MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gruen Structured version   Visualization version   GIF version

Theorem gruen 10236
Description: A Grothendieck universe contains all subsets of itself that are equipotent to an element of the universe. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
gruen ((𝑈 ∈ Univ ∧ 𝐴𝑈 ∧ (𝐵𝑈𝐵𝐴)) → 𝐴𝑈)

Proof of Theorem gruen
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 bren 8520 . . . . 5 (𝐵𝐴 ↔ ∃𝑦 𝑦:𝐵1-1-onto𝐴)
2 f1ofo 6624 . . . . . . . . 9 (𝑦:𝐵1-1-onto𝐴𝑦:𝐵onto𝐴)
3 simp3l 1197 . . . . . . . . . . . . 13 ((𝑈 ∈ Univ ∧ 𝐵𝑈 ∧ (𝑦:𝐵onto𝐴𝐴𝑈)) → 𝑦:𝐵onto𝐴)
4 forn 6595 . . . . . . . . . . . . 13 (𝑦:𝐵onto𝐴 → ran 𝑦 = 𝐴)
53, 4syl 17 . . . . . . . . . . . 12 ((𝑈 ∈ Univ ∧ 𝐵𝑈 ∧ (𝑦:𝐵onto𝐴𝐴𝑈)) → ran 𝑦 = 𝐴)
6 fof 6592 . . . . . . . . . . . . . 14 (𝑦:𝐵onto𝐴𝑦:𝐵𝐴)
7 fss 6529 . . . . . . . . . . . . . 14 ((𝑦:𝐵𝐴𝐴𝑈) → 𝑦:𝐵𝑈)
86, 7sylan 582 . . . . . . . . . . . . 13 ((𝑦:𝐵onto𝐴𝐴𝑈) → 𝑦:𝐵𝑈)
9 grurn 10225 . . . . . . . . . . . . 13 ((𝑈 ∈ Univ ∧ 𝐵𝑈𝑦:𝐵𝑈) → ran 𝑦𝑈)
108, 9syl3an3 1161 . . . . . . . . . . . 12 ((𝑈 ∈ Univ ∧ 𝐵𝑈 ∧ (𝑦:𝐵onto𝐴𝐴𝑈)) → ran 𝑦𝑈)
115, 10eqeltrrd 2916 . . . . . . . . . . 11 ((𝑈 ∈ Univ ∧ 𝐵𝑈 ∧ (𝑦:𝐵onto𝐴𝐴𝑈)) → 𝐴𝑈)
12113expia 1117 . . . . . . . . . 10 ((𝑈 ∈ Univ ∧ 𝐵𝑈) → ((𝑦:𝐵onto𝐴𝐴𝑈) → 𝐴𝑈))
1312expd 418 . . . . . . . . 9 ((𝑈 ∈ Univ ∧ 𝐵𝑈) → (𝑦:𝐵onto𝐴 → (𝐴𝑈𝐴𝑈)))
142, 13syl5 34 . . . . . . . 8 ((𝑈 ∈ Univ ∧ 𝐵𝑈) → (𝑦:𝐵1-1-onto𝐴 → (𝐴𝑈𝐴𝑈)))
1514exlimdv 1934 . . . . . . 7 ((𝑈 ∈ Univ ∧ 𝐵𝑈) → (∃𝑦 𝑦:𝐵1-1-onto𝐴 → (𝐴𝑈𝐴𝑈)))
1615com3r 87 . . . . . 6 (𝐴𝑈 → ((𝑈 ∈ Univ ∧ 𝐵𝑈) → (∃𝑦 𝑦:𝐵1-1-onto𝐴𝐴𝑈)))
1716expdimp 455 . . . . 5 ((𝐴𝑈𝑈 ∈ Univ) → (𝐵𝑈 → (∃𝑦 𝑦:𝐵1-1-onto𝐴𝐴𝑈)))
181, 17syl7bi 257 . . . 4 ((𝐴𝑈𝑈 ∈ Univ) → (𝐵𝑈 → (𝐵𝐴𝐴𝑈)))
1918impd 413 . . 3 ((𝐴𝑈𝑈 ∈ Univ) → ((𝐵𝑈𝐵𝐴) → 𝐴𝑈))
2019ancoms 461 . 2 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → ((𝐵𝑈𝐵𝐴) → 𝐴𝑈))
21203impia 1113 1 ((𝑈 ∈ Univ ∧ 𝐴𝑈 ∧ (𝐵𝑈𝐵𝐴)) → 𝐴𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wex 1780  wcel 2114  wss 3938   class class class wbr 5068  ran crn 5558  wf 6353  ontowfo 6355  1-1-ontowf1o 6356  cen 8508  Univcgru 10214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-tr 5175  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-map 8410  df-en 8512  df-gru 10215
This theorem is referenced by:  grudomon  10241  gruina  10242
  Copyright terms: Public domain W3C validator