MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alexsubALT Structured version   Visualization version   GIF version

Theorem alexsubALT 24060
Description: The Alexander Subbase Theorem: a space is compact iff it has a subbase such that any cover taken from the subbase has a finite subcover. (Contributed by Jeff Hankins, 24-Jan-2010.) (Revised by Mario Carneiro, 11-Feb-2015.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
alexsubALT.1 𝑋 = 𝐽
Assertion
Ref Expression
alexsubALT (𝐽 ∈ Comp ↔ ∃𝑥(𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)))
Distinct variable groups:   𝑐,𝑑,𝑥,𝐽   𝑋,𝑐,𝑑,𝑥

Proof of Theorem alexsubALT
Dummy variables 𝑎 𝑏 𝑓 𝑡 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 alexsubALT.1 . . 3 𝑋 = 𝐽
21alexsubALTlem1 24056 . 2 (𝐽 ∈ Comp → ∃𝑥(𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)))
31alexsubALTlem4 24059 . . . . 5 (𝐽 = (topGen‘(fi‘𝑥)) → (∀𝑐 ∈ 𝒫 𝑥(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑) → ∀𝑎 ∈ 𝒫 (fi‘𝑥)(𝑋 = 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏)))
4 velpw 4604 . . . . . . . . 9 (𝑐 ∈ 𝒫 𝐽𝑐𝐽)
5 eleq2 2829 . . . . . . . . . . . . . . . . . . 19 (𝑋 = 𝑐 → (𝑡𝑋𝑡 𝑐))
653ad2ant3 1135 . . . . . . . . . . . . . . . . . 18 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → (𝑡𝑋𝑡 𝑐))
7 eluni 4909 . . . . . . . . . . . . . . . . . . . 20 (𝑡 𝑐 ↔ ∃𝑤(𝑡𝑤𝑤𝑐))
8 ssel 3976 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑐𝐽 → (𝑤𝑐𝑤𝐽))
9 eleq2 2829 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐽 = (topGen‘(fi‘𝑥)) → (𝑤𝐽𝑤 ∈ (topGen‘(fi‘𝑥))))
10 tg2 22973 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑤 ∈ (topGen‘(fi‘𝑥)) ∧ 𝑡𝑤) → ∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦𝑦𝑤))
1110ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑤 ∈ (topGen‘(fi‘𝑥)) → (𝑡𝑤 → ∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦𝑦𝑤)))
129, 11biimtrdi 253 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐽 = (topGen‘(fi‘𝑥)) → (𝑤𝐽 → (𝑡𝑤 → ∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦𝑦𝑤))))
138, 12sylan9r 508 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽) → (𝑤𝑐 → (𝑡𝑤 → ∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦𝑦𝑤))))
14133impia 1117 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑤𝑐) → (𝑡𝑤 → ∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦𝑦𝑤)))
15 sseq2 4009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑧 = 𝑤 → (𝑦𝑧𝑦𝑤))
1615rspcev 3621 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑤𝑐𝑦𝑤) → ∃𝑧𝑐 𝑦𝑧)
1716ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑤𝑐 → (𝑦𝑤 → ∃𝑧𝑐 𝑦𝑧))
18173ad2ant3 1135 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑤𝑐) → (𝑦𝑤 → ∃𝑧𝑐 𝑦𝑧))
1918anim2d 612 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑤𝑐) → ((𝑡𝑦𝑦𝑤) → (𝑡𝑦 ∧ ∃𝑧𝑐 𝑦𝑧)))
2019reximdv 3169 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑤𝑐) → (∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦𝑦𝑤) → ∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦 ∧ ∃𝑧𝑐 𝑦𝑧)))
2114, 20syld 47 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑤𝑐) → (𝑡𝑤 → ∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦 ∧ ∃𝑧𝑐 𝑦𝑧)))
22213expia 1121 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽) → (𝑤𝑐 → (𝑡𝑤 → ∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦 ∧ ∃𝑧𝑐 𝑦𝑧))))
2322com23 86 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽) → (𝑡𝑤 → (𝑤𝑐 → ∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦 ∧ ∃𝑧𝑐 𝑦𝑧))))
2423impd 410 . . . . . . . . . . . . . . . . . . . . 21 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽) → ((𝑡𝑤𝑤𝑐) → ∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦 ∧ ∃𝑧𝑐 𝑦𝑧)))
2524exlimdv 1932 . . . . . . . . . . . . . . . . . . . 20 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽) → (∃𝑤(𝑡𝑤𝑤𝑐) → ∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦 ∧ ∃𝑧𝑐 𝑦𝑧)))
267, 25biimtrid 242 . . . . . . . . . . . . . . . . . . 19 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽) → (𝑡 𝑐 → ∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦 ∧ ∃𝑧𝑐 𝑦𝑧)))
27263adant3 1132 . . . . . . . . . . . . . . . . . 18 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → (𝑡 𝑐 → ∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦 ∧ ∃𝑧𝑐 𝑦𝑧)))
286, 27sylbid 240 . . . . . . . . . . . . . . . . 17 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → (𝑡𝑋 → ∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦 ∧ ∃𝑧𝑐 𝑦𝑧)))
29 ssel 3976 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝑧 → (𝑡𝑦𝑡𝑧))
30 elunii 4911 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑡𝑧𝑧𝑐) → 𝑡 𝑐)
3130expcom 413 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧𝑐 → (𝑡𝑧𝑡 𝑐))
326biimprd 248 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → (𝑡 𝑐𝑡𝑋))
3331, 32sylan9r 508 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑧𝑐) → (𝑡𝑧𝑡𝑋))
3429, 33syl9r 78 . . . . . . . . . . . . . . . . . . . . 21 (((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑧𝑐) → (𝑦𝑧 → (𝑡𝑦𝑡𝑋)))
3534rexlimdva 3154 . . . . . . . . . . . . . . . . . . . 20 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → (∃𝑧𝑐 𝑦𝑧 → (𝑡𝑦𝑡𝑋)))
3635com23 86 . . . . . . . . . . . . . . . . . . 19 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → (𝑡𝑦 → (∃𝑧𝑐 𝑦𝑧𝑡𝑋)))
3736impd 410 . . . . . . . . . . . . . . . . . 18 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → ((𝑡𝑦 ∧ ∃𝑧𝑐 𝑦𝑧) → 𝑡𝑋))
3837rexlimdvw 3159 . . . . . . . . . . . . . . . . 17 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → (∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦 ∧ ∃𝑧𝑐 𝑦𝑧) → 𝑡𝑋))
3928, 38impbid 212 . . . . . . . . . . . . . . . 16 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → (𝑡𝑋 ↔ ∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦 ∧ ∃𝑧𝑐 𝑦𝑧)))
40 elunirab 4921 . . . . . . . . . . . . . . . 16 (𝑡 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ↔ ∃𝑦 ∈ (fi‘𝑥)(𝑡𝑦 ∧ ∃𝑧𝑐 𝑦𝑧))
4139, 40bitr4di 289 . . . . . . . . . . . . . . 15 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → (𝑡𝑋𝑡 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧}))
4241eqrdv 2734 . . . . . . . . . . . . . 14 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → 𝑋 = {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧})
43 ssrab2 4079 . . . . . . . . . . . . . . . 16 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ⊆ (fi‘𝑥)
44 fvex 6918 . . . . . . . . . . . . . . . . 17 (fi‘𝑥) ∈ V
4544elpw2 5333 . . . . . . . . . . . . . . . 16 ({𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ∈ 𝒫 (fi‘𝑥) ↔ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ⊆ (fi‘𝑥))
4643, 45mpbir 231 . . . . . . . . . . . . . . 15 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ∈ 𝒫 (fi‘𝑥)
47 unieq 4917 . . . . . . . . . . . . . . . . . 18 (𝑎 = {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → 𝑎 = {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧})
4847eqeq2d 2747 . . . . . . . . . . . . . . . . 17 (𝑎 = {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → (𝑋 = 𝑎𝑋 = {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧}))
49 pweq 4613 . . . . . . . . . . . . . . . . . . 19 (𝑎 = {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → 𝒫 𝑎 = 𝒫 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧})
5049ineq1d 4218 . . . . . . . . . . . . . . . . . 18 (𝑎 = {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → (𝒫 𝑎 ∩ Fin) = (𝒫 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ∩ Fin))
5150rexeqdv 3326 . . . . . . . . . . . . . . . . 17 (𝑎 = {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → (∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏 ↔ ∃𝑏 ∈ (𝒫 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ∩ Fin)𝑋 = 𝑏))
5248, 51imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑎 = {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → ((𝑋 = 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏) ↔ (𝑋 = {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → ∃𝑏 ∈ (𝒫 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ∩ Fin)𝑋 = 𝑏)))
5352rspcv 3617 . . . . . . . . . . . . . . 15 ({𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ∈ 𝒫 (fi‘𝑥) → (∀𝑎 ∈ 𝒫 (fi‘𝑥)(𝑋 = 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏) → (𝑋 = {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → ∃𝑏 ∈ (𝒫 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ∩ Fin)𝑋 = 𝑏)))
5446, 53ax-mp 5 . . . . . . . . . . . . . 14 (∀𝑎 ∈ 𝒫 (fi‘𝑥)(𝑋 = 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏) → (𝑋 = {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → ∃𝑏 ∈ (𝒫 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ∩ Fin)𝑋 = 𝑏))
5542, 54syl5com 31 . . . . . . . . . . . . 13 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → (∀𝑎 ∈ 𝒫 (fi‘𝑥)(𝑋 = 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏) → ∃𝑏 ∈ (𝒫 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ∩ Fin)𝑋 = 𝑏))
56 elfpw 9395 . . . . . . . . . . . . . . 15 (𝑏 ∈ (𝒫 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ∩ Fin) ↔ (𝑏 ⊆ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ∧ 𝑏 ∈ Fin))
57 ssel 3976 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 ⊆ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → (𝑡𝑏𝑡 ∈ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧}))
58 sseq1 4008 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 = 𝑡 → (𝑦𝑧𝑡𝑧))
5958rexbidv 3178 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 = 𝑡 → (∃𝑧𝑐 𝑦𝑧 ↔ ∃𝑧𝑐 𝑡𝑧))
6059elrab 3691 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 ∈ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ↔ (𝑡 ∈ (fi‘𝑥) ∧ ∃𝑧𝑐 𝑡𝑧))
6160simprbi 496 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 ∈ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → ∃𝑧𝑐 𝑡𝑧)
6257, 61syl6 35 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 ⊆ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → (𝑡𝑏 → ∃𝑧𝑐 𝑡𝑧))
6362ralrimiv 3144 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 ⊆ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → ∀𝑡𝑏𝑧𝑐 𝑡𝑧)
64 sseq2 4009 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 = (𝑓𝑡) → (𝑡𝑧𝑡 ⊆ (𝑓𝑡)))
6564ac6sfi 9321 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑏 ∈ Fin ∧ ∀𝑡𝑏𝑧𝑐 𝑡𝑧) → ∃𝑓(𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)))
6665ex 412 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 ∈ Fin → (∀𝑡𝑏𝑧𝑐 𝑡𝑧 → ∃𝑓(𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡))))
6763, 66syl5 34 . . . . . . . . . . . . . . . . . . . 20 (𝑏 ∈ Fin → (𝑏 ⊆ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → ∃𝑓(𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡))))
6867adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) → (𝑏 ⊆ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → ∃𝑓(𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡))))
69 simprll 778 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → 𝑓:𝑏𝑐)
70 frn 6742 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓:𝑏𝑐 → ran 𝑓𝑐)
7169, 70syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → ran 𝑓𝑐)
72 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → 𝑏 ∈ Fin)
73 ffn 6735 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑓:𝑏𝑐𝑓 Fn 𝑏)
74 dffn4 6825 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑓 Fn 𝑏𝑓:𝑏onto→ran 𝑓)
7573, 74sylib 218 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑓:𝑏𝑐𝑓:𝑏onto→ran 𝑓)
7675adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) → 𝑓:𝑏onto→ran 𝑓)
7776ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → 𝑓:𝑏onto→ran 𝑓)
78 fodomfi 9351 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑏 ∈ Fin ∧ 𝑓:𝑏onto→ran 𝑓) → ran 𝑓𝑏)
7972, 77, 78syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → ran 𝑓𝑏)
80 domfi 9230 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑏 ∈ Fin ∧ ran 𝑓𝑏) → ran 𝑓 ∈ Fin)
8172, 79, 80syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → ran 𝑓 ∈ Fin)
8271, 81jca 511 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → (ran 𝑓𝑐 ∧ ran 𝑓 ∈ Fin))
83 elin 3966 . . . . . . . . . . . . . . . . . . . . . . . 24 (ran 𝑓 ∈ (𝒫 𝑐 ∩ Fin) ↔ (ran 𝑓 ∈ 𝒫 𝑐 ∧ ran 𝑓 ∈ Fin))
84 vex 3483 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑐 ∈ V
8584elpw2 5333 . . . . . . . . . . . . . . . . . . . . . . . . 25 (ran 𝑓 ∈ 𝒫 𝑐 ↔ ran 𝑓𝑐)
8685anbi1i 624 . . . . . . . . . . . . . . . . . . . . . . . 24 ((ran 𝑓 ∈ 𝒫 𝑐 ∧ ran 𝑓 ∈ Fin) ↔ (ran 𝑓𝑐 ∧ ran 𝑓 ∈ Fin))
8783, 86bitr2i 276 . . . . . . . . . . . . . . . . . . . . . . 23 ((ran 𝑓𝑐 ∧ ran 𝑓 ∈ Fin) ↔ ran 𝑓 ∈ (𝒫 𝑐 ∩ Fin))
8882, 87sylib 218 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → ran 𝑓 ∈ (𝒫 𝑐 ∩ Fin))
89 simprr 772 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → 𝑋 = 𝑏)
90 uniiun 5057 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑏 = 𝑡𝑏 𝑡
91 simprlr 779 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡))
92 ss2iun 5009 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡) → 𝑡𝑏 𝑡 𝑡𝑏 (𝑓𝑡))
9391, 92syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → 𝑡𝑏 𝑡 𝑡𝑏 (𝑓𝑡))
9490, 93eqsstrid 4021 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → 𝑏 𝑡𝑏 (𝑓𝑡))
95 fniunfv 7268 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓 Fn 𝑏 𝑡𝑏 (𝑓𝑡) = ran 𝑓)
9669, 73, 953syl 18 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → 𝑡𝑏 (𝑓𝑡) = ran 𝑓)
9794, 96sseqtrd 4019 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → 𝑏 ran 𝑓)
9889, 97eqsstrd 4017 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → 𝑋 ran 𝑓)
99 simpll2 1213 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → 𝑐𝐽)
10071, 99sstrd 3993 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → ran 𝑓𝐽)
101 uniss 4914 . . . . . . . . . . . . . . . . . . . . . . . . 25 (ran 𝑓𝐽 ran 𝑓 𝐽)
102101, 1sseqtrrdi 4024 . . . . . . . . . . . . . . . . . . . . . . . 24 (ran 𝑓𝐽 ran 𝑓𝑋)
103100, 102syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → ran 𝑓𝑋)
10498, 103eqssd 4000 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → 𝑋 = ran 𝑓)
105 unieq 4917 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑑 = ran 𝑓 𝑑 = ran 𝑓)
106105eqeq2d 2747 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑑 = ran 𝑓 → (𝑋 = 𝑑𝑋 = ran 𝑓))
107106rspcev 3621 . . . . . . . . . . . . . . . . . . . . . 22 ((ran 𝑓 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑋 = ran 𝑓) → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)
10888, 104, 107syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) ∧ ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) ∧ 𝑋 = 𝑏)) → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)
109108exp32 420 . . . . . . . . . . . . . . . . . . . 20 (((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) → ((𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) → (𝑋 = 𝑏 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)))
110109exlimdv 1932 . . . . . . . . . . . . . . . . . . 19 (((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) → (∃𝑓(𝑓:𝑏𝑐 ∧ ∀𝑡𝑏 𝑡 ⊆ (𝑓𝑡)) → (𝑋 = 𝑏 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)))
11168, 110syld 47 . . . . . . . . . . . . . . . . . 18 (((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) ∧ 𝑏 ∈ Fin) → (𝑏 ⊆ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → (𝑋 = 𝑏 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)))
112111ex 412 . . . . . . . . . . . . . . . . 17 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → (𝑏 ∈ Fin → (𝑏 ⊆ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → (𝑋 = 𝑏 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑))))
113112com23 86 . . . . . . . . . . . . . . . 16 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → (𝑏 ⊆ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} → (𝑏 ∈ Fin → (𝑋 = 𝑏 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑))))
114113impd 410 . . . . . . . . . . . . . . 15 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → ((𝑏 ⊆ {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ∧ 𝑏 ∈ Fin) → (𝑋 = 𝑏 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)))
11556, 114biimtrid 242 . . . . . . . . . . . . . 14 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → (𝑏 ∈ (𝒫 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ∩ Fin) → (𝑋 = 𝑏 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)))
116115rexlimdv 3152 . . . . . . . . . . . . 13 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → (∃𝑏 ∈ (𝒫 {𝑦 ∈ (fi‘𝑥) ∣ ∃𝑧𝑐 𝑦𝑧} ∩ Fin)𝑋 = 𝑏 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑))
11755, 116syld 47 . . . . . . . . . . . 12 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ 𝑐𝐽𝑋 = 𝑐) → (∀𝑎 ∈ 𝒫 (fi‘𝑥)(𝑋 = 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏) → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑))
1181173exp 1119 . . . . . . . . . . 11 (𝐽 = (topGen‘(fi‘𝑥)) → (𝑐𝐽 → (𝑋 = 𝑐 → (∀𝑎 ∈ 𝒫 (fi‘𝑥)(𝑋 = 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏) → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑))))
119118com34 91 . . . . . . . . . 10 (𝐽 = (topGen‘(fi‘𝑥)) → (𝑐𝐽 → (∀𝑎 ∈ 𝒫 (fi‘𝑥)(𝑋 = 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏) → (𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑))))
120119com23 86 . . . . . . . . 9 (𝐽 = (topGen‘(fi‘𝑥)) → (∀𝑎 ∈ 𝒫 (fi‘𝑥)(𝑋 = 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏) → (𝑐𝐽 → (𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑))))
1214, 120syl7bi 255 . . . . . . . 8 (𝐽 = (topGen‘(fi‘𝑥)) → (∀𝑎 ∈ 𝒫 (fi‘𝑥)(𝑋 = 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏) → (𝑐 ∈ 𝒫 𝐽 → (𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑))))
122121ralrimdv 3151 . . . . . . 7 (𝐽 = (topGen‘(fi‘𝑥)) → (∀𝑎 ∈ 𝒫 (fi‘𝑥)(𝑋 = 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏) → ∀𝑐 ∈ 𝒫 𝐽(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)))
123 fibas 22985 . . . . . . . . 9 (fi‘𝑥) ∈ TopBases
124 tgcl 22977 . . . . . . . . 9 ((fi‘𝑥) ∈ TopBases → (topGen‘(fi‘𝑥)) ∈ Top)
125123, 124ax-mp 5 . . . . . . . 8 (topGen‘(fi‘𝑥)) ∈ Top
126 eleq1 2828 . . . . . . . 8 (𝐽 = (topGen‘(fi‘𝑥)) → (𝐽 ∈ Top ↔ (topGen‘(fi‘𝑥)) ∈ Top))
127125, 126mpbiri 258 . . . . . . 7 (𝐽 = (topGen‘(fi‘𝑥)) → 𝐽 ∈ Top)
128122, 127jctild 525 . . . . . 6 (𝐽 = (topGen‘(fi‘𝑥)) → (∀𝑎 ∈ 𝒫 (fi‘𝑥)(𝑋 = 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏) → (𝐽 ∈ Top ∧ ∀𝑐 ∈ 𝒫 𝐽(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑))))
1291iscmp 23397 . . . . . 6 (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑐 ∈ 𝒫 𝐽(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)))
130128, 129imbitrrdi 252 . . . . 5 (𝐽 = (topGen‘(fi‘𝑥)) → (∀𝑎 ∈ 𝒫 (fi‘𝑥)(𝑋 = 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏) → 𝐽 ∈ Comp))
1313, 130syld 47 . . . 4 (𝐽 = (topGen‘(fi‘𝑥)) → (∀𝑐 ∈ 𝒫 𝑥(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑) → 𝐽 ∈ Comp))
132131imp 406 . . 3 ((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)) → 𝐽 ∈ Comp)
133132exlimiv 1929 . 2 (∃𝑥(𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)) → 𝐽 ∈ Comp)
1342, 133impbii 209 1 (𝐽 ∈ Comp ↔ ∃𝑥(𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wex 1778  wcel 2107  wral 3060  wrex 3069  {crab 3435  cin 3949  wss 3950  𝒫 cpw 4599   cuni 4906   ciun 4990   class class class wbr 5142  ran crn 5685   Fn wfn 6555  wf 6556  ontowfo 6558  cfv 6560  cdom 8984  Fincfn 8986  ficfi 9451  topGenctg 17483  Topctop 22900  TopBasesctb 22953  Compccmp 23395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-ac2 10504
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-rpss 7744  df-om 7889  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-1o 8507  df-2o 8508  df-en 8987  df-dom 8988  df-fin 8990  df-fi 9452  df-card 9980  df-ac 10157  df-topgen 17489  df-top 22901  df-bases 22954  df-cmp 23396
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator