MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylanblc Structured version   Visualization version   GIF version

Theorem sylanblc 589
Description: Syllogism inference combined with a biconditional. (Contributed by BJ, 25-Apr-2019.)
Hypotheses
Ref Expression
sylanblc.1 (𝜑𝜓)
sylanblc.2 𝜒
sylanblc.3 ((𝜓𝜒) ↔ 𝜃)
Assertion
Ref Expression
sylanblc (𝜑𝜃)

Proof of Theorem sylanblc
StepHypRef Expression
1 sylanblc.1 . 2 (𝜑𝜓)
2 sylanblc.2 . 2 𝜒
3 sylanblc.3 . . 3 ((𝜓𝜒) ↔ 𝜃)
43biimpi 216 . 2 ((𝜓𝜒) → 𝜃)
51, 2, 4sylancl 586 1 (𝜑𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  uniintsn  4935  xmulpnf1  13170  odd2np1  16249  eltg3i  22874  restntr  23095  cmpcld  23315  rnelfm  23866  ovolctb2  25418  noextendseq  27604  iscgra  28785  isinag  28814  isleag  28823  iseqlg  28843  omlsilem  31377  mblfinlem3  37698
  Copyright terms: Public domain W3C validator