MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylanblc Structured version   Visualization version   GIF version

Theorem sylanblc 589
Description: Syllogism inference combined with a biconditional. (Contributed by BJ, 25-Apr-2019.)
Hypotheses
Ref Expression
sylanblc.1 (𝜑𝜓)
sylanblc.2 𝜒
sylanblc.3 ((𝜓𝜒) ↔ 𝜃)
Assertion
Ref Expression
sylanblc (𝜑𝜃)

Proof of Theorem sylanblc
StepHypRef Expression
1 sylanblc.1 . 2 (𝜑𝜓)
2 sylanblc.2 . 2 𝜒
3 sylanblc.3 . . 3 ((𝜓𝜒) ↔ 𝜃)
43biimpi 216 . 2 ((𝜓𝜒) → 𝜃)
51, 2, 4sylancl 586 1 (𝜑𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  uniintsn  4935  xmulpnf1  13175  odd2np1  16254  eltg3i  22877  restntr  23098  cmpcld  23318  rnelfm  23869  ovolctb2  25421  noextendseq  27607  iscgra  28788  isinag  28817  isleag  28826  iseqlg  28846  omlsilem  31384  mblfinlem3  37719
  Copyright terms: Public domain W3C validator