MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylanblc Structured version   Visualization version   GIF version

Theorem sylanblc 588
Description: Syllogism inference combined with a biconditional. (Contributed by BJ, 25-Apr-2019.)
Hypotheses
Ref Expression
sylanblc.1 (𝜑𝜓)
sylanblc.2 𝜒
sylanblc.3 ((𝜓𝜒) ↔ 𝜃)
Assertion
Ref Expression
sylanblc (𝜑𝜃)

Proof of Theorem sylanblc
StepHypRef Expression
1 sylanblc.1 . 2 (𝜑𝜓)
2 sylanblc.2 . 2 𝜒
3 sylanblc.3 . . 3 ((𝜓𝜒) ↔ 𝜃)
43biimpi 215 . 2 ((𝜓𝜒) → 𝜃)
51, 2, 4sylancl 585 1 (𝜑𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  uniintsn  4915  xmulpnf1  12937  odd2np1  15978  eltg3i  22019  restntr  22241  cmpcld  22461  rnelfm  23012  ovolctb2  24561  iscgra  27074  isinag  27103  isleag  27112  iseqlg  27132  omlsilem  29665  noextendseq  33797  mblfinlem3  35743
  Copyright terms: Public domain W3C validator