| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn0lt2 | Structured version Visualization version GIF version | ||
| Description: A nonnegative integer less than 2 must be 0 or 1. (Contributed by Alexander van der Vekens, 16-Sep-2018.) |
| Ref | Expression |
|---|---|
| nn0lt2 | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 < 2) → (𝑁 = 0 ∨ 𝑁 = 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olc 868 | . . 3 ⊢ (𝑁 = 1 → (𝑁 = 0 ∨ 𝑁 = 1)) | |
| 2 | 1 | a1d 25 | . 2 ⊢ (𝑁 = 1 → ((𝑁 ∈ ℕ0 ∧ 𝑁 < 2) → (𝑁 = 0 ∨ 𝑁 = 1))) |
| 3 | nn0z 12501 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
| 4 | 2z 12512 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
| 5 | zltlem1 12533 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 2 ∈ ℤ) → (𝑁 < 2 ↔ 𝑁 ≤ (2 − 1))) | |
| 6 | 3, 4, 5 | sylancl 586 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 2 ↔ 𝑁 ≤ (2 − 1))) |
| 7 | 2m1e1 12255 | . . . . . . 7 ⊢ (2 − 1) = 1 | |
| 8 | 7 | breq2i 5103 | . . . . . 6 ⊢ (𝑁 ≤ (2 − 1) ↔ 𝑁 ≤ 1) |
| 9 | 6, 8 | bitrdi 287 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 2 ↔ 𝑁 ≤ 1)) |
| 10 | necom 2982 | . . . . . 6 ⊢ (𝑁 ≠ 1 ↔ 1 ≠ 𝑁) | |
| 11 | nn0re 12399 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
| 12 | 1re 11121 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
| 13 | ltlen 11223 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑁 < 1 ↔ (𝑁 ≤ 1 ∧ 1 ≠ 𝑁))) | |
| 14 | 11, 12, 13 | sylancl 586 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 1 ↔ (𝑁 ≤ 1 ∧ 1 ≠ 𝑁))) |
| 15 | nn0lt10b 12543 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 1 ↔ 𝑁 = 0)) | |
| 16 | 15 | biimpa 476 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 < 1) → 𝑁 = 0) |
| 17 | 16 | orcd 873 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 < 1) → (𝑁 = 0 ∨ 𝑁 = 1)) |
| 18 | 17 | ex 412 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 1 → (𝑁 = 0 ∨ 𝑁 = 1))) |
| 19 | 14, 18 | sylbird 260 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 ≤ 1 ∧ 1 ≠ 𝑁) → (𝑁 = 0 ∨ 𝑁 = 1))) |
| 20 | 19 | expd 415 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ≤ 1 → (1 ≠ 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1)))) |
| 21 | 10, 20 | syl7bi 255 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ≤ 1 → (𝑁 ≠ 1 → (𝑁 = 0 ∨ 𝑁 = 1)))) |
| 22 | 9, 21 | sylbid 240 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 2 → (𝑁 ≠ 1 → (𝑁 = 0 ∨ 𝑁 = 1)))) |
| 23 | 22 | imp 406 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 < 2) → (𝑁 ≠ 1 → (𝑁 = 0 ∨ 𝑁 = 1))) |
| 24 | 23 | com12 32 | . 2 ⊢ (𝑁 ≠ 1 → ((𝑁 ∈ ℕ0 ∧ 𝑁 < 2) → (𝑁 = 0 ∨ 𝑁 = 1))) |
| 25 | 2, 24 | pm2.61ine 3012 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 < 2) → (𝑁 = 0 ∨ 𝑁 = 1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 class class class wbr 5095 (class class class)co 7354 ℝcr 11014 0cc0 11015 1c1 11016 < clt 11155 ≤ cle 11156 − cmin 11353 2c2 12189 ℕ0cn0 12390 ℤcz 12477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-2 12197 df-n0 12391 df-z 12478 |
| This theorem is referenced by: 2exple2exp 32835 |
| Copyright terms: Public domain | W3C validator |