| Step | Hyp | Ref
| Expression |
| 1 | | alexsubALT.1 |
. . 3
⊢ 𝑋 = ∪
𝐽 |
| 2 | 1 | alexsubALTlem1 23990 |
. 2
⊢ (𝐽 ∈ Comp → ∃𝑥(𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑))) |
| 3 | 1 | alexsubALTlem4 23993 |
. . . . 5
⊢ (𝐽 = (topGen‘(fi‘𝑥)) → (∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) → ∀𝑎 ∈ 𝒫
(fi‘𝑥)(𝑋 = ∪
𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = ∪ 𝑏))) |
| 4 | | velpw 4585 |
. . . . . . . . 9
⊢ (𝑐 ∈ 𝒫 𝐽 ↔ 𝑐 ⊆ 𝐽) |
| 5 | | eleq2 2824 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑋 = ∪
𝑐 → (𝑡 ∈ 𝑋 ↔ 𝑡 ∈ ∪ 𝑐)) |
| 6 | 5 | 3ad2ant3 1135 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) → (𝑡 ∈ 𝑋 ↔ 𝑡 ∈ ∪ 𝑐)) |
| 7 | | eluni 4891 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑡 ∈ ∪ 𝑐
↔ ∃𝑤(𝑡 ∈ 𝑤 ∧ 𝑤 ∈ 𝑐)) |
| 8 | | ssel 3957 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑐 ⊆ 𝐽 → (𝑤 ∈ 𝑐 → 𝑤 ∈ 𝐽)) |
| 9 | | eleq2 2824 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝐽 = (topGen‘(fi‘𝑥)) → (𝑤 ∈ 𝐽 ↔ 𝑤 ∈ (topGen‘(fi‘𝑥)))) |
| 10 | | tg2 22908 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑤 ∈
(topGen‘(fi‘𝑥))
∧ 𝑡 ∈ 𝑤) → ∃𝑦 ∈ (fi‘𝑥)(𝑡 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑤)) |
| 11 | 10 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑤 ∈
(topGen‘(fi‘𝑥))
→ (𝑡 ∈ 𝑤 → ∃𝑦 ∈ (fi‘𝑥)(𝑡 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑤))) |
| 12 | 9, 11 | biimtrdi 253 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝐽 = (topGen‘(fi‘𝑥)) → (𝑤 ∈ 𝐽 → (𝑡 ∈ 𝑤 → ∃𝑦 ∈ (fi‘𝑥)(𝑡 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑤)))) |
| 13 | 8, 12 | sylan9r 508 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽) → (𝑤 ∈ 𝑐 → (𝑡 ∈ 𝑤 → ∃𝑦 ∈ (fi‘𝑥)(𝑡 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑤)))) |
| 14 | 13 | 3impia 1117 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑤 ∈ 𝑐) → (𝑡 ∈ 𝑤 → ∃𝑦 ∈ (fi‘𝑥)(𝑡 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑤))) |
| 15 | | sseq2 3990 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑧 = 𝑤 → (𝑦 ⊆ 𝑧 ↔ 𝑦 ⊆ 𝑤)) |
| 16 | 15 | rspcev 3606 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑤 ∈ 𝑐 ∧ 𝑦 ⊆ 𝑤) → ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧) |
| 17 | 16 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑤 ∈ 𝑐 → (𝑦 ⊆ 𝑤 → ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧)) |
| 18 | 17 | 3ad2ant3 1135 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑤 ∈ 𝑐) → (𝑦 ⊆ 𝑤 → ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧)) |
| 19 | 18 | anim2d 612 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑤 ∈ 𝑐) → ((𝑡 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑤) → (𝑡 ∈ 𝑦 ∧ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧))) |
| 20 | 19 | reximdv 3156 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑤 ∈ 𝑐) → (∃𝑦 ∈ (fi‘𝑥)(𝑡 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑤) → ∃𝑦 ∈ (fi‘𝑥)(𝑡 ∈ 𝑦 ∧ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧))) |
| 21 | 14, 20 | syld 47 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑤 ∈ 𝑐) → (𝑡 ∈ 𝑤 → ∃𝑦 ∈ (fi‘𝑥)(𝑡 ∈ 𝑦 ∧ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧))) |
| 22 | 21 | 3expia 1121 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽) → (𝑤 ∈ 𝑐 → (𝑡 ∈ 𝑤 → ∃𝑦 ∈ (fi‘𝑥)(𝑡 ∈ 𝑦 ∧ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧)))) |
| 23 | 22 | com23 86 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽) → (𝑡 ∈ 𝑤 → (𝑤 ∈ 𝑐 → ∃𝑦 ∈ (fi‘𝑥)(𝑡 ∈ 𝑦 ∧ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧)))) |
| 24 | 23 | impd 410 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽) → ((𝑡 ∈ 𝑤 ∧ 𝑤 ∈ 𝑐) → ∃𝑦 ∈ (fi‘𝑥)(𝑡 ∈ 𝑦 ∧ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧))) |
| 25 | 24 | exlimdv 1933 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽) → (∃𝑤(𝑡 ∈ 𝑤 ∧ 𝑤 ∈ 𝑐) → ∃𝑦 ∈ (fi‘𝑥)(𝑡 ∈ 𝑦 ∧ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧))) |
| 26 | 7, 25 | biimtrid 242 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽) → (𝑡 ∈ ∪ 𝑐 → ∃𝑦 ∈ (fi‘𝑥)(𝑡 ∈ 𝑦 ∧ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧))) |
| 27 | 26 | 3adant3 1132 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) → (𝑡 ∈ ∪ 𝑐 → ∃𝑦 ∈ (fi‘𝑥)(𝑡 ∈ 𝑦 ∧ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧))) |
| 28 | 6, 27 | sylbid 240 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) → (𝑡 ∈ 𝑋 → ∃𝑦 ∈ (fi‘𝑥)(𝑡 ∈ 𝑦 ∧ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧))) |
| 29 | | ssel 3957 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ⊆ 𝑧 → (𝑡 ∈ 𝑦 → 𝑡 ∈ 𝑧)) |
| 30 | | elunii 4893 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑡 ∈ 𝑧 ∧ 𝑧 ∈ 𝑐) → 𝑡 ∈ ∪ 𝑐) |
| 31 | 30 | expcom 413 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑧 ∈ 𝑐 → (𝑡 ∈ 𝑧 → 𝑡 ∈ ∪ 𝑐)) |
| 32 | 6 | biimprd 248 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) → (𝑡 ∈ ∪ 𝑐 → 𝑡 ∈ 𝑋)) |
| 33 | 31, 32 | sylan9r 508 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) ∧ 𝑧 ∈ 𝑐) → (𝑡 ∈ 𝑧 → 𝑡 ∈ 𝑋)) |
| 34 | 29, 33 | syl9r 78 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) ∧ 𝑧 ∈ 𝑐) → (𝑦 ⊆ 𝑧 → (𝑡 ∈ 𝑦 → 𝑡 ∈ 𝑋))) |
| 35 | 34 | rexlimdva 3142 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) → (∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 → (𝑡 ∈ 𝑦 → 𝑡 ∈ 𝑋))) |
| 36 | 35 | com23 86 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) → (𝑡 ∈ 𝑦 → (∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 → 𝑡 ∈ 𝑋))) |
| 37 | 36 | impd 410 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) → ((𝑡 ∈ 𝑦 ∧ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧) → 𝑡 ∈ 𝑋)) |
| 38 | 37 | rexlimdvw 3147 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) → (∃𝑦 ∈ (fi‘𝑥)(𝑡 ∈ 𝑦 ∧ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧) → 𝑡 ∈ 𝑋)) |
| 39 | 28, 38 | impbid 212 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) → (𝑡 ∈ 𝑋 ↔ ∃𝑦 ∈ (fi‘𝑥)(𝑡 ∈ 𝑦 ∧ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧))) |
| 40 | | elunirab 4903 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 ∈ ∪ {𝑦
∈ (fi‘𝑥) ∣
∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} ↔ ∃𝑦 ∈ (fi‘𝑥)(𝑡 ∈ 𝑦 ∧ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧)) |
| 41 | 39, 40 | bitr4di 289 |
. . . . . . . . . . . . . . 15
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) → (𝑡 ∈ 𝑋 ↔ 𝑡 ∈ ∪ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧})) |
| 42 | 41 | eqrdv 2734 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) → 𝑋 = ∪ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧}) |
| 43 | | ssrab2 4060 |
. . . . . . . . . . . . . . . 16
⊢ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} ⊆ (fi‘𝑥) |
| 44 | | fvex 6894 |
. . . . . . . . . . . . . . . . 17
⊢
(fi‘𝑥) ∈
V |
| 45 | 44 | elpw2 5309 |
. . . . . . . . . . . . . . . 16
⊢ ({𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} ∈ 𝒫 (fi‘𝑥) ↔ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} ⊆ (fi‘𝑥)) |
| 46 | 43, 45 | mpbir 231 |
. . . . . . . . . . . . . . 15
⊢ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} ∈ 𝒫 (fi‘𝑥) |
| 47 | | unieq 4899 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 = {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} → ∪ 𝑎 = ∪
{𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧}) |
| 48 | 47 | eqeq2d 2747 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 = {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} → (𝑋 = ∪ 𝑎 ↔ 𝑋 = ∪ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧})) |
| 49 | | pweq 4594 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 = {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} → 𝒫 𝑎 = 𝒫 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧}) |
| 50 | 49 | ineq1d 4199 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 = {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} → (𝒫 𝑎 ∩ Fin) = (𝒫 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} ∩ Fin)) |
| 51 | 50 | rexeqdv 3310 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 = {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} → (∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = ∪ 𝑏 ↔ ∃𝑏 ∈ (𝒫 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} ∩ Fin)𝑋 = ∪ 𝑏)) |
| 52 | 48, 51 | imbi12d 344 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} → ((𝑋 = ∪ 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = ∪ 𝑏) ↔ (𝑋 = ∪ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} → ∃𝑏 ∈ (𝒫 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} ∩ Fin)𝑋 = ∪ 𝑏))) |
| 53 | 52 | rspcv 3602 |
. . . . . . . . . . . . . . 15
⊢ ({𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} ∈ 𝒫 (fi‘𝑥) → (∀𝑎 ∈ 𝒫
(fi‘𝑥)(𝑋 = ∪
𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = ∪ 𝑏) → (𝑋 = ∪ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} → ∃𝑏 ∈ (𝒫 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} ∩ Fin)𝑋 = ∪ 𝑏))) |
| 54 | 46, 53 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢
(∀𝑎 ∈
𝒫 (fi‘𝑥)(𝑋 = ∪ 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = ∪ 𝑏) → (𝑋 = ∪ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} → ∃𝑏 ∈ (𝒫 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} ∩ Fin)𝑋 = ∪ 𝑏)) |
| 55 | 42, 54 | syl5com 31 |
. . . . . . . . . . . . 13
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) → (∀𝑎 ∈ 𝒫
(fi‘𝑥)(𝑋 = ∪
𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = ∪ 𝑏) → ∃𝑏 ∈ (𝒫 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} ∩ Fin)𝑋 = ∪ 𝑏)) |
| 56 | | elfpw 9371 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 ∈ (𝒫 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} ∩ Fin) ↔ (𝑏 ⊆ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} ∧ 𝑏 ∈ Fin)) |
| 57 | | ssel 3957 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑏 ⊆ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} → (𝑡 ∈ 𝑏 → 𝑡 ∈ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧})) |
| 58 | | sseq1 3989 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 = 𝑡 → (𝑦 ⊆ 𝑧 ↔ 𝑡 ⊆ 𝑧)) |
| 59 | 58 | rexbidv 3165 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 = 𝑡 → (∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 ↔ ∃𝑧 ∈ 𝑐 𝑡 ⊆ 𝑧)) |
| 60 | 59 | elrab 3676 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑡 ∈ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} ↔ (𝑡 ∈ (fi‘𝑥) ∧ ∃𝑧 ∈ 𝑐 𝑡 ⊆ 𝑧)) |
| 61 | 60 | simprbi 496 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑡 ∈ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} → ∃𝑧 ∈ 𝑐 𝑡 ⊆ 𝑧) |
| 62 | 57, 61 | syl6 35 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑏 ⊆ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} → (𝑡 ∈ 𝑏 → ∃𝑧 ∈ 𝑐 𝑡 ⊆ 𝑧)) |
| 63 | 62 | ralrimiv 3132 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑏 ⊆ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} → ∀𝑡 ∈ 𝑏 ∃𝑧 ∈ 𝑐 𝑡 ⊆ 𝑧) |
| 64 | | sseq2 3990 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑧 = (𝑓‘𝑡) → (𝑡 ⊆ 𝑧 ↔ 𝑡 ⊆ (𝑓‘𝑡))) |
| 65 | 64 | ac6sfi 9297 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑏 ∈ Fin ∧ ∀𝑡 ∈ 𝑏 ∃𝑧 ∈ 𝑐 𝑡 ⊆ 𝑧) → ∃𝑓(𝑓:𝑏⟶𝑐 ∧ ∀𝑡 ∈ 𝑏 𝑡 ⊆ (𝑓‘𝑡))) |
| 66 | 65 | ex 412 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑏 ∈ Fin →
(∀𝑡 ∈ 𝑏 ∃𝑧 ∈ 𝑐 𝑡 ⊆ 𝑧 → ∃𝑓(𝑓:𝑏⟶𝑐 ∧ ∀𝑡 ∈ 𝑏 𝑡 ⊆ (𝑓‘𝑡)))) |
| 67 | 63, 66 | syl5 34 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑏 ∈ Fin → (𝑏 ⊆ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} → ∃𝑓(𝑓:𝑏⟶𝑐 ∧ ∀𝑡 ∈ 𝑏 𝑡 ⊆ (𝑓‘𝑡)))) |
| 68 | 67 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) ∧ 𝑏 ∈ Fin) → (𝑏 ⊆ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} → ∃𝑓(𝑓:𝑏⟶𝑐 ∧ ∀𝑡 ∈ 𝑏 𝑡 ⊆ (𝑓‘𝑡)))) |
| 69 | | simprll 778 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏⟶𝑐 ∧ ∀𝑡 ∈ 𝑏 𝑡 ⊆ (𝑓‘𝑡)) ∧ 𝑋 = ∪ 𝑏)) → 𝑓:𝑏⟶𝑐) |
| 70 | | frn 6718 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑓:𝑏⟶𝑐 → ran 𝑓 ⊆ 𝑐) |
| 71 | 69, 70 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏⟶𝑐 ∧ ∀𝑡 ∈ 𝑏 𝑡 ⊆ (𝑓‘𝑡)) ∧ 𝑋 = ∪ 𝑏)) → ran 𝑓 ⊆ 𝑐) |
| 72 | | simplr 768 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏⟶𝑐 ∧ ∀𝑡 ∈ 𝑏 𝑡 ⊆ (𝑓‘𝑡)) ∧ 𝑋 = ∪ 𝑏)) → 𝑏 ∈ Fin) |
| 73 | | ffn 6711 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑓:𝑏⟶𝑐 → 𝑓 Fn 𝑏) |
| 74 | | dffn4 6801 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑓 Fn 𝑏 ↔ 𝑓:𝑏–onto→ran 𝑓) |
| 75 | 73, 74 | sylib 218 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑓:𝑏⟶𝑐 → 𝑓:𝑏–onto→ran 𝑓) |
| 76 | 75 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑓:𝑏⟶𝑐 ∧ ∀𝑡 ∈ 𝑏 𝑡 ⊆ (𝑓‘𝑡)) → 𝑓:𝑏–onto→ran 𝑓) |
| 77 | 76 | ad2antrl 728 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏⟶𝑐 ∧ ∀𝑡 ∈ 𝑏 𝑡 ⊆ (𝑓‘𝑡)) ∧ 𝑋 = ∪ 𝑏)) → 𝑓:𝑏–onto→ran 𝑓) |
| 78 | | fodomfi 9327 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑏 ∈ Fin ∧ 𝑓:𝑏–onto→ran 𝑓) → ran 𝑓 ≼ 𝑏) |
| 79 | 72, 77, 78 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏⟶𝑐 ∧ ∀𝑡 ∈ 𝑏 𝑡 ⊆ (𝑓‘𝑡)) ∧ 𝑋 = ∪ 𝑏)) → ran 𝑓 ≼ 𝑏) |
| 80 | | domfi 9208 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑏 ∈ Fin ∧ ran 𝑓 ≼ 𝑏) → ran 𝑓 ∈ Fin) |
| 81 | 72, 79, 80 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏⟶𝑐 ∧ ∀𝑡 ∈ 𝑏 𝑡 ⊆ (𝑓‘𝑡)) ∧ 𝑋 = ∪ 𝑏)) → ran 𝑓 ∈ Fin) |
| 82 | 71, 81 | jca 511 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏⟶𝑐 ∧ ∀𝑡 ∈ 𝑏 𝑡 ⊆ (𝑓‘𝑡)) ∧ 𝑋 = ∪ 𝑏)) → (ran 𝑓 ⊆ 𝑐 ∧ ran 𝑓 ∈ Fin)) |
| 83 | | elin 3947 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (ran
𝑓 ∈ (𝒫 𝑐 ∩ Fin) ↔ (ran 𝑓 ∈ 𝒫 𝑐 ∧ ran 𝑓 ∈ Fin)) |
| 84 | | vex 3468 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ 𝑐 ∈ V |
| 85 | 84 | elpw2 5309 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (ran
𝑓 ∈ 𝒫 𝑐 ↔ ran 𝑓 ⊆ 𝑐) |
| 86 | 85 | anbi1i 624 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((ran
𝑓 ∈ 𝒫 𝑐 ∧ ran 𝑓 ∈ Fin) ↔ (ran 𝑓 ⊆ 𝑐 ∧ ran 𝑓 ∈ Fin)) |
| 87 | 83, 86 | bitr2i 276 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((ran
𝑓 ⊆ 𝑐 ∧ ran 𝑓 ∈ Fin) ↔ ran 𝑓 ∈ (𝒫 𝑐 ∩ Fin)) |
| 88 | 82, 87 | sylib 218 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏⟶𝑐 ∧ ∀𝑡 ∈ 𝑏 𝑡 ⊆ (𝑓‘𝑡)) ∧ 𝑋 = ∪ 𝑏)) → ran 𝑓 ∈ (𝒫 𝑐 ∩ Fin)) |
| 89 | | simprr 772 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏⟶𝑐 ∧ ∀𝑡 ∈ 𝑏 𝑡 ⊆ (𝑓‘𝑡)) ∧ 𝑋 = ∪ 𝑏)) → 𝑋 = ∪ 𝑏) |
| 90 | | uniiun 5039 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ∪ 𝑏 =
∪ 𝑡 ∈ 𝑏 𝑡 |
| 91 | | simprlr 779 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏⟶𝑐 ∧ ∀𝑡 ∈ 𝑏 𝑡 ⊆ (𝑓‘𝑡)) ∧ 𝑋 = ∪ 𝑏)) → ∀𝑡 ∈ 𝑏 𝑡 ⊆ (𝑓‘𝑡)) |
| 92 | | ss2iun 4991 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(∀𝑡 ∈
𝑏 𝑡 ⊆ (𝑓‘𝑡) → ∪
𝑡 ∈ 𝑏 𝑡 ⊆ ∪
𝑡 ∈ 𝑏 (𝑓‘𝑡)) |
| 93 | 91, 92 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏⟶𝑐 ∧ ∀𝑡 ∈ 𝑏 𝑡 ⊆ (𝑓‘𝑡)) ∧ 𝑋 = ∪ 𝑏)) → ∪ 𝑡 ∈ 𝑏 𝑡 ⊆ ∪
𝑡 ∈ 𝑏 (𝑓‘𝑡)) |
| 94 | 90, 93 | eqsstrid 4002 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏⟶𝑐 ∧ ∀𝑡 ∈ 𝑏 𝑡 ⊆ (𝑓‘𝑡)) ∧ 𝑋 = ∪ 𝑏)) → ∪ 𝑏
⊆ ∪ 𝑡 ∈ 𝑏 (𝑓‘𝑡)) |
| 95 | | fniunfv 7244 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑓 Fn 𝑏 → ∪
𝑡 ∈ 𝑏 (𝑓‘𝑡) = ∪ ran 𝑓) |
| 96 | 69, 73, 95 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏⟶𝑐 ∧ ∀𝑡 ∈ 𝑏 𝑡 ⊆ (𝑓‘𝑡)) ∧ 𝑋 = ∪ 𝑏)) → ∪ 𝑡 ∈ 𝑏 (𝑓‘𝑡) = ∪ ran 𝑓) |
| 97 | 94, 96 | sseqtrd 4000 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏⟶𝑐 ∧ ∀𝑡 ∈ 𝑏 𝑡 ⊆ (𝑓‘𝑡)) ∧ 𝑋 = ∪ 𝑏)) → ∪ 𝑏
⊆ ∪ ran 𝑓) |
| 98 | 89, 97 | eqsstrd 3998 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏⟶𝑐 ∧ ∀𝑡 ∈ 𝑏 𝑡 ⊆ (𝑓‘𝑡)) ∧ 𝑋 = ∪ 𝑏)) → 𝑋 ⊆ ∪ ran
𝑓) |
| 99 | | simpll2 1214 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏⟶𝑐 ∧ ∀𝑡 ∈ 𝑏 𝑡 ⊆ (𝑓‘𝑡)) ∧ 𝑋 = ∪ 𝑏)) → 𝑐 ⊆ 𝐽) |
| 100 | 71, 99 | sstrd 3974 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏⟶𝑐 ∧ ∀𝑡 ∈ 𝑏 𝑡 ⊆ (𝑓‘𝑡)) ∧ 𝑋 = ∪ 𝑏)) → ran 𝑓 ⊆ 𝐽) |
| 101 | | uniss 4896 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (ran
𝑓 ⊆ 𝐽 → ∪ ran
𝑓 ⊆ ∪ 𝐽) |
| 102 | 101, 1 | sseqtrrdi 4005 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (ran
𝑓 ⊆ 𝐽 → ∪ ran
𝑓 ⊆ 𝑋) |
| 103 | 100, 102 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏⟶𝑐 ∧ ∀𝑡 ∈ 𝑏 𝑡 ⊆ (𝑓‘𝑡)) ∧ 𝑋 = ∪ 𝑏)) → ∪ ran 𝑓 ⊆ 𝑋) |
| 104 | 98, 103 | eqssd 3981 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏⟶𝑐 ∧ ∀𝑡 ∈ 𝑏 𝑡 ⊆ (𝑓‘𝑡)) ∧ 𝑋 = ∪ 𝑏)) → 𝑋 = ∪ ran 𝑓) |
| 105 | | unieq 4899 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑑 = ran 𝑓 → ∪ 𝑑 = ∪
ran 𝑓) |
| 106 | 105 | eqeq2d 2747 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑑 = ran 𝑓 → (𝑋 = ∪ 𝑑 ↔ 𝑋 = ∪ ran 𝑓)) |
| 107 | 106 | rspcev 3606 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((ran
𝑓 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑋 = ∪
ran 𝑓) → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) |
| 108 | 88, 104, 107 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏⟶𝑐 ∧ ∀𝑡 ∈ 𝑏 𝑡 ⊆ (𝑓‘𝑡)) ∧ 𝑋 = ∪ 𝑏)) → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) |
| 109 | 108 | exp32 420 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) ∧ 𝑏 ∈ Fin) → ((𝑓:𝑏⟶𝑐 ∧ ∀𝑡 ∈ 𝑏 𝑡 ⊆ (𝑓‘𝑡)) → (𝑋 = ∪ 𝑏 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑))) |
| 110 | 109 | exlimdv 1933 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) ∧ 𝑏 ∈ Fin) → (∃𝑓(𝑓:𝑏⟶𝑐 ∧ ∀𝑡 ∈ 𝑏 𝑡 ⊆ (𝑓‘𝑡)) → (𝑋 = ∪ 𝑏 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑))) |
| 111 | 68, 110 | syld 47 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) ∧ 𝑏 ∈ Fin) → (𝑏 ⊆ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} → (𝑋 = ∪ 𝑏 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑))) |
| 112 | 111 | ex 412 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) → (𝑏 ∈ Fin → (𝑏 ⊆ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} → (𝑋 = ∪ 𝑏 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑)))) |
| 113 | 112 | com23 86 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) → (𝑏 ⊆ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} → (𝑏 ∈ Fin → (𝑋 = ∪ 𝑏 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑)))) |
| 114 | 113 | impd 410 |
. . . . . . . . . . . . . . 15
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) → ((𝑏 ⊆ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} ∧ 𝑏 ∈ Fin) → (𝑋 = ∪ 𝑏 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑))) |
| 115 | 56, 114 | biimtrid 242 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) → (𝑏 ∈ (𝒫 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} ∩ Fin) → (𝑋 = ∪ 𝑏 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑))) |
| 116 | 115 | rexlimdv 3140 |
. . . . . . . . . . . . 13
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) → (∃𝑏 ∈ (𝒫 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} ∩ Fin)𝑋 = ∪ 𝑏 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑)) |
| 117 | 55, 116 | syld 47 |
. . . . . . . . . . . 12
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) → (∀𝑎 ∈ 𝒫
(fi‘𝑥)(𝑋 = ∪
𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = ∪ 𝑏) → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑)) |
| 118 | 117 | 3exp 1119 |
. . . . . . . . . . 11
⊢ (𝐽 = (topGen‘(fi‘𝑥)) → (𝑐 ⊆ 𝐽 → (𝑋 = ∪ 𝑐 → (∀𝑎 ∈ 𝒫
(fi‘𝑥)(𝑋 = ∪
𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = ∪ 𝑏) → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑)))) |
| 119 | 118 | com34 91 |
. . . . . . . . . 10
⊢ (𝐽 = (topGen‘(fi‘𝑥)) → (𝑐 ⊆ 𝐽 → (∀𝑎 ∈ 𝒫 (fi‘𝑥)(𝑋 = ∪ 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = ∪ 𝑏) → (𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑)))) |
| 120 | 119 | com23 86 |
. . . . . . . . 9
⊢ (𝐽 = (topGen‘(fi‘𝑥)) → (∀𝑎 ∈ 𝒫
(fi‘𝑥)(𝑋 = ∪
𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = ∪ 𝑏) → (𝑐 ⊆ 𝐽 → (𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑)))) |
| 121 | 4, 120 | syl7bi 255 |
. . . . . . . 8
⊢ (𝐽 = (topGen‘(fi‘𝑥)) → (∀𝑎 ∈ 𝒫
(fi‘𝑥)(𝑋 = ∪
𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = ∪ 𝑏) → (𝑐 ∈ 𝒫 𝐽 → (𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑)))) |
| 122 | 121 | ralrimdv 3139 |
. . . . . . 7
⊢ (𝐽 = (topGen‘(fi‘𝑥)) → (∀𝑎 ∈ 𝒫
(fi‘𝑥)(𝑋 = ∪
𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = ∪ 𝑏) → ∀𝑐 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑))) |
| 123 | | fibas 22920 |
. . . . . . . . 9
⊢
(fi‘𝑥) ∈
TopBases |
| 124 | | tgcl 22912 |
. . . . . . . . 9
⊢
((fi‘𝑥) ∈
TopBases → (topGen‘(fi‘𝑥)) ∈ Top) |
| 125 | 123, 124 | ax-mp 5 |
. . . . . . . 8
⊢
(topGen‘(fi‘𝑥)) ∈ Top |
| 126 | | eleq1 2823 |
. . . . . . . 8
⊢ (𝐽 = (topGen‘(fi‘𝑥)) → (𝐽 ∈ Top ↔
(topGen‘(fi‘𝑥))
∈ Top)) |
| 127 | 125, 126 | mpbiri 258 |
. . . . . . 7
⊢ (𝐽 = (topGen‘(fi‘𝑥)) → 𝐽 ∈ Top) |
| 128 | 122, 127 | jctild 525 |
. . . . . 6
⊢ (𝐽 = (topGen‘(fi‘𝑥)) → (∀𝑎 ∈ 𝒫
(fi‘𝑥)(𝑋 = ∪
𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = ∪ 𝑏) → (𝐽 ∈ Top ∧ ∀𝑐 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑)))) |
| 129 | 1 | iscmp 23331 |
. . . . . 6
⊢ (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑐 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑))) |
| 130 | 128, 129 | imbitrrdi 252 |
. . . . 5
⊢ (𝐽 = (topGen‘(fi‘𝑥)) → (∀𝑎 ∈ 𝒫
(fi‘𝑥)(𝑋 = ∪
𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = ∪ 𝑏) → 𝐽 ∈ Comp)) |
| 131 | 3, 130 | syld 47 |
. . . 4
⊢ (𝐽 = (topGen‘(fi‘𝑥)) → (∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) → 𝐽 ∈ Comp)) |
| 132 | 131 | imp 406 |
. . 3
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑)) → 𝐽 ∈ Comp) |
| 133 | 132 | exlimiv 1930 |
. 2
⊢
(∃𝑥(𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑)) → 𝐽 ∈ Comp) |
| 134 | 2, 133 | impbii 209 |
1
⊢ (𝐽 ∈ Comp ↔ ∃𝑥(𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑))) |