MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alexsubALT Structured version   Visualization version   GIF version

Theorem alexsubALT 23945
Description: The Alexander Subbase Theorem: a space is compact iff it has a subbase such that any cover taken from the subbase has a finite subcover. (Contributed by Jeff Hankins, 24-Jan-2010.) (Revised by Mario Carneiro, 11-Feb-2015.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
alexsubALT.1 𝑋 = 𝐽
Assertion
Ref Expression
alexsubALT (𝐽 ∈ Comp ↔ ∃𝑥(𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)))
Distinct variable groups:   𝑐,𝑑,𝑥,𝐽   𝑋,𝑐,𝑑,𝑥

Proof of Theorem alexsubALT
Dummy variables 𝑎 𝑏 𝑓 𝑡 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 alexsubALT.1 . . 3 𝑋 = 𝐽
21alexsubALTlem1 23941 . 2 (𝐽 ∈ Comp → ∃𝑥(𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)))
31alexsubALTlem4 23944 . . . . 5 (𝐽 = (topGen‘(fi‘𝑥)) → (∀𝑐 ∈ 𝒫 𝑥(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑) → ∀𝑎 ∈ 𝒫 (fi‘𝑥)(𝑋 = 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏)))
4 velpw 4571 . . . . . . . . 9 (𝑐 ∈ 𝒫 𝐽𝑐𝐽)
5 eleq2 2818 . . . . . . . . . . . . . . . . . . 19 (𝑋 = 𝑐 → (𝑡𝑋𝑡 𝑐))
653ad2ant3 1135 . . . . . . . . . . . . . . . . . 18 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → (𝑡𝑋𝑡 𝑐))
7 eluni 4877 . . . . . . . . . . . . . . . . . . . 20 (𝑡 𝑐 ↔ ∃𝑤(𝑡𝑤𝑤𝑐))
8 ssel 3943 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑐𝐽 → (𝑤𝑐𝑤𝐽))
9 eleq2 2818 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐽 = (topGen‘(fi‘𝑥)) → (𝑤𝐽𝑤 ∈ (topGen‘(fi‘𝑥))))
10 tg2 22859 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑤 ∈ (topGen‘(fi‘𝑥)) ∧ 𝑡𝑤) → ∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦𝑦𝑤))
1110ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑤 ∈ (topGen‘(fi‘𝑥)) → (𝑡𝑤 → ∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦𝑦𝑤)))
129, 11biimtrdi 253 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐽 = (topGen‘(fi‘𝑥)) → (𝑤𝐽 → (𝑡𝑤 → ∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦𝑦𝑤))))
138, 12sylan9r 508 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽) → (𝑤𝑐 → (𝑡𝑤 → ∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦𝑦𝑤))))
14133impia 1117 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑤𝑐) → (𝑡𝑤 → ∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦𝑦𝑤)))
15 sseq2 3976 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑧 = 𝑤 → (𝑦𝑧𝑦𝑤))
1615rspcev 3591 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑤𝑐𝑦𝑤) → ∃𝑧𝑐 𝑦𝑧)
1716ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑤𝑐 → (𝑦𝑤 → ∃𝑧𝑐 𝑦𝑧))
18173ad2ant3 1135 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑤𝑐) → (𝑦𝑤 → ∃𝑧𝑐 𝑦𝑧))
1918anim2d 612 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑤𝑐) → ((𝑡𝑦𝑦𝑤) → (𝑡𝑦 ∧ ∃𝑧𝑐 𝑦𝑧)))
2019reximdv 3149 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑤𝑐) → (∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦𝑦𝑤) → ∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦 ∧ ∃𝑧𝑐 𝑦𝑧)))
2114, 20syld 47 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑤𝑐) → (𝑡𝑤 → ∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦 ∧ ∃𝑧𝑐 𝑦𝑧)))
22213expia 1121 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽) → (𝑤𝑐 → (𝑡𝑤 → ∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦 ∧ ∃𝑧𝑐 𝑦𝑧))))
2322com23 86 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽) → (𝑡𝑤 → (𝑤𝑐 → ∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦 ∧ ∃𝑧𝑐 𝑦𝑧))))
2423impd 410 . . . . . . . . . . . . . . . . . . . . 21 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽) → ((𝑡𝑤𝑤𝑐) → ∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦 ∧ ∃𝑧𝑐 𝑦𝑧)))
2524exlimdv 1933 . . . . . . . . . . . . . . . . . . . 20 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽) → (∃𝑤(𝑡𝑤𝑤𝑐) → ∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦 ∧ ∃𝑧𝑐 𝑦𝑧)))
267, 25biimtrid 242 . . . . . . . . . . . . . . . . . . 19 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽) → (𝑡 𝑐 → ∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦 ∧ ∃𝑧𝑐 𝑦𝑧)))
27263adant3 1132 . . . . . . . . . . . . . . . . . 18 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → (𝑡 𝑐 → ∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦 ∧ ∃𝑧𝑐 𝑦𝑧)))
286, 27sylbid 240 . . . . . . . . . . . . . . . . 17 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → (𝑡𝑋 → ∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦 ∧ ∃𝑧𝑐 𝑦𝑧)))
29 ssel 3943 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝑧 → (𝑡𝑦𝑡𝑧))
30 elunii 4879 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑡𝑧𝑧𝑐) → 𝑡 𝑐)
3130expcom 413 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧𝑐 → (𝑡𝑧𝑡 𝑐))
326biimprd 248 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → (𝑡 𝑐𝑡𝑋))
3331, 32sylan9r 508 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑧𝑐) → (𝑡𝑧𝑡𝑋))
3429, 33syl9r 78 . . . . . . . . . . . . . . . . . . . . 21 (((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑧𝑐) → (𝑦𝑧 → (𝑡𝑦𝑡𝑋)))
3534rexlimdva 3135 . . . . . . . . . . . . . . . . . . . 20 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → (∃𝑧𝑐 𝑦𝑧 → (𝑡𝑦𝑡𝑋)))
3635com23 86 . . . . . . . . . . . . . . . . . . 19 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → (𝑡𝑦 → (∃𝑧𝑐 𝑦𝑧𝑡𝑋)))
3736impd 410 . . . . . . . . . . . . . . . . . 18 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → ((𝑡𝑦 ∧ ∃𝑧𝑐 𝑦𝑧) → 𝑡𝑋))
3837rexlimdvw 3140 . . . . . . . . . . . . . . . . 17 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → (∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦 ∧ ∃𝑧𝑐 𝑦𝑧) → 𝑡𝑋))
3928, 38impbid 212 . . . . . . . . . . . . . . . 16 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → (𝑡𝑋 ↔ ∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦 ∧ ∃𝑧𝑐 𝑦𝑧)))
40 elunirab 4889 . . . . . . . . . . . . . . . 16 (𝑡 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ↔ ∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦 ∧ ∃𝑧𝑐 𝑦𝑧))
4139, 40bitr4di 289 . . . . . . . . . . . . . . 15 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → (𝑡𝑋𝑡 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧}))
4241eqrdv 2728 . . . . . . . . . . . . . 14 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → 𝑋 = {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧})
43 ssrab2 4046 . . . . . . . . . . . . . . . 16 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ⊆ (fi‘𝑥)
44 fvex 6874 . . . . . . . . . . . . . . . . 17 (fi‘𝑥) ∈ V
4544elpw2 5292 . . . . . . . . . . . . . . . 16 ({𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ∈ 𝒫 (fi‘𝑥) ↔ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ⊆ (fi‘𝑥))
4643, 45mpbir 231 . . . . . . . . . . . . . . 15 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ∈ 𝒫 (fi‘𝑥)
47 unieq 4885 . . . . . . . . . . . . . . . . . 18 (𝑎 = {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → 𝑎 = {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧})
4847eqeq2d 2741 . . . . . . . . . . . . . . . . 17 (𝑎 = {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → (𝑋 = 𝑎𝑋 = {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧}))
49 pweq 4580 . . . . . . . . . . . . . . . . . . 19 (𝑎 = {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → 𝒫 𝑎 = 𝒫 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧})
5049ineq1d 4185 . . . . . . . . . . . . . . . . . 18 (𝑎 = {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → (𝒫 𝑎 ∩ Fin) = (𝒫 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ∩ Fin))
5150rexeqdv 3302 . . . . . . . . . . . . . . . . 17 (𝑎 = {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → (∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏 ↔ ∃𝑏 ∈ (𝒫 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ∩ Fin)𝑋 = 𝑏))
5248, 51imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑎 = {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → ((𝑋 = 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏) ↔ (𝑋 = {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → ∃𝑏 ∈ (𝒫 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ∩ Fin)𝑋 = 𝑏)))
5352rspcv 3587 . . . . . . . . . . . . . . 15 ({𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ∈ 𝒫 (fi‘𝑥) → (∀𝑎 ∈ 𝒫 (fi‘𝑥)(𝑋 = 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏) → (𝑋 = {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → ∃𝑏 ∈ (𝒫 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ∩ Fin)𝑋 = 𝑏)))
5446, 53ax-mp 5 . . . . . . . . . . . . . 14 (∀𝑎 ∈ 𝒫 (fi‘𝑥)(𝑋 = 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏) → (𝑋 = {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → ∃𝑏 ∈ (𝒫 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ∩ Fin)𝑋 = 𝑏))
5542, 54syl5com 31 . . . . . . . . . . . . 13 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → (∀𝑎 ∈ 𝒫 (fi‘𝑥)(𝑋 = 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏) → ∃𝑏 ∈ (𝒫 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ∩ Fin)𝑋 = 𝑏))
56 elfpw 9312 . . . . . . . . . . . . . . 15 (𝑏 ∈ (𝒫 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ∩ Fin) ↔ (𝑏 ⊆ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ∧ 𝑏 ∈ Fin))
57 ssel 3943 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 ⊆ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → (𝑡𝑏𝑡 ∈ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧}))
58 sseq1 3975 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 = 𝑡 → (𝑦𝑧𝑡𝑧))
5958rexbidv 3158 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 = 𝑡 → (∃𝑧𝑐 𝑦𝑧 ↔ ∃𝑧𝑐 𝑡𝑧))
6059elrab 3662 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 ∈ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ↔ (𝑡 ∈ (fi‘𝑥) ∧ ∃𝑧𝑐 𝑡𝑧))
6160simprbi 496 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 ∈ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → ∃𝑧𝑐 𝑡𝑧)
6257, 61syl6 35 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 ⊆ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → (𝑡𝑏 → ∃𝑧𝑐 𝑡𝑧))
6362ralrimiv 3125 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 ⊆ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → ∀𝑡𝑏𝑧𝑐 𝑡𝑧)
64 sseq2 3976 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 = (𝑓𝑡) → (𝑡𝑧𝑡 ⊆ (𝑓𝑡)))
6564ac6sfi 9238 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑏 ∈ Fin ∧ ∀𝑡𝑏𝑧𝑐 𝑡𝑧) → ∃𝑓(𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)))
6665ex 412 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 ∈ Fin → (∀𝑡𝑏𝑧𝑐 𝑡𝑧 → ∃𝑓(𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡))))
6763, 66syl5 34 . . . . . . . . . . . . . . . . . . . 20 (𝑏 ∈ Fin → (𝑏 ⊆ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → ∃𝑓(𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡))))
6867adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) → (𝑏 ⊆ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → ∃𝑓(𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡))))
69 simprll 778 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → 𝑓:𝑏𝑐)
70 frn 6698 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓:𝑏𝑐 → ran 𝑓𝑐)
7169, 70syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → ran 𝑓𝑐)
72 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → 𝑏 ∈ Fin)
73 ffn 6691 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑓:𝑏𝑐𝑓 Fn 𝑏)
74 dffn4 6781 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑓 Fn 𝑏𝑓:𝑏onto→ran 𝑓)
7573, 74sylib 218 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑓:𝑏𝑐𝑓:𝑏onto→ran 𝑓)
7675adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) → 𝑓:𝑏onto→ran 𝑓)
7776ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → 𝑓:𝑏onto→ran 𝑓)
78 fodomfi 9268 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑏 ∈ Fin ∧ 𝑓:𝑏onto→ran 𝑓) → ran 𝑓𝑏)
7972, 77, 78syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → ran 𝑓𝑏)
80 domfi 9159 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑏 ∈ Fin ∧ ran 𝑓𝑏) → ran 𝑓 ∈ Fin)
8172, 79, 80syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → ran 𝑓 ∈ Fin)
8271, 81jca 511 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → (ran 𝑓𝑐 ∧ ran 𝑓 ∈ Fin))
83 elin 3933 . . . . . . . . . . . . . . . . . . . . . . . 24 (ran 𝑓 ∈ (𝒫 𝑐 ∩ Fin) ↔ (ran 𝑓 ∈ 𝒫 𝑐 ∧ ran 𝑓 ∈ Fin))
84 vex 3454 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑐 ∈ V
8584elpw2 5292 . . . . . . . . . . . . . . . . . . . . . . . . 25 (ran 𝑓 ∈ 𝒫 𝑐 ↔ ran 𝑓𝑐)
8685anbi1i 624 . . . . . . . . . . . . . . . . . . . . . . . 24 ((ran 𝑓 ∈ 𝒫 𝑐 ∧ ran 𝑓 ∈ Fin) ↔ (ran 𝑓𝑐 ∧ ran 𝑓 ∈ Fin))
8783, 86bitr2i 276 . . . . . . . . . . . . . . . . . . . . . . 23 ((ran 𝑓𝑐 ∧ ran 𝑓 ∈ Fin) ↔ ran 𝑓 ∈ (𝒫 𝑐 ∩ Fin))
8882, 87sylib 218 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → ran 𝑓 ∈ (𝒫 𝑐 ∩ Fin))
89 simprr 772 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → 𝑋 = 𝑏)
90 uniiun 5025 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑏 = 𝑡𝑏 𝑡
91 simprlr 779 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡))
92 ss2iun 4977 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡) → 𝑡𝑏 𝑡 𝑡𝑏 (𝑓𝑡))
9391, 92syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → 𝑡𝑏 𝑡 𝑡𝑏 (𝑓𝑡))
9490, 93eqsstrid 3988 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → 𝑏 𝑡𝑏 (𝑓𝑡))
95 fniunfv 7224 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓 Fn 𝑏 𝑡𝑏 (𝑓𝑡) = ran 𝑓)
9669, 73, 953syl 18 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → 𝑡𝑏 (𝑓𝑡) = ran 𝑓)
9794, 96sseqtrd 3986 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → 𝑏 ran 𝑓)
9889, 97eqsstrd 3984 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → 𝑋 ran 𝑓)
99 simpll2 1214 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → 𝑐𝐽)
10071, 99sstrd 3960 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → ran 𝑓𝐽)
101 uniss 4882 . . . . . . . . . . . . . . . . . . . . . . . . 25 (ran 𝑓𝐽 ran 𝑓 𝐽)
102101, 1sseqtrrdi 3991 . . . . . . . . . . . . . . . . . . . . . . . 24 (ran 𝑓𝐽 ran 𝑓𝑋)
103100, 102syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → ran 𝑓𝑋)
10498, 103eqssd 3967 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → 𝑋 = ran 𝑓)
105 unieq 4885 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑑 = ran 𝑓 𝑑 = ran 𝑓)
106105eqeq2d 2741 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑑 = ran 𝑓 → (𝑋 = 𝑑𝑋 = ran 𝑓))
107106rspcev 3591 . . . . . . . . . . . . . . . . . . . . . 22 ((ran 𝑓 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑋 = ran 𝑓) → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)
10888, 104, 107syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)
109108exp32 420 . . . . . . . . . . . . . . . . . . . 20 (((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) → ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) → (𝑋 = 𝑏 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)))
110109exlimdv 1933 . . . . . . . . . . . . . . . . . . 19 (((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) → (∃𝑓(𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) → (𝑋 = 𝑏 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)))
11168, 110syld 47 . . . . . . . . . . . . . . . . . 18 (((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) → (𝑏 ⊆ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → (𝑋 = 𝑏 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)))
112111ex 412 . . . . . . . . . . . . . . . . 17 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → (𝑏 ∈ Fin → (𝑏 ⊆ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → (𝑋 = 𝑏 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑))))
113112com23 86 . . . . . . . . . . . . . . . 16 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → (𝑏 ⊆ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → (𝑏 ∈ Fin → (𝑋 = 𝑏 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑))))
114113impd 410 . . . . . . . . . . . . . . 15 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → ((𝑏 ⊆ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ∧ 𝑏 ∈ Fin) → (𝑋 = 𝑏 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)))
11556, 114biimtrid 242 . . . . . . . . . . . . . 14 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → (𝑏 ∈ (𝒫 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ∩ Fin) → (𝑋 = 𝑏 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)))
116115rexlimdv 3133 . . . . . . . . . . . . 13 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → (∃𝑏 ∈ (𝒫 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ∩ Fin)𝑋 = 𝑏 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑))
11755, 116syld 47 . . . . . . . . . . . 12 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → (∀𝑎 ∈ 𝒫 (fi‘𝑥)(𝑋 = 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏) → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑))
1181173exp 1119 . . . . . . . . . . 11 (𝐽 = (topGen‘(fi‘𝑥)) → (𝑐𝐽 → (𝑋 = 𝑐 → (∀𝑎 ∈ 𝒫 (fi‘𝑥)(𝑋 = 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏) → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑))))
119118com34 91 . . . . . . . . . 10 (𝐽 = (topGen‘(fi‘𝑥)) → (𝑐𝐽 → (∀𝑎 ∈ 𝒫 (fi‘𝑥)(𝑋 = 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏) → (𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑))))
120119com23 86 . . . . . . . . 9 (𝐽 = (topGen‘(fi‘𝑥)) → (∀𝑎 ∈ 𝒫 (fi‘𝑥)(𝑋 = 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏) → (𝑐𝐽 → (𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑))))
1214, 120syl7bi 255 . . . . . . . 8 (𝐽 = (topGen‘(fi‘𝑥)) → (∀𝑎 ∈ 𝒫 (fi‘𝑥)(𝑋 = 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏) → (𝑐 ∈ 𝒫 𝐽 → (𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑))))
122121ralrimdv 3132 . . . . . . 7 (𝐽 = (topGen‘(fi‘𝑥)) → (∀𝑎 ∈ 𝒫 (fi‘𝑥)(𝑋 = 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏) → ∀𝑐 ∈ 𝒫 𝐽(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)))
123 fibas 22871 . . . . . . . . 9 (fi‘𝑥) ∈ TopBases
124 tgcl 22863 . . . . . . . . 9 ((fi‘𝑥) ∈ TopBases → (topGen‘(fi‘𝑥)) ∈ Top)
125123, 124ax-mp 5 . . . . . . . 8 (topGen‘(fi‘𝑥)) ∈ Top
126 eleq1 2817 . . . . . . . 8 (𝐽 = (topGen‘(fi‘𝑥)) → (𝐽 ∈ Top ↔ (topGen‘(fi‘𝑥)) ∈ Top))
127125, 126mpbiri 258 . . . . . . 7 (𝐽 = (topGen‘(fi‘𝑥)) → 𝐽 ∈ Top)
128122, 127jctild 525 . . . . . 6 (𝐽 = (topGen‘(fi‘𝑥)) → (∀𝑎 ∈ 𝒫 (fi‘𝑥)(𝑋 = 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏) → (𝐽 ∈ Top ∧ ∀𝑐 ∈ 𝒫 𝐽(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑))))
1291iscmp 23282 . . . . . 6 (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑐 ∈ 𝒫 𝐽(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)))
130128, 129imbitrrdi 252 . . . . 5 (𝐽 = (topGen‘(fi‘𝑥)) → (∀𝑎 ∈ 𝒫 (fi‘𝑥)(𝑋 = 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏) → 𝐽 ∈ Comp))
1313, 130syld 47 . . . 4 (𝐽 = (topGen‘(fi‘𝑥)) → (∀𝑐 ∈ 𝒫 𝑥(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑) → 𝐽 ∈ Comp))
132131imp 406 . . 3 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)) → 𝐽 ∈ Comp)
133132exlimiv 1930 . 2 (∃𝑥(𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)) → 𝐽 ∈ Comp)
1342, 133impbii 209 1 (𝐽 ∈ Comp ↔ ∃𝑥(𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wral 3045  wrex 3054  {crab 3408  cin 3916  wss 3917  𝒫 cpw 4566   cuni 4874   ciun 4958   class class class wbr 5110  ran crn 5642   Fn wfn 6509  wf 6510  ontowfo 6512  cfv 6514  cdom 8919  Fincfn 8921  ficfi 9368  topGenctg 17407  Topctop 22787  TopBasesctb 22839  Compccmp 23280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-ac2 10423
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-rpss 7702  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-1o 8437  df-2o 8438  df-en 8922  df-dom 8923  df-fin 8925  df-fi 9369  df-card 9899  df-ac 10076  df-topgen 17413  df-top 22788  df-bases 22840  df-cmp 23281
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator