MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0lt2 Structured version   Visualization version   GIF version

Theorem nn0lt2 12626
Description: A nonnegative integer less than 2 must be 0 or 1. (Contributed by Alexander van der Vekens, 16-Sep-2018.)
Assertion
Ref Expression
nn0lt2 ((𝑁 ∈ ℕ0𝑁 < 2) → (𝑁 = 0 ∨ 𝑁 = 1))

Proof of Theorem nn0lt2
StepHypRef Expression
1 olc 865 . . 3 (𝑁 = 1 → (𝑁 = 0 ∨ 𝑁 = 1))
21a1d 25 . 2 (𝑁 = 1 → ((𝑁 ∈ ℕ0𝑁 < 2) → (𝑁 = 0 ∨ 𝑁 = 1)))
3 nn0z 12584 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
4 2z 12595 . . . . . . 7 2 ∈ ℤ
5 zltlem1 12616 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 2 ∈ ℤ) → (𝑁 < 2 ↔ 𝑁 ≤ (2 − 1)))
63, 4, 5sylancl 585 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁 < 2 ↔ 𝑁 ≤ (2 − 1)))
7 2m1e1 12339 . . . . . . 7 (2 − 1) = 1
87breq2i 5149 . . . . . 6 (𝑁 ≤ (2 − 1) ↔ 𝑁 ≤ 1)
96, 8bitrdi 287 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 < 2 ↔ 𝑁 ≤ 1))
10 necom 2988 . . . . . 6 (𝑁 ≠ 1 ↔ 1 ≠ 𝑁)
11 nn0re 12482 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
12 1re 11215 . . . . . . . . 9 1 ∈ ℝ
13 ltlen 11316 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑁 < 1 ↔ (𝑁 ≤ 1 ∧ 1 ≠ 𝑁)))
1411, 12, 13sylancl 585 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 < 1 ↔ (𝑁 ≤ 1 ∧ 1 ≠ 𝑁)))
15 nn0lt10b 12625 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (𝑁 < 1 ↔ 𝑁 = 0))
1615biimpa 476 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑁 < 1) → 𝑁 = 0)
1716orcd 870 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑁 < 1) → (𝑁 = 0 ∨ 𝑁 = 1))
1817ex 412 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 < 1 → (𝑁 = 0 ∨ 𝑁 = 1)))
1914, 18sylbird 260 . . . . . . 7 (𝑁 ∈ ℕ0 → ((𝑁 ≤ 1 ∧ 1 ≠ 𝑁) → (𝑁 = 0 ∨ 𝑁 = 1)))
2019expd 415 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁 ≤ 1 → (1 ≠ 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1))))
2110, 20syl7bi 255 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 ≤ 1 → (𝑁 ≠ 1 → (𝑁 = 0 ∨ 𝑁 = 1))))
229, 21sylbid 239 . . . 4 (𝑁 ∈ ℕ0 → (𝑁 < 2 → (𝑁 ≠ 1 → (𝑁 = 0 ∨ 𝑁 = 1))))
2322imp 406 . . 3 ((𝑁 ∈ ℕ0𝑁 < 2) → (𝑁 ≠ 1 → (𝑁 = 0 ∨ 𝑁 = 1)))
2423com12 32 . 2 (𝑁 ≠ 1 → ((𝑁 ∈ ℕ0𝑁 < 2) → (𝑁 = 0 ∨ 𝑁 = 1)))
252, 24pm2.61ine 3019 1 ((𝑁 ∈ ℕ0𝑁 < 2) → (𝑁 = 0 ∨ 𝑁 = 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 844   = wceq 1533  wcel 2098  wne 2934   class class class wbr 5141  (class class class)co 7404  cr 11108  0cc0 11109  1c1 11110   < clt 11249  cle 11250  cmin 11445  2c2 12268  0cn0 12473  cz 12559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7852  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-nn 12214  df-2 12276  df-n0 12474  df-z 12560
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator