| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gruen | Structured version Visualization version GIF version | ||
| Description: A Grothendieck universe contains all subsets of itself that are equipotent to an element of the universe. (Contributed by Mario Carneiro, 9-Jun-2013.) |
| Ref | Expression |
|---|---|
| gruen | ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ⊆ 𝑈 ∧ (𝐵 ∈ 𝑈 ∧ 𝐵 ≈ 𝐴)) → 𝐴 ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bren 8928 | . . . . 5 ⊢ (𝐵 ≈ 𝐴 ↔ ∃𝑦 𝑦:𝐵–1-1-onto→𝐴) | |
| 2 | f1ofo 6807 | . . . . . . . . 9 ⊢ (𝑦:𝐵–1-1-onto→𝐴 → 𝑦:𝐵–onto→𝐴) | |
| 3 | simp3l 1202 | . . . . . . . . . . . . 13 ⊢ ((𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈 ∧ (𝑦:𝐵–onto→𝐴 ∧ 𝐴 ⊆ 𝑈)) → 𝑦:𝐵–onto→𝐴) | |
| 4 | forn 6775 | . . . . . . . . . . . . 13 ⊢ (𝑦:𝐵–onto→𝐴 → ran 𝑦 = 𝐴) | |
| 5 | 3, 4 | syl 17 | . . . . . . . . . . . 12 ⊢ ((𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈 ∧ (𝑦:𝐵–onto→𝐴 ∧ 𝐴 ⊆ 𝑈)) → ran 𝑦 = 𝐴) |
| 6 | fof 6772 | . . . . . . . . . . . . . 14 ⊢ (𝑦:𝐵–onto→𝐴 → 𝑦:𝐵⟶𝐴) | |
| 7 | fss 6704 | . . . . . . . . . . . . . 14 ⊢ ((𝑦:𝐵⟶𝐴 ∧ 𝐴 ⊆ 𝑈) → 𝑦:𝐵⟶𝑈) | |
| 8 | 6, 7 | sylan 580 | . . . . . . . . . . . . 13 ⊢ ((𝑦:𝐵–onto→𝐴 ∧ 𝐴 ⊆ 𝑈) → 𝑦:𝐵⟶𝑈) |
| 9 | grurn 10754 | . . . . . . . . . . . . 13 ⊢ ((𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈 ∧ 𝑦:𝐵⟶𝑈) → ran 𝑦 ∈ 𝑈) | |
| 10 | 8, 9 | syl3an3 1165 | . . . . . . . . . . . 12 ⊢ ((𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈 ∧ (𝑦:𝐵–onto→𝐴 ∧ 𝐴 ⊆ 𝑈)) → ran 𝑦 ∈ 𝑈) |
| 11 | 5, 10 | eqeltrrd 2829 | . . . . . . . . . . 11 ⊢ ((𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈 ∧ (𝑦:𝐵–onto→𝐴 ∧ 𝐴 ⊆ 𝑈)) → 𝐴 ∈ 𝑈) |
| 12 | 11 | 3expia 1121 | . . . . . . . . . 10 ⊢ ((𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈) → ((𝑦:𝐵–onto→𝐴 ∧ 𝐴 ⊆ 𝑈) → 𝐴 ∈ 𝑈)) |
| 13 | 12 | expd 415 | . . . . . . . . 9 ⊢ ((𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈) → (𝑦:𝐵–onto→𝐴 → (𝐴 ⊆ 𝑈 → 𝐴 ∈ 𝑈))) |
| 14 | 2, 13 | syl5 34 | . . . . . . . 8 ⊢ ((𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈) → (𝑦:𝐵–1-1-onto→𝐴 → (𝐴 ⊆ 𝑈 → 𝐴 ∈ 𝑈))) |
| 15 | 14 | exlimdv 1933 | . . . . . . 7 ⊢ ((𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈) → (∃𝑦 𝑦:𝐵–1-1-onto→𝐴 → (𝐴 ⊆ 𝑈 → 𝐴 ∈ 𝑈))) |
| 16 | 15 | com3r 87 | . . . . . 6 ⊢ (𝐴 ⊆ 𝑈 → ((𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈) → (∃𝑦 𝑦:𝐵–1-1-onto→𝐴 → 𝐴 ∈ 𝑈))) |
| 17 | 16 | expdimp 452 | . . . . 5 ⊢ ((𝐴 ⊆ 𝑈 ∧ 𝑈 ∈ Univ) → (𝐵 ∈ 𝑈 → (∃𝑦 𝑦:𝐵–1-1-onto→𝐴 → 𝐴 ∈ 𝑈))) |
| 18 | 1, 17 | syl7bi 255 | . . . 4 ⊢ ((𝐴 ⊆ 𝑈 ∧ 𝑈 ∈ Univ) → (𝐵 ∈ 𝑈 → (𝐵 ≈ 𝐴 → 𝐴 ∈ 𝑈))) |
| 19 | 18 | impd 410 | . . 3 ⊢ ((𝐴 ⊆ 𝑈 ∧ 𝑈 ∈ Univ) → ((𝐵 ∈ 𝑈 ∧ 𝐵 ≈ 𝐴) → 𝐴 ∈ 𝑈)) |
| 20 | 19 | ancoms 458 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ⊆ 𝑈) → ((𝐵 ∈ 𝑈 ∧ 𝐵 ≈ 𝐴) → 𝐴 ∈ 𝑈)) |
| 21 | 20 | 3impia 1117 | 1 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ⊆ 𝑈 ∧ (𝐵 ∈ 𝑈 ∧ 𝐵 ≈ 𝐴)) → 𝐴 ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ⊆ wss 3914 class class class wbr 5107 ran crn 5639 ⟶wf 6507 –onto→wfo 6509 –1-1-onto→wf1o 6510 ≈ cen 8915 Univcgru 10743 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-tr 5215 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-map 8801 df-en 8919 df-gru 10744 |
| This theorem is referenced by: grudomon 10770 gruina 10771 |
| Copyright terms: Public domain | W3C validator |