈ 𝐴)) → 𝐴 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∃wex 1782 ∈ wcel 2107 ⊆ wss 3911 class class class wbr 5106 ran crn 5635 ⟶wf 6493 –onto→wfo 6495 –1-1-onto→wf1o 6496 ≈ cen 8883 Univcgru 10731 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-sbc 3741 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-tr 5224 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-ov 7361 df-oprab 7362 df-mpo 7363 df-map 8770 df-en 8887 df-gru 10732 |
This theorem is referenced by: grudomon 10758 gruina 10759 |
Copyright terms: Public domain | W3C validator |