MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylanblc Structured version   Visualization version   GIF version

Theorem sylanblc 590
Description: Syllogism inference combined with a biconditional. (Contributed by BJ, 25-Apr-2019.)
Hypotheses
Ref Expression
sylanblc.1 (𝜑𝜓)
sylanblc.2 𝜒
sylanblc.3 ((𝜓𝜒) ↔ 𝜃)
Assertion
Ref Expression
sylanblc (𝜑𝜃)

Proof of Theorem sylanblc
StepHypRef Expression
1 sylanblc.1 . 2 (𝜑𝜓)
2 sylanblc.2 . 2 𝜒
3 sylanblc.3 . . 3 ((𝜓𝜒) ↔ 𝜃)
43biimpi 215 . 2 ((𝜓𝜒) → 𝜃)
51, 2, 4sylancl 587 1 (𝜑𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398
This theorem is referenced by:  uniintsn  4952  xmulpnf1  13202  odd2np1  16231  eltg3i  22334  restntr  22556  cmpcld  22776  rnelfm  23327  ovolctb2  24879  noextendseq  27038  iscgra  27800  isinag  27829  isleag  27838  iseqlg  27858  omlsilem  30393  mblfinlem3  36167
  Copyright terms: Public domain W3C validator