MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alexsubALT Structured version   Visualization version   GIF version

Theorem alexsubALT 23967
Description: The Alexander Subbase Theorem: a space is compact iff it has a subbase such that any cover taken from the subbase has a finite subcover. (Contributed by Jeff Hankins, 24-Jan-2010.) (Revised by Mario Carneiro, 11-Feb-2015.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
alexsubALT.1 𝑋 = 𝐽
Assertion
Ref Expression
alexsubALT (𝐽 ∈ Comp ↔ ∃𝑥(𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)))
Distinct variable groups:   𝑐,𝑑,𝑥,𝐽   𝑋,𝑐,𝑑,𝑥

Proof of Theorem alexsubALT
Dummy variables 𝑎 𝑏 𝑓 𝑡 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 alexsubALT.1 . . 3 𝑋 = 𝐽
21alexsubALTlem1 23963 . 2 (𝐽 ∈ Comp → ∃𝑥(𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)))
31alexsubALTlem4 23966 . . . . 5 (𝐽 = (topGen‘(fi‘𝑥)) → (∀𝑐 ∈ 𝒫 𝑥(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑) → ∀𝑎 ∈ 𝒫 (fi‘𝑥)(𝑋 = 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏)))
4 velpw 4554 . . . . . . . . 9 (𝑐 ∈ 𝒫 𝐽𝑐𝐽)
5 eleq2 2822 . . . . . . . . . . . . . . . . . . 19 (𝑋 = 𝑐 → (𝑡𝑋𝑡 𝑐))
653ad2ant3 1135 . . . . . . . . . . . . . . . . . 18 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → (𝑡𝑋𝑡 𝑐))
7 eluni 4861 . . . . . . . . . . . . . . . . . . . 20 (𝑡 𝑐 ↔ ∃𝑤(𝑡𝑤𝑤𝑐))
8 ssel 3924 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑐𝐽 → (𝑤𝑐𝑤𝐽))
9 eleq2 2822 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐽 = (topGen‘(fi‘𝑥)) → (𝑤𝐽𝑤 ∈ (topGen‘(fi‘𝑥))))
10 tg2 22881 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑤 ∈ (topGen‘(fi‘𝑥)) ∧ 𝑡𝑤) → ∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦𝑦𝑤))
1110ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑤 ∈ (topGen‘(fi‘𝑥)) → (𝑡𝑤 → ∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦𝑦𝑤)))
129, 11biimtrdi 253 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐽 = (topGen‘(fi‘𝑥)) → (𝑤𝐽 → (𝑡𝑤 → ∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦𝑦𝑤))))
138, 12sylan9r 508 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽) → (𝑤𝑐 → (𝑡𝑤 → ∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦𝑦𝑤))))
14133impia 1117 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑤𝑐) → (𝑡𝑤 → ∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦𝑦𝑤)))
15 sseq2 3957 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑧 = 𝑤 → (𝑦𝑧𝑦𝑤))
1615rspcev 3573 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑤𝑐𝑦𝑤) → ∃𝑧𝑐 𝑦𝑧)
1716ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑤𝑐 → (𝑦𝑤 → ∃𝑧𝑐 𝑦𝑧))
18173ad2ant3 1135 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑤𝑐) → (𝑦𝑤 → ∃𝑧𝑐 𝑦𝑧))
1918anim2d 612 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑤𝑐) → ((𝑡𝑦𝑦𝑤) → (𝑡𝑦 ∧ ∃𝑧𝑐 𝑦𝑧)))
2019reximdv 3148 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑤𝑐) → (∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦𝑦𝑤) → ∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦 ∧ ∃𝑧𝑐 𝑦𝑧)))
2114, 20syld 47 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑤𝑐) → (𝑡𝑤 → ∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦 ∧ ∃𝑧𝑐 𝑦𝑧)))
22213expia 1121 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽) → (𝑤𝑐 → (𝑡𝑤 → ∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦 ∧ ∃𝑧𝑐 𝑦𝑧))))
2322com23 86 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽) → (𝑡𝑤 → (𝑤𝑐 → ∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦 ∧ ∃𝑧𝑐 𝑦𝑧))))
2423impd 410 . . . . . . . . . . . . . . . . . . . . 21 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽) → ((𝑡𝑤𝑤𝑐) → ∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦 ∧ ∃𝑧𝑐 𝑦𝑧)))
2524exlimdv 1934 . . . . . . . . . . . . . . . . . . . 20 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽) → (∃𝑤(𝑡𝑤𝑤𝑐) → ∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦 ∧ ∃𝑧𝑐 𝑦𝑧)))
267, 25biimtrid 242 . . . . . . . . . . . . . . . . . . 19 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽) → (𝑡 𝑐 → ∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦 ∧ ∃𝑧𝑐 𝑦𝑧)))
27263adant3 1132 . . . . . . . . . . . . . . . . . 18 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → (𝑡 𝑐 → ∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦 ∧ ∃𝑧𝑐 𝑦𝑧)))
286, 27sylbid 240 . . . . . . . . . . . . . . . . 17 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → (𝑡𝑋 → ∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦 ∧ ∃𝑧𝑐 𝑦𝑧)))
29 ssel 3924 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝑧 → (𝑡𝑦𝑡𝑧))
30 elunii 4863 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑡𝑧𝑧𝑐) → 𝑡 𝑐)
3130expcom 413 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧𝑐 → (𝑡𝑧𝑡 𝑐))
326biimprd 248 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → (𝑡 𝑐𝑡𝑋))
3331, 32sylan9r 508 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑧𝑐) → (𝑡𝑧𝑡𝑋))
3429, 33syl9r 78 . . . . . . . . . . . . . . . . . . . . 21 (((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑧𝑐) → (𝑦𝑧 → (𝑡𝑦𝑡𝑋)))
3534rexlimdva 3134 . . . . . . . . . . . . . . . . . . . 20 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → (∃𝑧𝑐 𝑦𝑧 → (𝑡𝑦𝑡𝑋)))
3635com23 86 . . . . . . . . . . . . . . . . . . 19 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → (𝑡𝑦 → (∃𝑧𝑐 𝑦𝑧𝑡𝑋)))
3736impd 410 . . . . . . . . . . . . . . . . . 18 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → ((𝑡𝑦 ∧ ∃𝑧𝑐 𝑦𝑧) → 𝑡𝑋))
3837rexlimdvw 3139 . . . . . . . . . . . . . . . . 17 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → (∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦 ∧ ∃𝑧𝑐 𝑦𝑧) → 𝑡𝑋))
3928, 38impbid 212 . . . . . . . . . . . . . . . 16 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → (𝑡𝑋 ↔ ∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦 ∧ ∃𝑧𝑐 𝑦𝑧)))
40 elunirab 4873 . . . . . . . . . . . . . . . 16 (𝑡 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ↔ ∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦 ∧ ∃𝑧𝑐 𝑦𝑧))
4139, 40bitr4di 289 . . . . . . . . . . . . . . 15 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → (𝑡𝑋𝑡 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧}))
4241eqrdv 2731 . . . . . . . . . . . . . 14 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → 𝑋 = {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧})
43 ssrab2 4029 . . . . . . . . . . . . . . . 16 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ⊆ (fi‘𝑥)
44 fvex 6841 . . . . . . . . . . . . . . . . 17 (fi‘𝑥) ∈ V
4544elpw2 5274 . . . . . . . . . . . . . . . 16 ({𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ∈ 𝒫 (fi‘𝑥) ↔ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ⊆ (fi‘𝑥))
4643, 45mpbir 231 . . . . . . . . . . . . . . 15 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ∈ 𝒫 (fi‘𝑥)
47 unieq 4869 . . . . . . . . . . . . . . . . . 18 (𝑎 = {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → 𝑎 = {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧})
4847eqeq2d 2744 . . . . . . . . . . . . . . . . 17 (𝑎 = {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → (𝑋 = 𝑎𝑋 = {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧}))
49 pweq 4563 . . . . . . . . . . . . . . . . . . 19 (𝑎 = {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → 𝒫 𝑎 = 𝒫 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧})
5049ineq1d 4168 . . . . . . . . . . . . . . . . . 18 (𝑎 = {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → (𝒫 𝑎 ∩ Fin) = (𝒫 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ∩ Fin))
5150rexeqdv 3294 . . . . . . . . . . . . . . . . 17 (𝑎 = {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → (∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏 ↔ ∃𝑏 ∈ (𝒫 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ∩ Fin)𝑋 = 𝑏))
5248, 51imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑎 = {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → ((𝑋 = 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏) ↔ (𝑋 = {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → ∃𝑏 ∈ (𝒫 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ∩ Fin)𝑋 = 𝑏)))
5352rspcv 3569 . . . . . . . . . . . . . . 15 ({𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ∈ 𝒫 (fi‘𝑥) → (∀𝑎 ∈ 𝒫 (fi‘𝑥)(𝑋 = 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏) → (𝑋 = {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → ∃𝑏 ∈ (𝒫 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ∩ Fin)𝑋 = 𝑏)))
5446, 53ax-mp 5 . . . . . . . . . . . . . 14 (∀𝑎 ∈ 𝒫 (fi‘𝑥)(𝑋 = 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏) → (𝑋 = {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → ∃𝑏 ∈ (𝒫 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ∩ Fin)𝑋 = 𝑏))
5542, 54syl5com 31 . . . . . . . . . . . . 13 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → (∀𝑎 ∈ 𝒫 (fi‘𝑥)(𝑋 = 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏) → ∃𝑏 ∈ (𝒫 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ∩ Fin)𝑋 = 𝑏))
56 elfpw 9245 . . . . . . . . . . . . . . 15 (𝑏 ∈ (𝒫 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ∩ Fin) ↔ (𝑏 ⊆ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ∧ 𝑏 ∈ Fin))
57 ssel 3924 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 ⊆ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → (𝑡𝑏𝑡 ∈ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧}))
58 sseq1 3956 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 = 𝑡 → (𝑦𝑧𝑡𝑧))
5958rexbidv 3157 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 = 𝑡 → (∃𝑧𝑐 𝑦𝑧 ↔ ∃𝑧𝑐 𝑡𝑧))
6059elrab 3643 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 ∈ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ↔ (𝑡 ∈ (fi‘𝑥) ∧ ∃𝑧𝑐 𝑡𝑧))
6160simprbi 496 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 ∈ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → ∃𝑧𝑐 𝑡𝑧)
6257, 61syl6 35 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 ⊆ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → (𝑡𝑏 → ∃𝑧𝑐 𝑡𝑧))
6362ralrimiv 3124 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 ⊆ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → ∀𝑡𝑏𝑧𝑐 𝑡𝑧)
64 sseq2 3957 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 = (𝑓𝑡) → (𝑡𝑧𝑡 ⊆ (𝑓𝑡)))
6564ac6sfi 9175 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑏 ∈ Fin ∧ ∀𝑡𝑏𝑧𝑐 𝑡𝑧) → ∃𝑓(𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)))
6665ex 412 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 ∈ Fin → (∀𝑡𝑏𝑧𝑐 𝑡𝑧 → ∃𝑓(𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡))))
6763, 66syl5 34 . . . . . . . . . . . . . . . . . . . 20 (𝑏 ∈ Fin → (𝑏 ⊆ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → ∃𝑓(𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡))))
6867adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) → (𝑏 ⊆ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → ∃𝑓(𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡))))
69 simprll 778 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → 𝑓:𝑏𝑐)
70 frn 6663 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓:𝑏𝑐 → ran 𝑓𝑐)
7169, 70syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → ran 𝑓𝑐)
72 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → 𝑏 ∈ Fin)
73 ffn 6656 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑓:𝑏𝑐𝑓 Fn 𝑏)
74 dffn4 6746 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑓 Fn 𝑏𝑓:𝑏onto→ran 𝑓)
7573, 74sylib 218 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑓:𝑏𝑐𝑓:𝑏onto→ran 𝑓)
7675adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) → 𝑓:𝑏onto→ran 𝑓)
7776ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → 𝑓:𝑏onto→ran 𝑓)
78 fodomfi 9203 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑏 ∈ Fin ∧ 𝑓:𝑏onto→ran 𝑓) → ran 𝑓𝑏)
7972, 77, 78syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → ran 𝑓𝑏)
80 domfi 9105 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑏 ∈ Fin ∧ ran 𝑓𝑏) → ran 𝑓 ∈ Fin)
8172, 79, 80syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → ran 𝑓 ∈ Fin)
8271, 81jca 511 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → (ran 𝑓𝑐 ∧ ran 𝑓 ∈ Fin))
83 elin 3914 . . . . . . . . . . . . . . . . . . . . . . . 24 (ran 𝑓 ∈ (𝒫 𝑐 ∩ Fin) ↔ (ran 𝑓 ∈ 𝒫 𝑐 ∧ ran 𝑓 ∈ Fin))
84 vex 3441 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑐 ∈ V
8584elpw2 5274 . . . . . . . . . . . . . . . . . . . . . . . . 25 (ran 𝑓 ∈ 𝒫 𝑐 ↔ ran 𝑓𝑐)
8685anbi1i 624 . . . . . . . . . . . . . . . . . . . . . . . 24 ((ran 𝑓 ∈ 𝒫 𝑐 ∧ ran 𝑓 ∈ Fin) ↔ (ran 𝑓𝑐 ∧ ran 𝑓 ∈ Fin))
8783, 86bitr2i 276 . . . . . . . . . . . . . . . . . . . . . . 23 ((ran 𝑓𝑐 ∧ ran 𝑓 ∈ Fin) ↔ ran 𝑓 ∈ (𝒫 𝑐 ∩ Fin))
8882, 87sylib 218 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → ran 𝑓 ∈ (𝒫 𝑐 ∩ Fin))
89 simprr 772 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → 𝑋 = 𝑏)
90 uniiun 5009 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑏 = 𝑡𝑏 𝑡
91 simprlr 779 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡))
92 ss2iun 4960 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡) → 𝑡𝑏 𝑡 𝑡𝑏 (𝑓𝑡))
9391, 92syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → 𝑡𝑏 𝑡 𝑡𝑏 (𝑓𝑡))
9490, 93eqsstrid 3969 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → 𝑏 𝑡𝑏 (𝑓𝑡))
95 fniunfv 7187 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓 Fn 𝑏 𝑡𝑏 (𝑓𝑡) = ran 𝑓)
9669, 73, 953syl 18 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → 𝑡𝑏 (𝑓𝑡) = ran 𝑓)
9794, 96sseqtrd 3967 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → 𝑏 ran 𝑓)
9889, 97eqsstrd 3965 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → 𝑋 ran 𝑓)
99 simpll2 1214 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → 𝑐𝐽)
10071, 99sstrd 3941 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → ran 𝑓𝐽)
101 uniss 4866 . . . . . . . . . . . . . . . . . . . . . . . . 25 (ran 𝑓𝐽 ran 𝑓 𝐽)
102101, 1sseqtrrdi 3972 . . . . . . . . . . . . . . . . . . . . . . . 24 (ran 𝑓𝐽 ran 𝑓𝑋)
103100, 102syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → ran 𝑓𝑋)
10498, 103eqssd 3948 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → 𝑋 = ran 𝑓)
105 unieq 4869 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑑 = ran 𝑓 𝑑 = ran 𝑓)
106105eqeq2d 2744 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑑 = ran 𝑓 → (𝑋 = 𝑑𝑋 = ran 𝑓))
107106rspcev 3573 . . . . . . . . . . . . . . . . . . . . . 22 ((ran 𝑓 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑋 = ran 𝑓) → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)
10888, 104, 107syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)
109108exp32 420 . . . . . . . . . . . . . . . . . . . 20 (((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) → ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) → (𝑋 = 𝑏 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)))
110109exlimdv 1934 . . . . . . . . . . . . . . . . . . 19 (((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) → (∃𝑓(𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) → (𝑋 = 𝑏 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)))
11168, 110syld 47 . . . . . . . . . . . . . . . . . 18 (((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) → (𝑏 ⊆ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → (𝑋 = 𝑏 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)))
112111ex 412 . . . . . . . . . . . . . . . . 17 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → (𝑏 ∈ Fin → (𝑏 ⊆ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → (𝑋 = 𝑏 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑))))
113112com23 86 . . . . . . . . . . . . . . . 16 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → (𝑏 ⊆ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → (𝑏 ∈ Fin → (𝑋 = 𝑏 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑))))
114113impd 410 . . . . . . . . . . . . . . 15 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → ((𝑏 ⊆ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ∧ 𝑏 ∈ Fin) → (𝑋 = 𝑏 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)))
11556, 114biimtrid 242 . . . . . . . . . . . . . 14 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → (𝑏 ∈ (𝒫 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ∩ Fin) → (𝑋 = 𝑏 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)))
116115rexlimdv 3132 . . . . . . . . . . . . 13 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → (∃𝑏 ∈ (𝒫 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ∩ Fin)𝑋 = 𝑏 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑))
11755, 116syld 47 . . . . . . . . . . . 12 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → (∀𝑎 ∈ 𝒫 (fi‘𝑥)(𝑋 = 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏) → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑))
1181173exp 1119 . . . . . . . . . . 11 (𝐽 = (topGen‘(fi‘𝑥)) → (𝑐𝐽 → (𝑋 = 𝑐 → (∀𝑎 ∈ 𝒫 (fi‘𝑥)(𝑋 = 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏) → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑))))
119118com34 91 . . . . . . . . . 10 (𝐽 = (topGen‘(fi‘𝑥)) → (𝑐𝐽 → (∀𝑎 ∈ 𝒫 (fi‘𝑥)(𝑋 = 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏) → (𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑))))
120119com23 86 . . . . . . . . 9 (𝐽 = (topGen‘(fi‘𝑥)) → (∀𝑎 ∈ 𝒫 (fi‘𝑥)(𝑋 = 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏) → (𝑐𝐽 → (𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑))))
1214, 120syl7bi 255 . . . . . . . 8 (𝐽 = (topGen‘(fi‘𝑥)) → (∀𝑎 ∈ 𝒫 (fi‘𝑥)(𝑋 = 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏) → (𝑐 ∈ 𝒫 𝐽 → (𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑))))
122121ralrimdv 3131 . . . . . . 7 (𝐽 = (topGen‘(fi‘𝑥)) → (∀𝑎 ∈ 𝒫 (fi‘𝑥)(𝑋 = 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏) → ∀𝑐 ∈ 𝒫 𝐽(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)))
123 fibas 22893 . . . . . . . . 9 (fi‘𝑥) ∈ TopBases
124 tgcl 22885 . . . . . . . . 9 ((fi‘𝑥) ∈ TopBases → (topGen‘(fi‘𝑥)) ∈ Top)
125123, 124ax-mp 5 . . . . . . . 8 (topGen‘(fi‘𝑥)) ∈ Top
126 eleq1 2821 . . . . . . . 8 (𝐽 = (topGen‘(fi‘𝑥)) → (𝐽 ∈ Top ↔ (topGen‘(fi‘𝑥)) ∈ Top))
127125, 126mpbiri 258 . . . . . . 7 (𝐽 = (topGen‘(fi‘𝑥)) → 𝐽 ∈ Top)
128122, 127jctild 525 . . . . . 6 (𝐽 = (topGen‘(fi‘𝑥)) → (∀𝑎 ∈ 𝒫 (fi‘𝑥)(𝑋 = 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏) → (𝐽 ∈ Top ∧ ∀𝑐 ∈ 𝒫 𝐽(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑))))
1291iscmp 23304 . . . . . 6 (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑐 ∈ 𝒫 𝐽(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)))
130128, 129imbitrrdi 252 . . . . 5 (𝐽 = (topGen‘(fi‘𝑥)) → (∀𝑎 ∈ 𝒫 (fi‘𝑥)(𝑋 = 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏) → 𝐽 ∈ Comp))
1313, 130syld 47 . . . 4 (𝐽 = (topGen‘(fi‘𝑥)) → (∀𝑐 ∈ 𝒫 𝑥(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑) → 𝐽 ∈ Comp))
132131imp 406 . . 3 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)) → 𝐽 ∈ Comp)
133132exlimiv 1931 . 2 (∃𝑥(𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)) → 𝐽 ∈ Comp)
1342, 133impbii 209 1 (𝐽 ∈ Comp ↔ ∃𝑥(𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2113  wral 3048  wrex 3057  {crab 3396  cin 3897  wss 3898  𝒫 cpw 4549   cuni 4858   ciun 4941   class class class wbr 5093  ran crn 5620   Fn wfn 6481  wf 6482  ontowfo 6484  cfv 6486  cdom 8873  Fincfn 8875  ficfi 9301  topGenctg 17343  Topctop 22809  TopBasesctb 22861  Compccmp 23302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-ac2 10361
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-rpss 7662  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-1o 8391  df-2o 8392  df-en 8876  df-dom 8877  df-fin 8879  df-fi 9302  df-card 9839  df-ac 10014  df-topgen 17349  df-top 22810  df-bases 22862  df-cmp 23303
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator