MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0lt2 Structured version   Visualization version   GIF version

Theorem nn0lt2 12046
Description: A nonnegative integer less than 2 must be 0 or 1. (Contributed by Alexander van der Vekens, 16-Sep-2018.)
Assertion
Ref Expression
nn0lt2 ((𝑁 ∈ ℕ0𝑁 < 2) → (𝑁 = 0 ∨ 𝑁 = 1))

Proof of Theorem nn0lt2
StepHypRef Expression
1 olc 864 . . 3 (𝑁 = 1 → (𝑁 = 0 ∨ 𝑁 = 1))
21a1d 25 . 2 (𝑁 = 1 → ((𝑁 ∈ ℕ0𝑁 < 2) → (𝑁 = 0 ∨ 𝑁 = 1)))
3 nn0z 12006 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
4 2z 12015 . . . . . . 7 2 ∈ ℤ
5 zltlem1 12036 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 2 ∈ ℤ) → (𝑁 < 2 ↔ 𝑁 ≤ (2 − 1)))
63, 4, 5sylancl 588 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁 < 2 ↔ 𝑁 ≤ (2 − 1)))
7 2m1e1 11764 . . . . . . 7 (2 − 1) = 1
87breq2i 5074 . . . . . 6 (𝑁 ≤ (2 − 1) ↔ 𝑁 ≤ 1)
96, 8syl6bb 289 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 < 2 ↔ 𝑁 ≤ 1))
10 necom 3069 . . . . . 6 (𝑁 ≠ 1 ↔ 1 ≠ 𝑁)
11 nn0re 11907 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
12 1re 10641 . . . . . . . . 9 1 ∈ ℝ
13 ltlen 10741 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑁 < 1 ↔ (𝑁 ≤ 1 ∧ 1 ≠ 𝑁)))
1411, 12, 13sylancl 588 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 < 1 ↔ (𝑁 ≤ 1 ∧ 1 ≠ 𝑁)))
15 nn0lt10b 12045 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (𝑁 < 1 ↔ 𝑁 = 0))
1615biimpa 479 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑁 < 1) → 𝑁 = 0)
1716orcd 869 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑁 < 1) → (𝑁 = 0 ∨ 𝑁 = 1))
1817ex 415 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 < 1 → (𝑁 = 0 ∨ 𝑁 = 1)))
1914, 18sylbird 262 . . . . . . 7 (𝑁 ∈ ℕ0 → ((𝑁 ≤ 1 ∧ 1 ≠ 𝑁) → (𝑁 = 0 ∨ 𝑁 = 1)))
2019expd 418 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁 ≤ 1 → (1 ≠ 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1))))
2110, 20syl7bi 257 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 ≤ 1 → (𝑁 ≠ 1 → (𝑁 = 0 ∨ 𝑁 = 1))))
229, 21sylbid 242 . . . 4 (𝑁 ∈ ℕ0 → (𝑁 < 2 → (𝑁 ≠ 1 → (𝑁 = 0 ∨ 𝑁 = 1))))
2322imp 409 . . 3 ((𝑁 ∈ ℕ0𝑁 < 2) → (𝑁 ≠ 1 → (𝑁 = 0 ∨ 𝑁 = 1)))
2423com12 32 . 2 (𝑁 ≠ 1 → ((𝑁 ∈ ℕ0𝑁 < 2) → (𝑁 = 0 ∨ 𝑁 = 1)))
252, 24pm2.61ine 3100 1 ((𝑁 ∈ ℕ0𝑁 < 2) → (𝑁 = 0 ∨ 𝑁 = 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wcel 2114  wne 3016   class class class wbr 5066  (class class class)co 7156  cr 10536  0cc0 10537  1c1 10538   < clt 10675  cle 10676  cmin 10870  2c2 11693  0cn0 11898  cz 11982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-n0 11899  df-z 11983
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator