MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gruen Structured version   Visualization version   GIF version

Theorem gruen 10703
Description: A Grothendieck universe contains all subsets of itself that are equipotent to an element of the universe. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
gruen ((𝑈 ∈ Univ ∧ 𝐴𝑈 ∧ (𝐵𝑈𝐵𝐴)) → 𝐴𝑈)

Proof of Theorem gruen
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 bren 8879 . . . . 5 (𝐵𝐴 ↔ ∃𝑦 𝑦:𝐵1-1-onto𝐴)
2 f1ofo 6770 . . . . . . . . 9 (𝑦:𝐵1-1-onto𝐴𝑦:𝐵onto𝐴)
3 simp3l 1202 . . . . . . . . . . . . 13 ((𝑈 ∈ Univ ∧ 𝐵𝑈 ∧ (𝑦:𝐵onto𝐴𝐴𝑈)) → 𝑦:𝐵onto𝐴)
4 forn 6738 . . . . . . . . . . . . 13 (𝑦:𝐵onto𝐴 → ran 𝑦 = 𝐴)
53, 4syl 17 . . . . . . . . . . . 12 ((𝑈 ∈ Univ ∧ 𝐵𝑈 ∧ (𝑦:𝐵onto𝐴𝐴𝑈)) → ran 𝑦 = 𝐴)
6 fof 6735 . . . . . . . . . . . . . 14 (𝑦:𝐵onto𝐴𝑦:𝐵𝐴)
7 fss 6667 . . . . . . . . . . . . . 14 ((𝑦:𝐵𝐴𝐴𝑈) → 𝑦:𝐵𝑈)
86, 7sylan 580 . . . . . . . . . . . . 13 ((𝑦:𝐵onto𝐴𝐴𝑈) → 𝑦:𝐵𝑈)
9 grurn 10692 . . . . . . . . . . . . 13 ((𝑈 ∈ Univ ∧ 𝐵𝑈𝑦:𝐵𝑈) → ran 𝑦𝑈)
108, 9syl3an3 1165 . . . . . . . . . . . 12 ((𝑈 ∈ Univ ∧ 𝐵𝑈 ∧ (𝑦:𝐵onto𝐴𝐴𝑈)) → ran 𝑦𝑈)
115, 10eqeltrrd 2832 . . . . . . . . . . 11 ((𝑈 ∈ Univ ∧ 𝐵𝑈 ∧ (𝑦:𝐵onto𝐴𝐴𝑈)) → 𝐴𝑈)
12113expia 1121 . . . . . . . . . 10 ((𝑈 ∈ Univ ∧ 𝐵𝑈) → ((𝑦:𝐵onto𝐴𝐴𝑈) → 𝐴𝑈))
1312expd 415 . . . . . . . . 9 ((𝑈 ∈ Univ ∧ 𝐵𝑈) → (𝑦:𝐵onto𝐴 → (𝐴𝑈𝐴𝑈)))
142, 13syl5 34 . . . . . . . 8 ((𝑈 ∈ Univ ∧ 𝐵𝑈) → (𝑦:𝐵1-1-onto𝐴 → (𝐴𝑈𝐴𝑈)))
1514exlimdv 1934 . . . . . . 7 ((𝑈 ∈ Univ ∧ 𝐵𝑈) → (∃𝑦 𝑦:𝐵1-1-onto𝐴 → (𝐴𝑈𝐴𝑈)))
1615com3r 87 . . . . . 6 (𝐴𝑈 → ((𝑈 ∈ Univ ∧ 𝐵𝑈) → (∃𝑦 𝑦:𝐵1-1-onto𝐴𝐴𝑈)))
1716expdimp 452 . . . . 5 ((𝐴𝑈𝑈 ∈ Univ) → (𝐵𝑈 → (∃𝑦 𝑦:𝐵1-1-onto𝐴𝐴𝑈)))
181, 17syl7bi 255 . . . 4 ((𝐴𝑈𝑈 ∈ Univ) → (𝐵𝑈 → (𝐵𝐴𝐴𝑈)))
1918impd 410 . . 3 ((𝐴𝑈𝑈 ∈ Univ) → ((𝐵𝑈𝐵𝐴) → 𝐴𝑈))
2019ancoms 458 . 2 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → ((𝐵𝑈𝐵𝐴) → 𝐴𝑈))
21203impia 1117 1 ((𝑈 ∈ Univ ∧ 𝐴𝑈 ∧ (𝐵𝑈𝐵𝐴)) → 𝐴𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  wss 3897   class class class wbr 5089  ran crn 5615  wf 6477  ontowfo 6479  1-1-ontowf1o 6480  cen 8866  Univcgru 10681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-tr 5197  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-map 8752  df-en 8870  df-gru 10682
This theorem is referenced by:  grudomon  10708  gruina  10709
  Copyright terms: Public domain W3C validator