MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0lt2 Structured version   Visualization version   GIF version

Theorem nn0lt2 12536
Description: A nonnegative integer less than 2 must be 0 or 1. (Contributed by Alexander van der Vekens, 16-Sep-2018.)
Assertion
Ref Expression
nn0lt2 ((𝑁 ∈ ℕ0𝑁 < 2) → (𝑁 = 0 ∨ 𝑁 = 1))

Proof of Theorem nn0lt2
StepHypRef Expression
1 olc 868 . . 3 (𝑁 = 1 → (𝑁 = 0 ∨ 𝑁 = 1))
21a1d 25 . 2 (𝑁 = 1 → ((𝑁 ∈ ℕ0𝑁 < 2) → (𝑁 = 0 ∨ 𝑁 = 1)))
3 nn0z 12493 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
4 2z 12504 . . . . . . 7 2 ∈ ℤ
5 zltlem1 12525 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 2 ∈ ℤ) → (𝑁 < 2 ↔ 𝑁 ≤ (2 − 1)))
63, 4, 5sylancl 586 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁 < 2 ↔ 𝑁 ≤ (2 − 1)))
7 2m1e1 12246 . . . . . . 7 (2 − 1) = 1
87breq2i 5099 . . . . . 6 (𝑁 ≤ (2 − 1) ↔ 𝑁 ≤ 1)
96, 8bitrdi 287 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 < 2 ↔ 𝑁 ≤ 1))
10 necom 2981 . . . . . 6 (𝑁 ≠ 1 ↔ 1 ≠ 𝑁)
11 nn0re 12390 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
12 1re 11112 . . . . . . . . 9 1 ∈ ℝ
13 ltlen 11214 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑁 < 1 ↔ (𝑁 ≤ 1 ∧ 1 ≠ 𝑁)))
1411, 12, 13sylancl 586 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 < 1 ↔ (𝑁 ≤ 1 ∧ 1 ≠ 𝑁)))
15 nn0lt10b 12535 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (𝑁 < 1 ↔ 𝑁 = 0))
1615biimpa 476 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑁 < 1) → 𝑁 = 0)
1716orcd 873 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑁 < 1) → (𝑁 = 0 ∨ 𝑁 = 1))
1817ex 412 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 < 1 → (𝑁 = 0 ∨ 𝑁 = 1)))
1914, 18sylbird 260 . . . . . . 7 (𝑁 ∈ ℕ0 → ((𝑁 ≤ 1 ∧ 1 ≠ 𝑁) → (𝑁 = 0 ∨ 𝑁 = 1)))
2019expd 415 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁 ≤ 1 → (1 ≠ 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1))))
2110, 20syl7bi 255 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 ≤ 1 → (𝑁 ≠ 1 → (𝑁 = 0 ∨ 𝑁 = 1))))
229, 21sylbid 240 . . . 4 (𝑁 ∈ ℕ0 → (𝑁 < 2 → (𝑁 ≠ 1 → (𝑁 = 0 ∨ 𝑁 = 1))))
2322imp 406 . . 3 ((𝑁 ∈ ℕ0𝑁 < 2) → (𝑁 ≠ 1 → (𝑁 = 0 ∨ 𝑁 = 1)))
2423com12 32 . 2 (𝑁 ≠ 1 → ((𝑁 ∈ ℕ0𝑁 < 2) → (𝑁 = 0 ∨ 𝑁 = 1)))
252, 24pm2.61ine 3011 1 ((𝑁 ∈ ℕ0𝑁 < 2) → (𝑁 = 0 ∨ 𝑁 = 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5091  (class class class)co 7346  cr 11005  0cc0 11006  1c1 11007   < clt 11146  cle 11147  cmin 11344  2c2 12180  0cn0 12381  cz 12468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-n0 12382  df-z 12469
This theorem is referenced by:  2exple2exp  32826
  Copyright terms: Public domain W3C validator