MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alexsubALT Structured version   Visualization version   GIF version

Theorem alexsubALT 23954
Description: The Alexander Subbase Theorem: a space is compact iff it has a subbase such that any cover taken from the subbase has a finite subcover. (Contributed by Jeff Hankins, 24-Jan-2010.) (Revised by Mario Carneiro, 11-Feb-2015.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
alexsubALT.1 𝑋 = 𝐽
Assertion
Ref Expression
alexsubALT (𝐽 ∈ Comp ↔ ∃𝑥(𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)))
Distinct variable groups:   𝑐,𝑑,𝑥,𝐽   𝑋,𝑐,𝑑,𝑥

Proof of Theorem alexsubALT
Dummy variables 𝑎 𝑏 𝑓 𝑡 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 alexsubALT.1 . . 3 𝑋 = 𝐽
21alexsubALTlem1 23950 . 2 (𝐽 ∈ Comp → ∃𝑥(𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)))
31alexsubALTlem4 23953 . . . . 5 (𝐽 = (topGen‘(fi‘𝑥)) → (∀𝑐 ∈ 𝒫 𝑥(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑) → ∀𝑎 ∈ 𝒫 (fi‘𝑥)(𝑋 = 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏)))
4 velpw 4558 . . . . . . . . 9 (𝑐 ∈ 𝒫 𝐽𝑐𝐽)
5 eleq2 2817 . . . . . . . . . . . . . . . . . . 19 (𝑋 = 𝑐 → (𝑡𝑋𝑡 𝑐))
653ad2ant3 1135 . . . . . . . . . . . . . . . . . 18 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → (𝑡𝑋𝑡 𝑐))
7 eluni 4864 . . . . . . . . . . . . . . . . . . . 20 (𝑡 𝑐 ↔ ∃𝑤(𝑡𝑤𝑤𝑐))
8 ssel 3931 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑐𝐽 → (𝑤𝑐𝑤𝐽))
9 eleq2 2817 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐽 = (topGen‘(fi‘𝑥)) → (𝑤𝐽𝑤 ∈ (topGen‘(fi‘𝑥))))
10 tg2 22868 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑤 ∈ (topGen‘(fi‘𝑥)) ∧ 𝑡𝑤) → ∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦𝑦𝑤))
1110ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑤 ∈ (topGen‘(fi‘𝑥)) → (𝑡𝑤 → ∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦𝑦𝑤)))
129, 11biimtrdi 253 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐽 = (topGen‘(fi‘𝑥)) → (𝑤𝐽 → (𝑡𝑤 → ∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦𝑦𝑤))))
138, 12sylan9r 508 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽) → (𝑤𝑐 → (𝑡𝑤 → ∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦𝑦𝑤))))
14133impia 1117 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑤𝑐) → (𝑡𝑤 → ∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦𝑦𝑤)))
15 sseq2 3964 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑧 = 𝑤 → (𝑦𝑧𝑦𝑤))
1615rspcev 3579 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑤𝑐𝑦𝑤) → ∃𝑧𝑐 𝑦𝑧)
1716ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑤𝑐 → (𝑦𝑤 → ∃𝑧𝑐 𝑦𝑧))
18173ad2ant3 1135 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑤𝑐) → (𝑦𝑤 → ∃𝑧𝑐 𝑦𝑧))
1918anim2d 612 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑤𝑐) → ((𝑡𝑦𝑦𝑤) → (𝑡𝑦 ∧ ∃𝑧𝑐 𝑦𝑧)))
2019reximdv 3144 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑤𝑐) → (∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦𝑦𝑤) → ∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦 ∧ ∃𝑧𝑐 𝑦𝑧)))
2114, 20syld 47 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑤𝑐) → (𝑡𝑤 → ∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦 ∧ ∃𝑧𝑐 𝑦𝑧)))
22213expia 1121 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽) → (𝑤𝑐 → (𝑡𝑤 → ∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦 ∧ ∃𝑧𝑐 𝑦𝑧))))
2322com23 86 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽) → (𝑡𝑤 → (𝑤𝑐 → ∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦 ∧ ∃𝑧𝑐 𝑦𝑧))))
2423impd 410 . . . . . . . . . . . . . . . . . . . . 21 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽) → ((𝑡𝑤𝑤𝑐) → ∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦 ∧ ∃𝑧𝑐 𝑦𝑧)))
2524exlimdv 1933 . . . . . . . . . . . . . . . . . . . 20 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽) → (∃𝑤(𝑡𝑤𝑤𝑐) → ∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦 ∧ ∃𝑧𝑐 𝑦𝑧)))
267, 25biimtrid 242 . . . . . . . . . . . . . . . . . . 19 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽) → (𝑡 𝑐 → ∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦 ∧ ∃𝑧𝑐 𝑦𝑧)))
27263adant3 1132 . . . . . . . . . . . . . . . . . 18 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → (𝑡 𝑐 → ∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦 ∧ ∃𝑧𝑐 𝑦𝑧)))
286, 27sylbid 240 . . . . . . . . . . . . . . . . 17 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → (𝑡𝑋 → ∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦 ∧ ∃𝑧𝑐 𝑦𝑧)))
29 ssel 3931 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝑧 → (𝑡𝑦𝑡𝑧))
30 elunii 4866 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑡𝑧𝑧𝑐) → 𝑡 𝑐)
3130expcom 413 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧𝑐 → (𝑡𝑧𝑡 𝑐))
326biimprd 248 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → (𝑡 𝑐𝑡𝑋))
3331, 32sylan9r 508 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑧𝑐) → (𝑡𝑧𝑡𝑋))
3429, 33syl9r 78 . . . . . . . . . . . . . . . . . . . . 21 (((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑧𝑐) → (𝑦𝑧 → (𝑡𝑦𝑡𝑋)))
3534rexlimdva 3130 . . . . . . . . . . . . . . . . . . . 20 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → (∃𝑧𝑐 𝑦𝑧 → (𝑡𝑦𝑡𝑋)))
3635com23 86 . . . . . . . . . . . . . . . . . . 19 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → (𝑡𝑦 → (∃𝑧𝑐 𝑦𝑧𝑡𝑋)))
3736impd 410 . . . . . . . . . . . . . . . . . 18 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → ((𝑡𝑦 ∧ ∃𝑧𝑐 𝑦𝑧) → 𝑡𝑋))
3837rexlimdvw 3135 . . . . . . . . . . . . . . . . 17 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → (∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦 ∧ ∃𝑧𝑐 𝑦𝑧) → 𝑡𝑋))
3928, 38impbid 212 . . . . . . . . . . . . . . . 16 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → (𝑡𝑋 ↔ ∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦 ∧ ∃𝑧𝑐 𝑦𝑧)))
40 elunirab 4876 . . . . . . . . . . . . . . . 16 (𝑡 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ↔ ∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦 ∧ ∃𝑧𝑐 𝑦𝑧))
4139, 40bitr4di 289 . . . . . . . . . . . . . . 15 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → (𝑡𝑋𝑡 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧}))
4241eqrdv 2727 . . . . . . . . . . . . . 14 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → 𝑋 = {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧})
43 ssrab2 4033 . . . . . . . . . . . . . . . 16 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ⊆ (fi‘𝑥)
44 fvex 6839 . . . . . . . . . . . . . . . . 17 (fi‘𝑥) ∈ V
4544elpw2 5276 . . . . . . . . . . . . . . . 16 ({𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ∈ 𝒫 (fi‘𝑥) ↔ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ⊆ (fi‘𝑥))
4643, 45mpbir 231 . . . . . . . . . . . . . . 15 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ∈ 𝒫 (fi‘𝑥)
47 unieq 4872 . . . . . . . . . . . . . . . . . 18 (𝑎 = {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → 𝑎 = {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧})
4847eqeq2d 2740 . . . . . . . . . . . . . . . . 17 (𝑎 = {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → (𝑋 = 𝑎𝑋 = {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧}))
49 pweq 4567 . . . . . . . . . . . . . . . . . . 19 (𝑎 = {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → 𝒫 𝑎 = 𝒫 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧})
5049ineq1d 4172 . . . . . . . . . . . . . . . . . 18 (𝑎 = {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → (𝒫 𝑎 ∩ Fin) = (𝒫 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ∩ Fin))
5150rexeqdv 3291 . . . . . . . . . . . . . . . . 17 (𝑎 = {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → (∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏 ↔ ∃𝑏 ∈ (𝒫 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ∩ Fin)𝑋 = 𝑏))
5248, 51imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑎 = {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → ((𝑋 = 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏) ↔ (𝑋 = {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → ∃𝑏 ∈ (𝒫 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ∩ Fin)𝑋 = 𝑏)))
5352rspcv 3575 . . . . . . . . . . . . . . 15 ({𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ∈ 𝒫 (fi‘𝑥) → (∀𝑎 ∈ 𝒫 (fi‘𝑥)(𝑋 = 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏) → (𝑋 = {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → ∃𝑏 ∈ (𝒫 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ∩ Fin)𝑋 = 𝑏)))
5446, 53ax-mp 5 . . . . . . . . . . . . . 14 (∀𝑎 ∈ 𝒫 (fi‘𝑥)(𝑋 = 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏) → (𝑋 = {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → ∃𝑏 ∈ (𝒫 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ∩ Fin)𝑋 = 𝑏))
5542, 54syl5com 31 . . . . . . . . . . . . 13 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → (∀𝑎 ∈ 𝒫 (fi‘𝑥)(𝑋 = 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏) → ∃𝑏 ∈ (𝒫 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ∩ Fin)𝑋 = 𝑏))
56 elfpw 9263 . . . . . . . . . . . . . . 15 (𝑏 ∈ (𝒫 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ∩ Fin) ↔ (𝑏 ⊆ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ∧ 𝑏 ∈ Fin))
57 ssel 3931 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 ⊆ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → (𝑡𝑏𝑡 ∈ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧}))
58 sseq1 3963 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 = 𝑡 → (𝑦𝑧𝑡𝑧))
5958rexbidv 3153 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 = 𝑡 → (∃𝑧𝑐 𝑦𝑧 ↔ ∃𝑧𝑐 𝑡𝑧))
6059elrab 3650 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 ∈ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ↔ (𝑡 ∈ (fi‘𝑥) ∧ ∃𝑧𝑐 𝑡𝑧))
6160simprbi 496 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 ∈ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → ∃𝑧𝑐 𝑡𝑧)
6257, 61syl6 35 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 ⊆ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → (𝑡𝑏 → ∃𝑧𝑐 𝑡𝑧))
6362ralrimiv 3120 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 ⊆ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → ∀𝑡𝑏𝑧𝑐 𝑡𝑧)
64 sseq2 3964 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 = (𝑓𝑡) → (𝑡𝑧𝑡 ⊆ (𝑓𝑡)))
6564ac6sfi 9189 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑏 ∈ Fin ∧ ∀𝑡𝑏𝑧𝑐 𝑡𝑧) → ∃𝑓(𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)))
6665ex 412 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 ∈ Fin → (∀𝑡𝑏𝑧𝑐 𝑡𝑧 → ∃𝑓(𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡))))
6763, 66syl5 34 . . . . . . . . . . . . . . . . . . . 20 (𝑏 ∈ Fin → (𝑏 ⊆ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → ∃𝑓(𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡))))
6867adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) → (𝑏 ⊆ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → ∃𝑓(𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡))))
69 simprll 778 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → 𝑓:𝑏𝑐)
70 frn 6663 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓:𝑏𝑐 → ran 𝑓𝑐)
7169, 70syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → ran 𝑓𝑐)
72 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → 𝑏 ∈ Fin)
73 ffn 6656 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑓:𝑏𝑐𝑓 Fn 𝑏)
74 dffn4 6746 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑓 Fn 𝑏𝑓:𝑏onto→ran 𝑓)
7573, 74sylib 218 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑓:𝑏𝑐𝑓:𝑏onto→ran 𝑓)
7675adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) → 𝑓:𝑏onto→ran 𝑓)
7776ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → 𝑓:𝑏onto→ran 𝑓)
78 fodomfi 9219 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑏 ∈ Fin ∧ 𝑓:𝑏onto→ran 𝑓) → ran 𝑓𝑏)
7972, 77, 78syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → ran 𝑓𝑏)
80 domfi 9113 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑏 ∈ Fin ∧ ran 𝑓𝑏) → ran 𝑓 ∈ Fin)
8172, 79, 80syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → ran 𝑓 ∈ Fin)
8271, 81jca 511 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → (ran 𝑓𝑐 ∧ ran 𝑓 ∈ Fin))
83 elin 3921 . . . . . . . . . . . . . . . . . . . . . . . 24 (ran 𝑓 ∈ (𝒫 𝑐 ∩ Fin) ↔ (ran 𝑓 ∈ 𝒫 𝑐 ∧ ran 𝑓 ∈ Fin))
84 vex 3442 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑐 ∈ V
8584elpw2 5276 . . . . . . . . . . . . . . . . . . . . . . . . 25 (ran 𝑓 ∈ 𝒫 𝑐 ↔ ran 𝑓𝑐)
8685anbi1i 624 . . . . . . . . . . . . . . . . . . . . . . . 24 ((ran 𝑓 ∈ 𝒫 𝑐 ∧ ran 𝑓 ∈ Fin) ↔ (ran 𝑓𝑐 ∧ ran 𝑓 ∈ Fin))
8783, 86bitr2i 276 . . . . . . . . . . . . . . . . . . . . . . 23 ((ran 𝑓𝑐 ∧ ran 𝑓 ∈ Fin) ↔ ran 𝑓 ∈ (𝒫 𝑐 ∩ Fin))
8882, 87sylib 218 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → ran 𝑓 ∈ (𝒫 𝑐 ∩ Fin))
89 simprr 772 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → 𝑋 = 𝑏)
90 uniiun 5010 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑏 = 𝑡𝑏 𝑡
91 simprlr 779 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡))
92 ss2iun 4963 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡) → 𝑡𝑏 𝑡 𝑡𝑏 (𝑓𝑡))
9391, 92syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → 𝑡𝑏 𝑡 𝑡𝑏 (𝑓𝑡))
9490, 93eqsstrid 3976 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → 𝑏 𝑡𝑏 (𝑓𝑡))
95 fniunfv 7187 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓 Fn 𝑏 𝑡𝑏 (𝑓𝑡) = ran 𝑓)
9669, 73, 953syl 18 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → 𝑡𝑏 (𝑓𝑡) = ran 𝑓)
9794, 96sseqtrd 3974 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → 𝑏 ran 𝑓)
9889, 97eqsstrd 3972 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → 𝑋 ran 𝑓)
99 simpll2 1214 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → 𝑐𝐽)
10071, 99sstrd 3948 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → ran 𝑓𝐽)
101 uniss 4869 . . . . . . . . . . . . . . . . . . . . . . . . 25 (ran 𝑓𝐽 ran 𝑓 𝐽)
102101, 1sseqtrrdi 3979 . . . . . . . . . . . . . . . . . . . . . . . 24 (ran 𝑓𝐽 ran 𝑓𝑋)
103100, 102syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → ran 𝑓𝑋)
10498, 103eqssd 3955 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → 𝑋 = ran 𝑓)
105 unieq 4872 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑑 = ran 𝑓 𝑑 = ran 𝑓)
106105eqeq2d 2740 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑑 = ran 𝑓 → (𝑋 = 𝑑𝑋 = ran 𝑓))
107106rspcev 3579 . . . . . . . . . . . . . . . . . . . . . 22 ((ran 𝑓 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑋 = ran 𝑓) → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)
10888, 104, 107syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)
109108exp32 420 . . . . . . . . . . . . . . . . . . . 20 (((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) → ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) → (𝑋 = 𝑏 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)))
110109exlimdv 1933 . . . . . . . . . . . . . . . . . . 19 (((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) → (∃𝑓(𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) → (𝑋 = 𝑏 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)))
11168, 110syld 47 . . . . . . . . . . . . . . . . . 18 (((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) → (𝑏 ⊆ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → (𝑋 = 𝑏 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)))
112111ex 412 . . . . . . . . . . . . . . . . 17 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → (𝑏 ∈ Fin → (𝑏 ⊆ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → (𝑋 = 𝑏 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑))))
113112com23 86 . . . . . . . . . . . . . . . 16 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → (𝑏 ⊆ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → (𝑏 ∈ Fin → (𝑋 = 𝑏 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑))))
114113impd 410 . . . . . . . . . . . . . . 15 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → ((𝑏 ⊆ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ∧ 𝑏 ∈ Fin) → (𝑋 = 𝑏 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)))
11556, 114biimtrid 242 . . . . . . . . . . . . . 14 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → (𝑏 ∈ (𝒫 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ∩ Fin) → (𝑋 = 𝑏 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)))
116115rexlimdv 3128 . . . . . . . . . . . . 13 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → (∃𝑏 ∈ (𝒫 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ∩ Fin)𝑋 = 𝑏 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑))
11755, 116syld 47 . . . . . . . . . . . 12 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → (∀𝑎 ∈ 𝒫 (fi‘𝑥)(𝑋 = 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏) → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑))
1181173exp 1119 . . . . . . . . . . 11 (𝐽 = (topGen‘(fi‘𝑥)) → (𝑐𝐽 → (𝑋 = 𝑐 → (∀𝑎 ∈ 𝒫 (fi‘𝑥)(𝑋 = 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏) → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑))))
119118com34 91 . . . . . . . . . 10 (𝐽 = (topGen‘(fi‘𝑥)) → (𝑐𝐽 → (∀𝑎 ∈ 𝒫 (fi‘𝑥)(𝑋 = 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏) → (𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑))))
120119com23 86 . . . . . . . . 9 (𝐽 = (topGen‘(fi‘𝑥)) → (∀𝑎 ∈ 𝒫 (fi‘𝑥)(𝑋 = 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏) → (𝑐𝐽 → (𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑))))
1214, 120syl7bi 255 . . . . . . . 8 (𝐽 = (topGen‘(fi‘𝑥)) → (∀𝑎 ∈ 𝒫 (fi‘𝑥)(𝑋 = 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏) → (𝑐 ∈ 𝒫 𝐽 → (𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑))))
122121ralrimdv 3127 . . . . . . 7 (𝐽 = (topGen‘(fi‘𝑥)) → (∀𝑎 ∈ 𝒫 (fi‘𝑥)(𝑋 = 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏) → ∀𝑐 ∈ 𝒫 𝐽(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)))
123 fibas 22880 . . . . . . . . 9 (fi‘𝑥) ∈ TopBases
124 tgcl 22872 . . . . . . . . 9 ((fi‘𝑥) ∈ TopBases → (topGen‘(fi‘𝑥)) ∈ Top)
125123, 124ax-mp 5 . . . . . . . 8 (topGen‘(fi‘𝑥)) ∈ Top
126 eleq1 2816 . . . . . . . 8 (𝐽 = (topGen‘(fi‘𝑥)) → (𝐽 ∈ Top ↔ (topGen‘(fi‘𝑥)) ∈ Top))
127125, 126mpbiri 258 . . . . . . 7 (𝐽 = (topGen‘(fi‘𝑥)) → 𝐽 ∈ Top)
128122, 127jctild 525 . . . . . 6 (𝐽 = (topGen‘(fi‘𝑥)) → (∀𝑎 ∈ 𝒫 (fi‘𝑥)(𝑋 = 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏) → (𝐽 ∈ Top ∧ ∀𝑐 ∈ 𝒫 𝐽(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑))))
1291iscmp 23291 . . . . . 6 (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑐 ∈ 𝒫 𝐽(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)))
130128, 129imbitrrdi 252 . . . . 5 (𝐽 = (topGen‘(fi‘𝑥)) → (∀𝑎 ∈ 𝒫 (fi‘𝑥)(𝑋 = 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏) → 𝐽 ∈ Comp))
1313, 130syld 47 . . . 4 (𝐽 = (topGen‘(fi‘𝑥)) → (∀𝑐 ∈ 𝒫 𝑥(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑) → 𝐽 ∈ Comp))
132131imp 406 . . 3 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)) → 𝐽 ∈ Comp)
133132exlimiv 1930 . 2 (∃𝑥(𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)) → 𝐽 ∈ Comp)
1342, 133impbii 209 1 (𝐽 ∈ Comp ↔ ∃𝑥(𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053  {crab 3396  cin 3904  wss 3905  𝒫 cpw 4553   cuni 4861   ciun 4944   class class class wbr 5095  ran crn 5624   Fn wfn 6481  wf 6482  ontowfo 6484  cfv 6486  cdom 8877  Fincfn 8879  ficfi 9319  topGenctg 17359  Topctop 22796  TopBasesctb 22848  Compccmp 23289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-ac2 10376
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-rpss 7663  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-1o 8395  df-2o 8396  df-en 8880  df-dom 8881  df-fin 8883  df-fi 9320  df-card 9854  df-ac 10029  df-topgen 17365  df-top 22797  df-bases 22849  df-cmp 23290
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator