![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nn0lt2 | Structured version Visualization version GIF version |
Description: A nonnegative integer less than 2 must be 0 or 1. (Contributed by Alexander van der Vekens, 16-Sep-2018.) |
Ref | Expression |
---|---|
nn0lt2 | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 < 2) → (𝑁 = 0 ∨ 𝑁 = 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | olc 863 | . . 3 ⊢ (𝑁 = 1 → (𝑁 = 0 ∨ 𝑁 = 1)) | |
2 | 1 | a1d 25 | . 2 ⊢ (𝑁 = 1 → ((𝑁 ∈ ℕ0 ∧ 𝑁 < 2) → (𝑁 = 0 ∨ 𝑁 = 1))) |
3 | nn0z 11854 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
4 | 2z 11863 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
5 | zltlem1 11884 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 2 ∈ ℤ) → (𝑁 < 2 ↔ 𝑁 ≤ (2 − 1))) | |
6 | 3, 4, 5 | sylancl 586 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 2 ↔ 𝑁 ≤ (2 − 1))) |
7 | 2m1e1 11611 | . . . . . . 7 ⊢ (2 − 1) = 1 | |
8 | 7 | breq2i 4970 | . . . . . 6 ⊢ (𝑁 ≤ (2 − 1) ↔ 𝑁 ≤ 1) |
9 | 6, 8 | syl6bb 288 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 2 ↔ 𝑁 ≤ 1)) |
10 | necom 3037 | . . . . . 6 ⊢ (𝑁 ≠ 1 ↔ 1 ≠ 𝑁) | |
11 | nn0re 11754 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
12 | 1re 10487 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
13 | ltlen 10588 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑁 < 1 ↔ (𝑁 ≤ 1 ∧ 1 ≠ 𝑁))) | |
14 | 11, 12, 13 | sylancl 586 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 1 ↔ (𝑁 ≤ 1 ∧ 1 ≠ 𝑁))) |
15 | nn0lt10b 11893 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 1 ↔ 𝑁 = 0)) | |
16 | 15 | biimpa 477 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 < 1) → 𝑁 = 0) |
17 | 16 | orcd 870 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 < 1) → (𝑁 = 0 ∨ 𝑁 = 1)) |
18 | 17 | ex 413 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 1 → (𝑁 = 0 ∨ 𝑁 = 1))) |
19 | 14, 18 | sylbird 261 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 ≤ 1 ∧ 1 ≠ 𝑁) → (𝑁 = 0 ∨ 𝑁 = 1))) |
20 | 19 | expd 416 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ≤ 1 → (1 ≠ 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1)))) |
21 | 10, 20 | syl7bi 256 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ≤ 1 → (𝑁 ≠ 1 → (𝑁 = 0 ∨ 𝑁 = 1)))) |
22 | 9, 21 | sylbid 241 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 2 → (𝑁 ≠ 1 → (𝑁 = 0 ∨ 𝑁 = 1)))) |
23 | 22 | imp 407 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 < 2) → (𝑁 ≠ 1 → (𝑁 = 0 ∨ 𝑁 = 1))) |
24 | 23 | com12 32 | . 2 ⊢ (𝑁 ≠ 1 → ((𝑁 ∈ ℕ0 ∧ 𝑁 < 2) → (𝑁 = 0 ∨ 𝑁 = 1))) |
25 | 2, 24 | pm2.61ine 3068 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 < 2) → (𝑁 = 0 ∨ 𝑁 = 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 ∨ wo 842 = wceq 1522 ∈ wcel 2081 ≠ wne 2984 class class class wbr 4962 (class class class)co 7016 ℝcr 10382 0cc0 10383 1c1 10384 < clt 10521 ≤ cle 10522 − cmin 10717 2c2 11540 ℕ0cn0 11745 ℤcz 11829 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-resscn 10440 ax-1cn 10441 ax-icn 10442 ax-addcl 10443 ax-addrcl 10444 ax-mulcl 10445 ax-mulrcl 10446 ax-mulcom 10447 ax-addass 10448 ax-mulass 10449 ax-distr 10450 ax-i2m1 10451 ax-1ne0 10452 ax-1rid 10453 ax-rnegex 10454 ax-rrecex 10455 ax-cnre 10456 ax-pre-lttri 10457 ax-pre-lttrn 10458 ax-pre-ltadd 10459 ax-pre-mulgt0 10460 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-pss 3876 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-tp 4477 df-op 4479 df-uni 4746 df-iun 4827 df-br 4963 df-opab 5025 df-mpt 5042 df-tr 5064 df-id 5348 df-eprel 5353 df-po 5362 df-so 5363 df-fr 5402 df-we 5404 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-pred 6023 df-ord 6069 df-on 6070 df-lim 6071 df-suc 6072 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-riota 6977 df-ov 7019 df-oprab 7020 df-mpo 7021 df-om 7437 df-wrecs 7798 df-recs 7860 df-rdg 7898 df-er 8139 df-en 8358 df-dom 8359 df-sdom 8360 df-pnf 10523 df-mnf 10524 df-xr 10525 df-ltxr 10526 df-le 10527 df-sub 10719 df-neg 10720 df-nn 11487 df-2 11548 df-n0 11746 df-z 11830 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |