Step | Hyp | Ref
| Expression |
1 | | alexsubALT.1 |
. . 3
⊢ 𝑋 = ∪
𝐽 |
2 | 1 | alexsubALTlem1 23106 |
. 2
⊢ (𝐽 ∈ Comp → ∃𝑥(𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑))) |
3 | 1 | alexsubALTlem4 23109 |
. . . . 5
⊢ (𝐽 = (topGen‘(fi‘𝑥)) → (∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) → ∀𝑎 ∈ 𝒫
(fi‘𝑥)(𝑋 = ∪
𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = ∪ 𝑏))) |
4 | | velpw 4535 |
. . . . . . . . 9
⊢ (𝑐 ∈ 𝒫 𝐽 ↔ 𝑐 ⊆ 𝐽) |
5 | | eleq2 2827 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑋 = ∪
𝑐 → (𝑡 ∈ 𝑋 ↔ 𝑡 ∈ ∪ 𝑐)) |
6 | 5 | 3ad2ant3 1133 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) → (𝑡 ∈ 𝑋 ↔ 𝑡 ∈ ∪ 𝑐)) |
7 | | eluni 4839 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑡 ∈ ∪ 𝑐
↔ ∃𝑤(𝑡 ∈ 𝑤 ∧ 𝑤 ∈ 𝑐)) |
8 | | ssel 3910 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑐 ⊆ 𝐽 → (𝑤 ∈ 𝑐 → 𝑤 ∈ 𝐽)) |
9 | | eleq2 2827 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝐽 = (topGen‘(fi‘𝑥)) → (𝑤 ∈ 𝐽 ↔ 𝑤 ∈ (topGen‘(fi‘𝑥)))) |
10 | | tg2 22023 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑤 ∈
(topGen‘(fi‘𝑥))
∧ 𝑡 ∈ 𝑤) → ∃𝑦 ∈ (fi‘𝑥)(𝑡 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑤)) |
11 | 10 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑤 ∈
(topGen‘(fi‘𝑥))
→ (𝑡 ∈ 𝑤 → ∃𝑦 ∈ (fi‘𝑥)(𝑡 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑤))) |
12 | 9, 11 | syl6bi 252 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝐽 = (topGen‘(fi‘𝑥)) → (𝑤 ∈ 𝐽 → (𝑡 ∈ 𝑤 → ∃𝑦 ∈ (fi‘𝑥)(𝑡 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑤)))) |
13 | 8, 12 | sylan9r 508 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽) → (𝑤 ∈ 𝑐 → (𝑡 ∈ 𝑤 → ∃𝑦 ∈ (fi‘𝑥)(𝑡 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑤)))) |
14 | 13 | 3impia 1115 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑤 ∈ 𝑐) → (𝑡 ∈ 𝑤 → ∃𝑦 ∈ (fi‘𝑥)(𝑡 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑤))) |
15 | | sseq2 3943 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑧 = 𝑤 → (𝑦 ⊆ 𝑧 ↔ 𝑦 ⊆ 𝑤)) |
16 | 15 | rspcev 3552 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑤 ∈ 𝑐 ∧ 𝑦 ⊆ 𝑤) → ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧) |
17 | 16 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑤 ∈ 𝑐 → (𝑦 ⊆ 𝑤 → ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧)) |
18 | 17 | 3ad2ant3 1133 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑤 ∈ 𝑐) → (𝑦 ⊆ 𝑤 → ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧)) |
19 | 18 | anim2d 611 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑤 ∈ 𝑐) → ((𝑡 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑤) → (𝑡 ∈ 𝑦 ∧ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧))) |
20 | 19 | reximdv 3201 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑤 ∈ 𝑐) → (∃𝑦 ∈ (fi‘𝑥)(𝑡 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑤) → ∃𝑦 ∈ (fi‘𝑥)(𝑡 ∈ 𝑦 ∧ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧))) |
21 | 14, 20 | syld 47 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑤 ∈ 𝑐) → (𝑡 ∈ 𝑤 → ∃𝑦 ∈ (fi‘𝑥)(𝑡 ∈ 𝑦 ∧ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧))) |
22 | 21 | 3expia 1119 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽) → (𝑤 ∈ 𝑐 → (𝑡 ∈ 𝑤 → ∃𝑦 ∈ (fi‘𝑥)(𝑡 ∈ 𝑦 ∧ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧)))) |
23 | 22 | com23 86 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽) → (𝑡 ∈ 𝑤 → (𝑤 ∈ 𝑐 → ∃𝑦 ∈ (fi‘𝑥)(𝑡 ∈ 𝑦 ∧ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧)))) |
24 | 23 | impd 410 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽) → ((𝑡 ∈ 𝑤 ∧ 𝑤 ∈ 𝑐) → ∃𝑦 ∈ (fi‘𝑥)(𝑡 ∈ 𝑦 ∧ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧))) |
25 | 24 | exlimdv 1937 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽) → (∃𝑤(𝑡 ∈ 𝑤 ∧ 𝑤 ∈ 𝑐) → ∃𝑦 ∈ (fi‘𝑥)(𝑡 ∈ 𝑦 ∧ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧))) |
26 | 7, 25 | syl5bi 241 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽) → (𝑡 ∈ ∪ 𝑐 → ∃𝑦 ∈ (fi‘𝑥)(𝑡 ∈ 𝑦 ∧ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧))) |
27 | 26 | 3adant3 1130 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) → (𝑡 ∈ ∪ 𝑐 → ∃𝑦 ∈ (fi‘𝑥)(𝑡 ∈ 𝑦 ∧ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧))) |
28 | 6, 27 | sylbid 239 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) → (𝑡 ∈ 𝑋 → ∃𝑦 ∈ (fi‘𝑥)(𝑡 ∈ 𝑦 ∧ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧))) |
29 | | ssel 3910 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ⊆ 𝑧 → (𝑡 ∈ 𝑦 → 𝑡 ∈ 𝑧)) |
30 | | elunii 4841 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑡 ∈ 𝑧 ∧ 𝑧 ∈ 𝑐) → 𝑡 ∈ ∪ 𝑐) |
31 | 30 | expcom 413 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑧 ∈ 𝑐 → (𝑡 ∈ 𝑧 → 𝑡 ∈ ∪ 𝑐)) |
32 | 6 | biimprd 247 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) → (𝑡 ∈ ∪ 𝑐 → 𝑡 ∈ 𝑋)) |
33 | 31, 32 | sylan9r 508 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) ∧ 𝑧 ∈ 𝑐) → (𝑡 ∈ 𝑧 → 𝑡 ∈ 𝑋)) |
34 | 29, 33 | syl9r 78 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) ∧ 𝑧 ∈ 𝑐) → (𝑦 ⊆ 𝑧 → (𝑡 ∈ 𝑦 → 𝑡 ∈ 𝑋))) |
35 | 34 | rexlimdva 3212 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) → (∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 → (𝑡 ∈ 𝑦 → 𝑡 ∈ 𝑋))) |
36 | 35 | com23 86 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) → (𝑡 ∈ 𝑦 → (∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 → 𝑡 ∈ 𝑋))) |
37 | 36 | impd 410 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) → ((𝑡 ∈ 𝑦 ∧ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧) → 𝑡 ∈ 𝑋)) |
38 | 37 | rexlimdvw 3218 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) → (∃𝑦 ∈ (fi‘𝑥)(𝑡 ∈ 𝑦 ∧ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧) → 𝑡 ∈ 𝑋)) |
39 | 28, 38 | impbid 211 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) → (𝑡 ∈ 𝑋 ↔ ∃𝑦 ∈ (fi‘𝑥)(𝑡 ∈ 𝑦 ∧ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧))) |
40 | | elunirab 4852 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 ∈ ∪ {𝑦
∈ (fi‘𝑥) ∣
∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} ↔ ∃𝑦 ∈ (fi‘𝑥)(𝑡 ∈ 𝑦 ∧ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧)) |
41 | 39, 40 | bitr4di 288 |
. . . . . . . . . . . . . . 15
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) → (𝑡 ∈ 𝑋 ↔ 𝑡 ∈ ∪ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧})) |
42 | 41 | eqrdv 2736 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) → 𝑋 = ∪ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧}) |
43 | | ssrab2 4009 |
. . . . . . . . . . . . . . . 16
⊢ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} ⊆ (fi‘𝑥) |
44 | | fvex 6769 |
. . . . . . . . . . . . . . . . 17
⊢
(fi‘𝑥) ∈
V |
45 | 44 | elpw2 5264 |
. . . . . . . . . . . . . . . 16
⊢ ({𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} ∈ 𝒫 (fi‘𝑥) ↔ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} ⊆ (fi‘𝑥)) |
46 | 43, 45 | mpbir 230 |
. . . . . . . . . . . . . . 15
⊢ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} ∈ 𝒫 (fi‘𝑥) |
47 | | unieq 4847 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 = {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} → ∪ 𝑎 = ∪
{𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧}) |
48 | 47 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 = {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} → (𝑋 = ∪ 𝑎 ↔ 𝑋 = ∪ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧})) |
49 | | pweq 4546 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 = {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} → 𝒫 𝑎 = 𝒫 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧}) |
50 | 49 | ineq1d 4142 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 = {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} → (𝒫 𝑎 ∩ Fin) = (𝒫 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} ∩ Fin)) |
51 | 50 | rexeqdv 3340 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 = {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} → (∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = ∪ 𝑏 ↔ ∃𝑏 ∈ (𝒫 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} ∩ Fin)𝑋 = ∪ 𝑏)) |
52 | 48, 51 | imbi12d 344 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} → ((𝑋 = ∪ 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = ∪ 𝑏) ↔ (𝑋 = ∪ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} → ∃𝑏 ∈ (𝒫 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} ∩ Fin)𝑋 = ∪ 𝑏))) |
53 | 52 | rspcv 3547 |
. . . . . . . . . . . . . . 15
⊢ ({𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} ∈ 𝒫 (fi‘𝑥) → (∀𝑎 ∈ 𝒫
(fi‘𝑥)(𝑋 = ∪
𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = ∪ 𝑏) → (𝑋 = ∪ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} → ∃𝑏 ∈ (𝒫 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} ∩ Fin)𝑋 = ∪ 𝑏))) |
54 | 46, 53 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢
(∀𝑎 ∈
𝒫 (fi‘𝑥)(𝑋 = ∪ 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = ∪ 𝑏) → (𝑋 = ∪ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} → ∃𝑏 ∈ (𝒫 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} ∩ Fin)𝑋 = ∪ 𝑏)) |
55 | 42, 54 | syl5com 31 |
. . . . . . . . . . . . 13
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) → (∀𝑎 ∈ 𝒫
(fi‘𝑥)(𝑋 = ∪
𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = ∪ 𝑏) → ∃𝑏 ∈ (𝒫 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} ∩ Fin)𝑋 = ∪ 𝑏)) |
56 | | elfpw 9051 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 ∈ (𝒫 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} ∩ Fin) ↔ (𝑏 ⊆ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} ∧ 𝑏 ∈ Fin)) |
57 | | ssel 3910 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑏 ⊆ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} → (𝑡 ∈ 𝑏 → 𝑡 ∈ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧})) |
58 | | sseq1 3942 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 = 𝑡 → (𝑦 ⊆ 𝑧 ↔ 𝑡 ⊆ 𝑧)) |
59 | 58 | rexbidv 3225 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 = 𝑡 → (∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 ↔ ∃𝑧 ∈ 𝑐 𝑡 ⊆ 𝑧)) |
60 | 59 | elrab 3617 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑡 ∈ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} ↔ (𝑡 ∈ (fi‘𝑥) ∧ ∃𝑧 ∈ 𝑐 𝑡 ⊆ 𝑧)) |
61 | 60 | simprbi 496 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑡 ∈ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} → ∃𝑧 ∈ 𝑐 𝑡 ⊆ 𝑧) |
62 | 57, 61 | syl6 35 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑏 ⊆ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} → (𝑡 ∈ 𝑏 → ∃𝑧 ∈ 𝑐 𝑡 ⊆ 𝑧)) |
63 | 62 | ralrimiv 3106 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑏 ⊆ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} → ∀𝑡 ∈ 𝑏 ∃𝑧 ∈ 𝑐 𝑡 ⊆ 𝑧) |
64 | | sseq2 3943 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑧 = (𝑓‘𝑡) → (𝑡 ⊆ 𝑧 ↔ 𝑡 ⊆ (𝑓‘𝑡))) |
65 | 64 | ac6sfi 8988 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑏 ∈ Fin ∧ ∀𝑡 ∈ 𝑏 ∃𝑧 ∈ 𝑐 𝑡 ⊆ 𝑧) → ∃𝑓(𝑓:𝑏⟶𝑐 ∧ ∀𝑡 ∈ 𝑏 𝑡 ⊆ (𝑓‘𝑡))) |
66 | 65 | ex 412 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑏 ∈ Fin →
(∀𝑡 ∈ 𝑏 ∃𝑧 ∈ 𝑐 𝑡 ⊆ 𝑧 → ∃𝑓(𝑓:𝑏⟶𝑐 ∧ ∀𝑡 ∈ 𝑏 𝑡 ⊆ (𝑓‘𝑡)))) |
67 | 63, 66 | syl5 34 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑏 ∈ Fin → (𝑏 ⊆ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} → ∃𝑓(𝑓:𝑏⟶𝑐 ∧ ∀𝑡 ∈ 𝑏 𝑡 ⊆ (𝑓‘𝑡)))) |
68 | 67 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) ∧ 𝑏 ∈ Fin) → (𝑏 ⊆ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} → ∃𝑓(𝑓:𝑏⟶𝑐 ∧ ∀𝑡 ∈ 𝑏 𝑡 ⊆ (𝑓‘𝑡)))) |
69 | | simprll 775 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏⟶𝑐 ∧ ∀𝑡 ∈ 𝑏 𝑡 ⊆ (𝑓‘𝑡)) ∧ 𝑋 = ∪ 𝑏)) → 𝑓:𝑏⟶𝑐) |
70 | | frn 6591 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑓:𝑏⟶𝑐 → ran 𝑓 ⊆ 𝑐) |
71 | 69, 70 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏⟶𝑐 ∧ ∀𝑡 ∈ 𝑏 𝑡 ⊆ (𝑓‘𝑡)) ∧ 𝑋 = ∪ 𝑏)) → ran 𝑓 ⊆ 𝑐) |
72 | | simplr 765 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏⟶𝑐 ∧ ∀𝑡 ∈ 𝑏 𝑡 ⊆ (𝑓‘𝑡)) ∧ 𝑋 = ∪ 𝑏)) → 𝑏 ∈ Fin) |
73 | | ffn 6584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑓:𝑏⟶𝑐 → 𝑓 Fn 𝑏) |
74 | | dffn4 6678 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑓 Fn 𝑏 ↔ 𝑓:𝑏–onto→ran 𝑓) |
75 | 73, 74 | sylib 217 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑓:𝑏⟶𝑐 → 𝑓:𝑏–onto→ran 𝑓) |
76 | 75 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑓:𝑏⟶𝑐 ∧ ∀𝑡 ∈ 𝑏 𝑡 ⊆ (𝑓‘𝑡)) → 𝑓:𝑏–onto→ran 𝑓) |
77 | 76 | ad2antrl 724 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏⟶𝑐 ∧ ∀𝑡 ∈ 𝑏 𝑡 ⊆ (𝑓‘𝑡)) ∧ 𝑋 = ∪ 𝑏)) → 𝑓:𝑏–onto→ran 𝑓) |
78 | | fodomfi 9022 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑏 ∈ Fin ∧ 𝑓:𝑏–onto→ran 𝑓) → ran 𝑓 ≼ 𝑏) |
79 | 72, 77, 78 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏⟶𝑐 ∧ ∀𝑡 ∈ 𝑏 𝑡 ⊆ (𝑓‘𝑡)) ∧ 𝑋 = ∪ 𝑏)) → ran 𝑓 ≼ 𝑏) |
80 | | domfi 8935 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑏 ∈ Fin ∧ ran 𝑓 ≼ 𝑏) → ran 𝑓 ∈ Fin) |
81 | 72, 79, 80 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏⟶𝑐 ∧ ∀𝑡 ∈ 𝑏 𝑡 ⊆ (𝑓‘𝑡)) ∧ 𝑋 = ∪ 𝑏)) → ran 𝑓 ∈ Fin) |
82 | 71, 81 | jca 511 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏⟶𝑐 ∧ ∀𝑡 ∈ 𝑏 𝑡 ⊆ (𝑓‘𝑡)) ∧ 𝑋 = ∪ 𝑏)) → (ran 𝑓 ⊆ 𝑐 ∧ ran 𝑓 ∈ Fin)) |
83 | | elin 3899 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (ran
𝑓 ∈ (𝒫 𝑐 ∩ Fin) ↔ (ran 𝑓 ∈ 𝒫 𝑐 ∧ ran 𝑓 ∈ Fin)) |
84 | | vex 3426 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ 𝑐 ∈ V |
85 | 84 | elpw2 5264 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (ran
𝑓 ∈ 𝒫 𝑐 ↔ ran 𝑓 ⊆ 𝑐) |
86 | 85 | anbi1i 623 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((ran
𝑓 ∈ 𝒫 𝑐 ∧ ran 𝑓 ∈ Fin) ↔ (ran 𝑓 ⊆ 𝑐 ∧ ran 𝑓 ∈ Fin)) |
87 | 83, 86 | bitr2i 275 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((ran
𝑓 ⊆ 𝑐 ∧ ran 𝑓 ∈ Fin) ↔ ran 𝑓 ∈ (𝒫 𝑐 ∩ Fin)) |
88 | 82, 87 | sylib 217 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏⟶𝑐 ∧ ∀𝑡 ∈ 𝑏 𝑡 ⊆ (𝑓‘𝑡)) ∧ 𝑋 = ∪ 𝑏)) → ran 𝑓 ∈ (𝒫 𝑐 ∩ Fin)) |
89 | | simprr 769 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏⟶𝑐 ∧ ∀𝑡 ∈ 𝑏 𝑡 ⊆ (𝑓‘𝑡)) ∧ 𝑋 = ∪ 𝑏)) → 𝑋 = ∪ 𝑏) |
90 | | uniiun 4984 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ∪ 𝑏 =
∪ 𝑡 ∈ 𝑏 𝑡 |
91 | | simprlr 776 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏⟶𝑐 ∧ ∀𝑡 ∈ 𝑏 𝑡 ⊆ (𝑓‘𝑡)) ∧ 𝑋 = ∪ 𝑏)) → ∀𝑡 ∈ 𝑏 𝑡 ⊆ (𝑓‘𝑡)) |
92 | | ss2iun 4939 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(∀𝑡 ∈
𝑏 𝑡 ⊆ (𝑓‘𝑡) → ∪
𝑡 ∈ 𝑏 𝑡 ⊆ ∪
𝑡 ∈ 𝑏 (𝑓‘𝑡)) |
93 | 91, 92 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏⟶𝑐 ∧ ∀𝑡 ∈ 𝑏 𝑡 ⊆ (𝑓‘𝑡)) ∧ 𝑋 = ∪ 𝑏)) → ∪ 𝑡 ∈ 𝑏 𝑡 ⊆ ∪
𝑡 ∈ 𝑏 (𝑓‘𝑡)) |
94 | 90, 93 | eqsstrid 3965 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏⟶𝑐 ∧ ∀𝑡 ∈ 𝑏 𝑡 ⊆ (𝑓‘𝑡)) ∧ 𝑋 = ∪ 𝑏)) → ∪ 𝑏
⊆ ∪ 𝑡 ∈ 𝑏 (𝑓‘𝑡)) |
95 | | fniunfv 7102 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑓 Fn 𝑏 → ∪
𝑡 ∈ 𝑏 (𝑓‘𝑡) = ∪ ran 𝑓) |
96 | 69, 73, 95 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏⟶𝑐 ∧ ∀𝑡 ∈ 𝑏 𝑡 ⊆ (𝑓‘𝑡)) ∧ 𝑋 = ∪ 𝑏)) → ∪ 𝑡 ∈ 𝑏 (𝑓‘𝑡) = ∪ ran 𝑓) |
97 | 94, 96 | sseqtrd 3957 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏⟶𝑐 ∧ ∀𝑡 ∈ 𝑏 𝑡 ⊆ (𝑓‘𝑡)) ∧ 𝑋 = ∪ 𝑏)) → ∪ 𝑏
⊆ ∪ ran 𝑓) |
98 | 89, 97 | eqsstrd 3955 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏⟶𝑐 ∧ ∀𝑡 ∈ 𝑏 𝑡 ⊆ (𝑓‘𝑡)) ∧ 𝑋 = ∪ 𝑏)) → 𝑋 ⊆ ∪ ran
𝑓) |
99 | | simpll2 1211 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏⟶𝑐 ∧ ∀𝑡 ∈ 𝑏 𝑡 ⊆ (𝑓‘𝑡)) ∧ 𝑋 = ∪ 𝑏)) → 𝑐 ⊆ 𝐽) |
100 | 71, 99 | sstrd 3927 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏⟶𝑐 ∧ ∀𝑡 ∈ 𝑏 𝑡 ⊆ (𝑓‘𝑡)) ∧ 𝑋 = ∪ 𝑏)) → ran 𝑓 ⊆ 𝐽) |
101 | | uniss 4844 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (ran
𝑓 ⊆ 𝐽 → ∪ ran
𝑓 ⊆ ∪ 𝐽) |
102 | 101, 1 | sseqtrrdi 3968 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (ran
𝑓 ⊆ 𝐽 → ∪ ran
𝑓 ⊆ 𝑋) |
103 | 100, 102 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏⟶𝑐 ∧ ∀𝑡 ∈ 𝑏 𝑡 ⊆ (𝑓‘𝑡)) ∧ 𝑋 = ∪ 𝑏)) → ∪ ran 𝑓 ⊆ 𝑋) |
104 | 98, 103 | eqssd 3934 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏⟶𝑐 ∧ ∀𝑡 ∈ 𝑏 𝑡 ⊆ (𝑓‘𝑡)) ∧ 𝑋 = ∪ 𝑏)) → 𝑋 = ∪ ran 𝑓) |
105 | | unieq 4847 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑑 = ran 𝑓 → ∪ 𝑑 = ∪
ran 𝑓) |
106 | 105 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑑 = ran 𝑓 → (𝑋 = ∪ 𝑑 ↔ 𝑋 = ∪ ran 𝑓)) |
107 | 106 | rspcev 3552 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((ran
𝑓 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑋 = ∪
ran 𝑓) → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) |
108 | 88, 104, 107 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏⟶𝑐 ∧ ∀𝑡 ∈ 𝑏 𝑡 ⊆ (𝑓‘𝑡)) ∧ 𝑋 = ∪ 𝑏)) → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) |
109 | 108 | exp32 420 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) ∧ 𝑏 ∈ Fin) → ((𝑓:𝑏⟶𝑐 ∧ ∀𝑡 ∈ 𝑏 𝑡 ⊆ (𝑓‘𝑡)) → (𝑋 = ∪ 𝑏 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑))) |
110 | 109 | exlimdv 1937 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) ∧ 𝑏 ∈ Fin) → (∃𝑓(𝑓:𝑏⟶𝑐 ∧ ∀𝑡 ∈ 𝑏 𝑡 ⊆ (𝑓‘𝑡)) → (𝑋 = ∪ 𝑏 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑))) |
111 | 68, 110 | syld 47 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) ∧ 𝑏 ∈ Fin) → (𝑏 ⊆ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} → (𝑋 = ∪ 𝑏 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑))) |
112 | 111 | ex 412 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) → (𝑏 ∈ Fin → (𝑏 ⊆ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} → (𝑋 = ∪ 𝑏 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑)))) |
113 | 112 | com23 86 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) → (𝑏 ⊆ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} → (𝑏 ∈ Fin → (𝑋 = ∪ 𝑏 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑)))) |
114 | 113 | impd 410 |
. . . . . . . . . . . . . . 15
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) → ((𝑏 ⊆ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} ∧ 𝑏 ∈ Fin) → (𝑋 = ∪ 𝑏 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑))) |
115 | 56, 114 | syl5bi 241 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) → (𝑏 ∈ (𝒫 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} ∩ Fin) → (𝑋 = ∪ 𝑏 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑))) |
116 | 115 | rexlimdv 3211 |
. . . . . . . . . . . . 13
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) → (∃𝑏 ∈ (𝒫 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧} ∩ Fin)𝑋 = ∪ 𝑏 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑)) |
117 | 55, 116 | syld 47 |
. . . . . . . . . . . 12
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) → (∀𝑎 ∈ 𝒫
(fi‘𝑥)(𝑋 = ∪
𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = ∪ 𝑏) → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑)) |
118 | 117 | 3exp 1117 |
. . . . . . . . . . 11
⊢ (𝐽 = (topGen‘(fi‘𝑥)) → (𝑐 ⊆ 𝐽 → (𝑋 = ∪ 𝑐 → (∀𝑎 ∈ 𝒫
(fi‘𝑥)(𝑋 = ∪
𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = ∪ 𝑏) → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑)))) |
119 | 118 | com34 91 |
. . . . . . . . . 10
⊢ (𝐽 = (topGen‘(fi‘𝑥)) → (𝑐 ⊆ 𝐽 → (∀𝑎 ∈ 𝒫 (fi‘𝑥)(𝑋 = ∪ 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = ∪ 𝑏) → (𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑)))) |
120 | 119 | com23 86 |
. . . . . . . . 9
⊢ (𝐽 = (topGen‘(fi‘𝑥)) → (∀𝑎 ∈ 𝒫
(fi‘𝑥)(𝑋 = ∪
𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = ∪ 𝑏) → (𝑐 ⊆ 𝐽 → (𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑)))) |
121 | 4, 120 | syl7bi 254 |
. . . . . . . 8
⊢ (𝐽 = (topGen‘(fi‘𝑥)) → (∀𝑎 ∈ 𝒫
(fi‘𝑥)(𝑋 = ∪
𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = ∪ 𝑏) → (𝑐 ∈ 𝒫 𝐽 → (𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑)))) |
122 | 121 | ralrimdv 3111 |
. . . . . . 7
⊢ (𝐽 = (topGen‘(fi‘𝑥)) → (∀𝑎 ∈ 𝒫
(fi‘𝑥)(𝑋 = ∪
𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = ∪ 𝑏) → ∀𝑐 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑))) |
123 | | fibas 22035 |
. . . . . . . . 9
⊢
(fi‘𝑥) ∈
TopBases |
124 | | tgcl 22027 |
. . . . . . . . 9
⊢
((fi‘𝑥) ∈
TopBases → (topGen‘(fi‘𝑥)) ∈ Top) |
125 | 123, 124 | ax-mp 5 |
. . . . . . . 8
⊢
(topGen‘(fi‘𝑥)) ∈ Top |
126 | | eleq1 2826 |
. . . . . . . 8
⊢ (𝐽 = (topGen‘(fi‘𝑥)) → (𝐽 ∈ Top ↔
(topGen‘(fi‘𝑥))
∈ Top)) |
127 | 125, 126 | mpbiri 257 |
. . . . . . 7
⊢ (𝐽 = (topGen‘(fi‘𝑥)) → 𝐽 ∈ Top) |
128 | 122, 127 | jctild 525 |
. . . . . 6
⊢ (𝐽 = (topGen‘(fi‘𝑥)) → (∀𝑎 ∈ 𝒫
(fi‘𝑥)(𝑋 = ∪
𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = ∪ 𝑏) → (𝐽 ∈ Top ∧ ∀𝑐 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑)))) |
129 | 1 | iscmp 22447 |
. . . . . 6
⊢ (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑐 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑))) |
130 | 128, 129 | syl6ibr 251 |
. . . . 5
⊢ (𝐽 = (topGen‘(fi‘𝑥)) → (∀𝑎 ∈ 𝒫
(fi‘𝑥)(𝑋 = ∪
𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = ∪ 𝑏) → 𝐽 ∈ Comp)) |
131 | 3, 130 | syld 47 |
. . . 4
⊢ (𝐽 = (topGen‘(fi‘𝑥)) → (∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) → 𝐽 ∈ Comp)) |
132 | 131 | imp 406 |
. . 3
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑)) → 𝐽 ∈ Comp) |
133 | 132 | exlimiv 1934 |
. 2
⊢
(∃𝑥(𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑)) → 𝐽 ∈ Comp) |
134 | 2, 133 | impbii 208 |
1
⊢ (𝐽 ∈ Comp ↔ ∃𝑥(𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑))) |