MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restntr Structured version   Visualization version   GIF version

Theorem restntr 23137
Description: An interior in a subspace topology. Willard in General Topology says that there is no analogue of restcls 23136 for interiors. In some sense, that is true. (Contributed by Jeff Hankins, 23-Jan-2010.) (Revised by Mario Carneiro, 15-Dec-2013.)
Hypotheses
Ref Expression
restcls.1 𝑋 = 𝐽
restcls.2 𝐾 = (𝐽t 𝑌)
Assertion
Ref Expression
restntr ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((int‘𝐾)‘𝑆) = (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌))

Proof of Theorem restntr
Dummy variables 𝑥 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 restcls.2 . . . . . . 7 𝐾 = (𝐽t 𝑌)
21fveq2i 6889 . . . . . 6 (int‘𝐾) = (int‘(𝐽t 𝑌))
32fveq1i 6887 . . . . 5 ((int‘𝐾)‘𝑆) = ((int‘(𝐽t 𝑌))‘𝑆)
4 restcls.1 . . . . . . . . . 10 𝑋 = 𝐽
54topopn 22861 . . . . . . . . 9 (𝐽 ∈ Top → 𝑋𝐽)
6 ssexg 5303 . . . . . . . . . 10 ((𝑌𝑋𝑋𝐽) → 𝑌 ∈ V)
76ancoms 458 . . . . . . . . 9 ((𝑋𝐽𝑌𝑋) → 𝑌 ∈ V)
85, 7sylan 580 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑌𝑋) → 𝑌 ∈ V)
9 resttop 23115 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑌 ∈ V) → (𝐽t 𝑌) ∈ Top)
108, 9syldan 591 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑌𝑋) → (𝐽t 𝑌) ∈ Top)
11103adant3 1132 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (𝐽t 𝑌) ∈ Top)
124restuni 23117 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑌𝑋) → 𝑌 = (𝐽t 𝑌))
1312sseq2d 3996 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑌𝑋) → (𝑆𝑌𝑆 (𝐽t 𝑌)))
1413biimp3a 1470 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝑆 (𝐽t 𝑌))
15 eqid 2734 . . . . . . 7 (𝐽t 𝑌) = (𝐽t 𝑌)
1615ntropn 23004 . . . . . 6 (((𝐽t 𝑌) ∈ Top ∧ 𝑆 (𝐽t 𝑌)) → ((int‘(𝐽t 𝑌))‘𝑆) ∈ (𝐽t 𝑌))
1711, 14, 16syl2anc 584 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((int‘(𝐽t 𝑌))‘𝑆) ∈ (𝐽t 𝑌))
183, 17eqeltrid 2837 . . . 4 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((int‘𝐾)‘𝑆) ∈ (𝐽t 𝑌))
19 simp1 1136 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝐽 ∈ Top)
20 uniexg 7742 . . . . . . . . 9 (𝐽 ∈ Top → 𝐽 ∈ V)
214, 20eqeltrid 2837 . . . . . . . 8 (𝐽 ∈ Top → 𝑋 ∈ V)
22 ssexg 5303 . . . . . . . 8 ((𝑌𝑋𝑋 ∈ V) → 𝑌 ∈ V)
2321, 22sylan2 593 . . . . . . 7 ((𝑌𝑋𝐽 ∈ Top) → 𝑌 ∈ V)
2423ancoms 458 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑌𝑋) → 𝑌 ∈ V)
25243adant3 1132 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝑌 ∈ V)
26 elrest 17444 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌 ∈ V) → (((int‘𝐾)‘𝑆) ∈ (𝐽t 𝑌) ↔ ∃𝑜𝐽 ((int‘𝐾)‘𝑆) = (𝑜𝑌)))
2719, 25, 26syl2anc 584 . . . 4 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (((int‘𝐾)‘𝑆) ∈ (𝐽t 𝑌) ↔ ∃𝑜𝐽 ((int‘𝐾)‘𝑆) = (𝑜𝑌)))
2818, 27mpbid 232 . . 3 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ∃𝑜𝐽 ((int‘𝐾)‘𝑆) = (𝑜𝑌))
294eltopss 22862 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑜𝐽) → 𝑜𝑋)
3029sseld 3962 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑜𝐽) → (𝑥𝑜𝑥𝑋))
3130adantrr 717 . . . . . . . . 9 ((𝐽 ∈ Top ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) → (𝑥𝑜𝑥𝑋))
32313ad2antl1 1185 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) → (𝑥𝑜𝑥𝑋))
33 eldif 3941 . . . . . . . . . 10 (𝑥 ∈ (𝑋𝑌) ↔ (𝑥𝑋 ∧ ¬ 𝑥𝑌))
3433simplbi2 500 . . . . . . . . 9 (𝑥𝑋 → (¬ 𝑥𝑌𝑥 ∈ (𝑋𝑌)))
3534orrd 863 . . . . . . . 8 (𝑥𝑋 → (𝑥𝑌𝑥 ∈ (𝑋𝑌)))
3632, 35syl6 35 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) → (𝑥𝑜 → (𝑥𝑌𝑥 ∈ (𝑋𝑌))))
37 elin 3947 . . . . . . . . . . 11 (𝑥 ∈ (𝑜𝑌) ↔ (𝑥𝑜𝑥𝑌))
38 eleq2 2822 . . . . . . . . . . . . 13 (((int‘𝐾)‘𝑆) = (𝑜𝑌) → (𝑥 ∈ ((int‘𝐾)‘𝑆) ↔ 𝑥 ∈ (𝑜𝑌)))
39 elun1 4162 . . . . . . . . . . . . 13 (𝑥 ∈ ((int‘𝐾)‘𝑆) → 𝑥 ∈ (((int‘𝐾)‘𝑆) ∪ (𝑋𝑌)))
4038, 39biimtrrdi 254 . . . . . . . . . . . 12 (((int‘𝐾)‘𝑆) = (𝑜𝑌) → (𝑥 ∈ (𝑜𝑌) → 𝑥 ∈ (((int‘𝐾)‘𝑆) ∪ (𝑋𝑌))))
4140ad2antll 729 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) → (𝑥 ∈ (𝑜𝑌) → 𝑥 ∈ (((int‘𝐾)‘𝑆) ∪ (𝑋𝑌))))
4237, 41biimtrrid 243 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) → ((𝑥𝑜𝑥𝑌) → 𝑥 ∈ (((int‘𝐾)‘𝑆) ∪ (𝑋𝑌))))
4342expdimp 452 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) ∧ 𝑥𝑜) → (𝑥𝑌𝑥 ∈ (((int‘𝐾)‘𝑆) ∪ (𝑋𝑌))))
44 elun2 4163 . . . . . . . . . 10 (𝑥 ∈ (𝑋𝑌) → 𝑥 ∈ (((int‘𝐾)‘𝑆) ∪ (𝑋𝑌)))
4544a1i 11 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) ∧ 𝑥𝑜) → (𝑥 ∈ (𝑋𝑌) → 𝑥 ∈ (((int‘𝐾)‘𝑆) ∪ (𝑋𝑌))))
4643, 45jaod 859 . . . . . . . 8 ((((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) ∧ 𝑥𝑜) → ((𝑥𝑌𝑥 ∈ (𝑋𝑌)) → 𝑥 ∈ (((int‘𝐾)‘𝑆) ∪ (𝑋𝑌))))
4746ex 412 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) → (𝑥𝑜 → ((𝑥𝑌𝑥 ∈ (𝑋𝑌)) → 𝑥 ∈ (((int‘𝐾)‘𝑆) ∪ (𝑋𝑌)))))
4836, 47mpdd 43 . . . . . 6 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) → (𝑥𝑜𝑥 ∈ (((int‘𝐾)‘𝑆) ∪ (𝑋𝑌))))
4948ssrdv 3969 . . . . 5 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) → 𝑜 ⊆ (((int‘𝐾)‘𝑆) ∪ (𝑋𝑌)))
5011adantr 480 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) → (𝐽t 𝑌) ∈ Top)
511, 50eqeltrid 2837 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) → 𝐾 ∈ Top)
5214adantr 480 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) → 𝑆 (𝐽t 𝑌))
531unieqi 4899 . . . . . . . . 9 𝐾 = (𝐽t 𝑌)
5453eqcomi 2743 . . . . . . . 8 (𝐽t 𝑌) = 𝐾
5554ntrss2 23012 . . . . . . 7 ((𝐾 ∈ Top ∧ 𝑆 (𝐽t 𝑌)) → ((int‘𝐾)‘𝑆) ⊆ 𝑆)
5651, 52, 55syl2anc 584 . . . . . 6 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) → ((int‘𝐾)‘𝑆) ⊆ 𝑆)
57 unss1 4165 . . . . . 6 (((int‘𝐾)‘𝑆) ⊆ 𝑆 → (((int‘𝐾)‘𝑆) ∪ (𝑋𝑌)) ⊆ (𝑆 ∪ (𝑋𝑌)))
5856, 57syl 17 . . . . 5 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) → (((int‘𝐾)‘𝑆) ∪ (𝑋𝑌)) ⊆ (𝑆 ∪ (𝑋𝑌)))
5949, 58sstrd 3974 . . . 4 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) → 𝑜 ⊆ (𝑆 ∪ (𝑋𝑌)))
60 simpl1 1191 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽𝑜 ⊆ (𝑆 ∪ (𝑋𝑌)))) → 𝐽 ∈ Top)
61 sstr 3972 . . . . . . . . . . . . . 14 ((𝑆𝑌𝑌𝑋) → 𝑆𝑋)
6261ancoms 458 . . . . . . . . . . . . 13 ((𝑌𝑋𝑆𝑌) → 𝑆𝑋)
63623adant1 1130 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝑆𝑋)
6463adantr 480 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽𝑜 ⊆ (𝑆 ∪ (𝑋𝑌)))) → 𝑆𝑋)
65 difss 4116 . . . . . . . . . . 11 (𝑋𝑌) ⊆ 𝑋
66 unss 4170 . . . . . . . . . . 11 ((𝑆𝑋 ∧ (𝑋𝑌) ⊆ 𝑋) ↔ (𝑆 ∪ (𝑋𝑌)) ⊆ 𝑋)
6764, 65, 66sylanblc 589 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽𝑜 ⊆ (𝑆 ∪ (𝑋𝑌)))) → (𝑆 ∪ (𝑋𝑌)) ⊆ 𝑋)
68 simprl 770 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽𝑜 ⊆ (𝑆 ∪ (𝑋𝑌)))) → 𝑜𝐽)
69 simprr 772 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽𝑜 ⊆ (𝑆 ∪ (𝑋𝑌)))) → 𝑜 ⊆ (𝑆 ∪ (𝑋𝑌)))
704ssntr 23013 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ (𝑆 ∪ (𝑋𝑌)) ⊆ 𝑋) ∧ (𝑜𝐽𝑜 ⊆ (𝑆 ∪ (𝑋𝑌)))) → 𝑜 ⊆ ((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))))
7160, 67, 68, 69, 70syl22anc 838 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽𝑜 ⊆ (𝑆 ∪ (𝑋𝑌)))) → 𝑜 ⊆ ((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))))
7271ssrind 4224 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽𝑜 ⊆ (𝑆 ∪ (𝑋𝑌)))) → (𝑜𝑌) ⊆ (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌))
73 sseq1 3989 . . . . . . . 8 (((int‘𝐾)‘𝑆) = (𝑜𝑌) → (((int‘𝐾)‘𝑆) ⊆ (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌) ↔ (𝑜𝑌) ⊆ (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌)))
7472, 73syl5ibrcom 247 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽𝑜 ⊆ (𝑆 ∪ (𝑋𝑌)))) → (((int‘𝐾)‘𝑆) = (𝑜𝑌) → ((int‘𝐾)‘𝑆) ⊆ (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌)))
7574expr 456 . . . . . 6 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ 𝑜𝐽) → (𝑜 ⊆ (𝑆 ∪ (𝑋𝑌)) → (((int‘𝐾)‘𝑆) = (𝑜𝑌) → ((int‘𝐾)‘𝑆) ⊆ (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌))))
7675com23 86 . . . . 5 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ 𝑜𝐽) → (((int‘𝐾)‘𝑆) = (𝑜𝑌) → (𝑜 ⊆ (𝑆 ∪ (𝑋𝑌)) → ((int‘𝐾)‘𝑆) ⊆ (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌))))
7776impr 454 . . . 4 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) → (𝑜 ⊆ (𝑆 ∪ (𝑋𝑌)) → ((int‘𝐾)‘𝑆) ⊆ (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌)))
7859, 77mpd 15 . . 3 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) → ((int‘𝐾)‘𝑆) ⊆ (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌))
7928, 78rexlimddv 3148 . 2 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((int‘𝐾)‘𝑆) ⊆ (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌))
801, 11eqeltrid 2837 . . 3 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝐾 ∈ Top)
8183adant3 1132 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝑌 ∈ V)
8263, 65, 66sylanblc 589 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (𝑆 ∪ (𝑋𝑌)) ⊆ 𝑋)
834ntropn 23004 . . . . . 6 ((𝐽 ∈ Top ∧ (𝑆 ∪ (𝑋𝑌)) ⊆ 𝑋) → ((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∈ 𝐽)
8419, 82, 83syl2anc 584 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∈ 𝐽)
85 elrestr 17445 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌 ∈ V ∧ ((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∈ 𝐽) → (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌) ∈ (𝐽t 𝑌))
8619, 81, 84, 85syl3anc 1372 . . . 4 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌) ∈ (𝐽t 𝑌))
8786, 1eleqtrrdi 2844 . . 3 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌) ∈ 𝐾)
884ntrss2 23012 . . . . . 6 ((𝐽 ∈ Top ∧ (𝑆 ∪ (𝑋𝑌)) ⊆ 𝑋) → ((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ⊆ (𝑆 ∪ (𝑋𝑌)))
8919, 82, 88syl2anc 584 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ⊆ (𝑆 ∪ (𝑋𝑌)))
9089ssrind 4224 . . . 4 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌) ⊆ ((𝑆 ∪ (𝑋𝑌)) ∩ 𝑌))
91 elin 3947 . . . . . . 7 (𝑥 ∈ ((𝑆 ∪ (𝑋𝑌)) ∩ 𝑌) ↔ (𝑥 ∈ (𝑆 ∪ (𝑋𝑌)) ∧ 𝑥𝑌))
92 elun 4133 . . . . . . . . 9 (𝑥 ∈ (𝑆 ∪ (𝑋𝑌)) ↔ (𝑥𝑆𝑥 ∈ (𝑋𝑌)))
93 orcom 870 . . . . . . . . . 10 ((𝑥𝑆𝑥 ∈ (𝑋𝑌)) ↔ (𝑥 ∈ (𝑋𝑌) ∨ 𝑥𝑆))
94 df-or 848 . . . . . . . . . 10 ((𝑥 ∈ (𝑋𝑌) ∨ 𝑥𝑆) ↔ (¬ 𝑥 ∈ (𝑋𝑌) → 𝑥𝑆))
9593, 94bitri 275 . . . . . . . . 9 ((𝑥𝑆𝑥 ∈ (𝑋𝑌)) ↔ (¬ 𝑥 ∈ (𝑋𝑌) → 𝑥𝑆))
9692, 95bitri 275 . . . . . . . 8 (𝑥 ∈ (𝑆 ∪ (𝑋𝑌)) ↔ (¬ 𝑥 ∈ (𝑋𝑌) → 𝑥𝑆))
9796anbi1i 624 . . . . . . 7 ((𝑥 ∈ (𝑆 ∪ (𝑋𝑌)) ∧ 𝑥𝑌) ↔ ((¬ 𝑥 ∈ (𝑋𝑌) → 𝑥𝑆) ∧ 𝑥𝑌))
9891, 97bitri 275 . . . . . 6 (𝑥 ∈ ((𝑆 ∪ (𝑋𝑌)) ∩ 𝑌) ↔ ((¬ 𝑥 ∈ (𝑋𝑌) → 𝑥𝑆) ∧ 𝑥𝑌))
99 elndif 4113 . . . . . . . . 9 (𝑥𝑌 → ¬ 𝑥 ∈ (𝑋𝑌))
100 pm2.27 42 . . . . . . . . 9 𝑥 ∈ (𝑋𝑌) → ((¬ 𝑥 ∈ (𝑋𝑌) → 𝑥𝑆) → 𝑥𝑆))
10199, 100syl 17 . . . . . . . 8 (𝑥𝑌 → ((¬ 𝑥 ∈ (𝑋𝑌) → 𝑥𝑆) → 𝑥𝑆))
102101impcom 407 . . . . . . 7 (((¬ 𝑥 ∈ (𝑋𝑌) → 𝑥𝑆) ∧ 𝑥𝑌) → 𝑥𝑆)
103102a1i 11 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (((¬ 𝑥 ∈ (𝑋𝑌) → 𝑥𝑆) ∧ 𝑥𝑌) → 𝑥𝑆))
10498, 103biimtrid 242 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (𝑥 ∈ ((𝑆 ∪ (𝑋𝑌)) ∩ 𝑌) → 𝑥𝑆))
105104ssrdv 3969 . . . 4 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((𝑆 ∪ (𝑋𝑌)) ∩ 𝑌) ⊆ 𝑆)
10690, 105sstrd 3974 . . 3 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌) ⊆ 𝑆)
10754ssntr 23013 . . 3 (((𝐾 ∈ Top ∧ 𝑆 (𝐽t 𝑌)) ∧ ((((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌) ∈ 𝐾 ∧ (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌) ⊆ 𝑆)) → (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌) ⊆ ((int‘𝐾)‘𝑆))
10880, 14, 87, 106, 107syl22anc 838 . 2 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌) ⊆ ((int‘𝐾)‘𝑆))
10979, 108eqssd 3981 1 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((int‘𝐾)‘𝑆) = (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1539  wcel 2107  wrex 3059  Vcvv 3463  cdif 3928  cun 3929  cin 3930  wss 3931   cuni 4887  cfv 6541  (class class class)co 7413  t crest 17437  Topctop 22848  intcnt 22972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-en 8968  df-fin 8971  df-fi 9433  df-rest 17439  df-topgen 17460  df-top 22849  df-topon 22866  df-bases 22901  df-ntr 22975
This theorem is referenced by:  llycmpkgen2  23505  dvreslem  25881  dvres2lem  25882  dvaddbr  25911  dvmulbr  25912  dvmulbrOLD  25913  dvcnvrelem2  25994  limciccioolb  45608  limcicciooub  45624  ioccncflimc  45872  icocncflimc  45876  cncfiooicclem1  45880  fourierdlem62  46155
  Copyright terms: Public domain W3C validator