MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restntr Structured version   Visualization version   GIF version

Theorem restntr 21792
Description: An interior in a subspace topology. Willard in General Topology says that there is no analogue of restcls 21791 for interiors. In some sense, that is true. (Contributed by Jeff Hankins, 23-Jan-2010.) (Revised by Mario Carneiro, 15-Dec-2013.)
Hypotheses
Ref Expression
restcls.1 𝑋 = 𝐽
restcls.2 𝐾 = (𝐽t 𝑌)
Assertion
Ref Expression
restntr ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((int‘𝐾)‘𝑆) = (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌))

Proof of Theorem restntr
Dummy variables 𝑥 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 restcls.2 . . . . . . 7 𝐾 = (𝐽t 𝑌)
21fveq2i 6675 . . . . . 6 (int‘𝐾) = (int‘(𝐽t 𝑌))
32fveq1i 6673 . . . . 5 ((int‘𝐾)‘𝑆) = ((int‘(𝐽t 𝑌))‘𝑆)
4 restcls.1 . . . . . . . . . 10 𝑋 = 𝐽
54topopn 21516 . . . . . . . . 9 (𝐽 ∈ Top → 𝑋𝐽)
6 ssexg 5229 . . . . . . . . . 10 ((𝑌𝑋𝑋𝐽) → 𝑌 ∈ V)
76ancoms 461 . . . . . . . . 9 ((𝑋𝐽𝑌𝑋) → 𝑌 ∈ V)
85, 7sylan 582 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑌𝑋) → 𝑌 ∈ V)
9 resttop 21770 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑌 ∈ V) → (𝐽t 𝑌) ∈ Top)
108, 9syldan 593 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑌𝑋) → (𝐽t 𝑌) ∈ Top)
11103adant3 1128 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (𝐽t 𝑌) ∈ Top)
124restuni 21772 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑌𝑋) → 𝑌 = (𝐽t 𝑌))
1312sseq2d 4001 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑌𝑋) → (𝑆𝑌𝑆 (𝐽t 𝑌)))
1413biimp3a 1465 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝑆 (𝐽t 𝑌))
15 eqid 2823 . . . . . . 7 (𝐽t 𝑌) = (𝐽t 𝑌)
1615ntropn 21659 . . . . . 6 (((𝐽t 𝑌) ∈ Top ∧ 𝑆 (𝐽t 𝑌)) → ((int‘(𝐽t 𝑌))‘𝑆) ∈ (𝐽t 𝑌))
1711, 14, 16syl2anc 586 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((int‘(𝐽t 𝑌))‘𝑆) ∈ (𝐽t 𝑌))
183, 17eqeltrid 2919 . . . 4 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((int‘𝐾)‘𝑆) ∈ (𝐽t 𝑌))
19 simp1 1132 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝐽 ∈ Top)
20 uniexg 7468 . . . . . . . . 9 (𝐽 ∈ Top → 𝐽 ∈ V)
214, 20eqeltrid 2919 . . . . . . . 8 (𝐽 ∈ Top → 𝑋 ∈ V)
22 ssexg 5229 . . . . . . . 8 ((𝑌𝑋𝑋 ∈ V) → 𝑌 ∈ V)
2321, 22sylan2 594 . . . . . . 7 ((𝑌𝑋𝐽 ∈ Top) → 𝑌 ∈ V)
2423ancoms 461 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑌𝑋) → 𝑌 ∈ V)
25243adant3 1128 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝑌 ∈ V)
26 elrest 16703 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌 ∈ V) → (((int‘𝐾)‘𝑆) ∈ (𝐽t 𝑌) ↔ ∃𝑜𝐽 ((int‘𝐾)‘𝑆) = (𝑜𝑌)))
2719, 25, 26syl2anc 586 . . . 4 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (((int‘𝐾)‘𝑆) ∈ (𝐽t 𝑌) ↔ ∃𝑜𝐽 ((int‘𝐾)‘𝑆) = (𝑜𝑌)))
2818, 27mpbid 234 . . 3 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ∃𝑜𝐽 ((int‘𝐾)‘𝑆) = (𝑜𝑌))
294eltopss 21517 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑜𝐽) → 𝑜𝑋)
3029sseld 3968 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑜𝐽) → (𝑥𝑜𝑥𝑋))
3130adantrr 715 . . . . . . . . 9 ((𝐽 ∈ Top ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) → (𝑥𝑜𝑥𝑋))
32313ad2antl1 1181 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) → (𝑥𝑜𝑥𝑋))
33 eldif 3948 . . . . . . . . . 10 (𝑥 ∈ (𝑋𝑌) ↔ (𝑥𝑋 ∧ ¬ 𝑥𝑌))
3433simplbi2 503 . . . . . . . . 9 (𝑥𝑋 → (¬ 𝑥𝑌𝑥 ∈ (𝑋𝑌)))
3534orrd 859 . . . . . . . 8 (𝑥𝑋 → (𝑥𝑌𝑥 ∈ (𝑋𝑌)))
3632, 35syl6 35 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) → (𝑥𝑜 → (𝑥𝑌𝑥 ∈ (𝑋𝑌))))
37 elin 4171 . . . . . . . . . . 11 (𝑥 ∈ (𝑜𝑌) ↔ (𝑥𝑜𝑥𝑌))
38 eleq2 2903 . . . . . . . . . . . . 13 (((int‘𝐾)‘𝑆) = (𝑜𝑌) → (𝑥 ∈ ((int‘𝐾)‘𝑆) ↔ 𝑥 ∈ (𝑜𝑌)))
39 elun1 4154 . . . . . . . . . . . . 13 (𝑥 ∈ ((int‘𝐾)‘𝑆) → 𝑥 ∈ (((int‘𝐾)‘𝑆) ∪ (𝑋𝑌)))
4038, 39syl6bir 256 . . . . . . . . . . . 12 (((int‘𝐾)‘𝑆) = (𝑜𝑌) → (𝑥 ∈ (𝑜𝑌) → 𝑥 ∈ (((int‘𝐾)‘𝑆) ∪ (𝑋𝑌))))
4140ad2antll 727 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) → (𝑥 ∈ (𝑜𝑌) → 𝑥 ∈ (((int‘𝐾)‘𝑆) ∪ (𝑋𝑌))))
4237, 41syl5bir 245 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) → ((𝑥𝑜𝑥𝑌) → 𝑥 ∈ (((int‘𝐾)‘𝑆) ∪ (𝑋𝑌))))
4342expdimp 455 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) ∧ 𝑥𝑜) → (𝑥𝑌𝑥 ∈ (((int‘𝐾)‘𝑆) ∪ (𝑋𝑌))))
44 elun2 4155 . . . . . . . . . 10 (𝑥 ∈ (𝑋𝑌) → 𝑥 ∈ (((int‘𝐾)‘𝑆) ∪ (𝑋𝑌)))
4544a1i 11 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) ∧ 𝑥𝑜) → (𝑥 ∈ (𝑋𝑌) → 𝑥 ∈ (((int‘𝐾)‘𝑆) ∪ (𝑋𝑌))))
4643, 45jaod 855 . . . . . . . 8 ((((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) ∧ 𝑥𝑜) → ((𝑥𝑌𝑥 ∈ (𝑋𝑌)) → 𝑥 ∈ (((int‘𝐾)‘𝑆) ∪ (𝑋𝑌))))
4746ex 415 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) → (𝑥𝑜 → ((𝑥𝑌𝑥 ∈ (𝑋𝑌)) → 𝑥 ∈ (((int‘𝐾)‘𝑆) ∪ (𝑋𝑌)))))
4836, 47mpdd 43 . . . . . 6 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) → (𝑥𝑜𝑥 ∈ (((int‘𝐾)‘𝑆) ∪ (𝑋𝑌))))
4948ssrdv 3975 . . . . 5 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) → 𝑜 ⊆ (((int‘𝐾)‘𝑆) ∪ (𝑋𝑌)))
5011adantr 483 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) → (𝐽t 𝑌) ∈ Top)
511, 50eqeltrid 2919 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) → 𝐾 ∈ Top)
5214adantr 483 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) → 𝑆 (𝐽t 𝑌))
531unieqi 4853 . . . . . . . . 9 𝐾 = (𝐽t 𝑌)
5453eqcomi 2832 . . . . . . . 8 (𝐽t 𝑌) = 𝐾
5554ntrss2 21667 . . . . . . 7 ((𝐾 ∈ Top ∧ 𝑆 (𝐽t 𝑌)) → ((int‘𝐾)‘𝑆) ⊆ 𝑆)
5651, 52, 55syl2anc 586 . . . . . 6 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) → ((int‘𝐾)‘𝑆) ⊆ 𝑆)
57 unss1 4157 . . . . . 6 (((int‘𝐾)‘𝑆) ⊆ 𝑆 → (((int‘𝐾)‘𝑆) ∪ (𝑋𝑌)) ⊆ (𝑆 ∪ (𝑋𝑌)))
5856, 57syl 17 . . . . 5 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) → (((int‘𝐾)‘𝑆) ∪ (𝑋𝑌)) ⊆ (𝑆 ∪ (𝑋𝑌)))
5949, 58sstrd 3979 . . . 4 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) → 𝑜 ⊆ (𝑆 ∪ (𝑋𝑌)))
60 simpl1 1187 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽𝑜 ⊆ (𝑆 ∪ (𝑋𝑌)))) → 𝐽 ∈ Top)
61 sstr 3977 . . . . . . . . . . . . . 14 ((𝑆𝑌𝑌𝑋) → 𝑆𝑋)
6261ancoms 461 . . . . . . . . . . . . 13 ((𝑌𝑋𝑆𝑌) → 𝑆𝑋)
63623adant1 1126 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝑆𝑋)
6463adantr 483 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽𝑜 ⊆ (𝑆 ∪ (𝑋𝑌)))) → 𝑆𝑋)
65 difss 4110 . . . . . . . . . . 11 (𝑋𝑌) ⊆ 𝑋
66 unss 4162 . . . . . . . . . . 11 ((𝑆𝑋 ∧ (𝑋𝑌) ⊆ 𝑋) ↔ (𝑆 ∪ (𝑋𝑌)) ⊆ 𝑋)
6764, 65, 66sylanblc 591 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽𝑜 ⊆ (𝑆 ∪ (𝑋𝑌)))) → (𝑆 ∪ (𝑋𝑌)) ⊆ 𝑋)
68 simprl 769 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽𝑜 ⊆ (𝑆 ∪ (𝑋𝑌)))) → 𝑜𝐽)
69 simprr 771 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽𝑜 ⊆ (𝑆 ∪ (𝑋𝑌)))) → 𝑜 ⊆ (𝑆 ∪ (𝑋𝑌)))
704ssntr 21668 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ (𝑆 ∪ (𝑋𝑌)) ⊆ 𝑋) ∧ (𝑜𝐽𝑜 ⊆ (𝑆 ∪ (𝑋𝑌)))) → 𝑜 ⊆ ((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))))
7160, 67, 68, 69, 70syl22anc 836 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽𝑜 ⊆ (𝑆 ∪ (𝑋𝑌)))) → 𝑜 ⊆ ((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))))
7271ssrind 4214 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽𝑜 ⊆ (𝑆 ∪ (𝑋𝑌)))) → (𝑜𝑌) ⊆ (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌))
73 sseq1 3994 . . . . . . . 8 (((int‘𝐾)‘𝑆) = (𝑜𝑌) → (((int‘𝐾)‘𝑆) ⊆ (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌) ↔ (𝑜𝑌) ⊆ (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌)))
7472, 73syl5ibrcom 249 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽𝑜 ⊆ (𝑆 ∪ (𝑋𝑌)))) → (((int‘𝐾)‘𝑆) = (𝑜𝑌) → ((int‘𝐾)‘𝑆) ⊆ (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌)))
7574expr 459 . . . . . 6 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ 𝑜𝐽) → (𝑜 ⊆ (𝑆 ∪ (𝑋𝑌)) → (((int‘𝐾)‘𝑆) = (𝑜𝑌) → ((int‘𝐾)‘𝑆) ⊆ (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌))))
7675com23 86 . . . . 5 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ 𝑜𝐽) → (((int‘𝐾)‘𝑆) = (𝑜𝑌) → (𝑜 ⊆ (𝑆 ∪ (𝑋𝑌)) → ((int‘𝐾)‘𝑆) ⊆ (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌))))
7776impr 457 . . . 4 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) → (𝑜 ⊆ (𝑆 ∪ (𝑋𝑌)) → ((int‘𝐾)‘𝑆) ⊆ (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌)))
7859, 77mpd 15 . . 3 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) → ((int‘𝐾)‘𝑆) ⊆ (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌))
7928, 78rexlimddv 3293 . 2 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((int‘𝐾)‘𝑆) ⊆ (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌))
801, 11eqeltrid 2919 . . 3 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝐾 ∈ Top)
8183adant3 1128 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝑌 ∈ V)
8263, 65, 66sylanblc 591 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (𝑆 ∪ (𝑋𝑌)) ⊆ 𝑋)
834ntropn 21659 . . . . . 6 ((𝐽 ∈ Top ∧ (𝑆 ∪ (𝑋𝑌)) ⊆ 𝑋) → ((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∈ 𝐽)
8419, 82, 83syl2anc 586 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∈ 𝐽)
85 elrestr 16704 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌 ∈ V ∧ ((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∈ 𝐽) → (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌) ∈ (𝐽t 𝑌))
8619, 81, 84, 85syl3anc 1367 . . . 4 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌) ∈ (𝐽t 𝑌))
8786, 1eleqtrrdi 2926 . . 3 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌) ∈ 𝐾)
884ntrss2 21667 . . . . . 6 ((𝐽 ∈ Top ∧ (𝑆 ∪ (𝑋𝑌)) ⊆ 𝑋) → ((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ⊆ (𝑆 ∪ (𝑋𝑌)))
8919, 82, 88syl2anc 586 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ⊆ (𝑆 ∪ (𝑋𝑌)))
9089ssrind 4214 . . . 4 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌) ⊆ ((𝑆 ∪ (𝑋𝑌)) ∩ 𝑌))
91 elin 4171 . . . . . . 7 (𝑥 ∈ ((𝑆 ∪ (𝑋𝑌)) ∩ 𝑌) ↔ (𝑥 ∈ (𝑆 ∪ (𝑋𝑌)) ∧ 𝑥𝑌))
92 elun 4127 . . . . . . . . 9 (𝑥 ∈ (𝑆 ∪ (𝑋𝑌)) ↔ (𝑥𝑆𝑥 ∈ (𝑋𝑌)))
93 orcom 866 . . . . . . . . . 10 ((𝑥𝑆𝑥 ∈ (𝑋𝑌)) ↔ (𝑥 ∈ (𝑋𝑌) ∨ 𝑥𝑆))
94 df-or 844 . . . . . . . . . 10 ((𝑥 ∈ (𝑋𝑌) ∨ 𝑥𝑆) ↔ (¬ 𝑥 ∈ (𝑋𝑌) → 𝑥𝑆))
9593, 94bitri 277 . . . . . . . . 9 ((𝑥𝑆𝑥 ∈ (𝑋𝑌)) ↔ (¬ 𝑥 ∈ (𝑋𝑌) → 𝑥𝑆))
9692, 95bitri 277 . . . . . . . 8 (𝑥 ∈ (𝑆 ∪ (𝑋𝑌)) ↔ (¬ 𝑥 ∈ (𝑋𝑌) → 𝑥𝑆))
9796anbi1i 625 . . . . . . 7 ((𝑥 ∈ (𝑆 ∪ (𝑋𝑌)) ∧ 𝑥𝑌) ↔ ((¬ 𝑥 ∈ (𝑋𝑌) → 𝑥𝑆) ∧ 𝑥𝑌))
9891, 97bitri 277 . . . . . 6 (𝑥 ∈ ((𝑆 ∪ (𝑋𝑌)) ∩ 𝑌) ↔ ((¬ 𝑥 ∈ (𝑋𝑌) → 𝑥𝑆) ∧ 𝑥𝑌))
99 elndif 4107 . . . . . . . . 9 (𝑥𝑌 → ¬ 𝑥 ∈ (𝑋𝑌))
100 pm2.27 42 . . . . . . . . 9 𝑥 ∈ (𝑋𝑌) → ((¬ 𝑥 ∈ (𝑋𝑌) → 𝑥𝑆) → 𝑥𝑆))
10199, 100syl 17 . . . . . . . 8 (𝑥𝑌 → ((¬ 𝑥 ∈ (𝑋𝑌) → 𝑥𝑆) → 𝑥𝑆))
102101impcom 410 . . . . . . 7 (((¬ 𝑥 ∈ (𝑋𝑌) → 𝑥𝑆) ∧ 𝑥𝑌) → 𝑥𝑆)
103102a1i 11 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (((¬ 𝑥 ∈ (𝑋𝑌) → 𝑥𝑆) ∧ 𝑥𝑌) → 𝑥𝑆))
10498, 103syl5bi 244 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (𝑥 ∈ ((𝑆 ∪ (𝑋𝑌)) ∩ 𝑌) → 𝑥𝑆))
105104ssrdv 3975 . . . 4 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((𝑆 ∪ (𝑋𝑌)) ∩ 𝑌) ⊆ 𝑆)
10690, 105sstrd 3979 . . 3 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌) ⊆ 𝑆)
10754ssntr 21668 . . 3 (((𝐾 ∈ Top ∧ 𝑆 (𝐽t 𝑌)) ∧ ((((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌) ∈ 𝐾 ∧ (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌) ⊆ 𝑆)) → (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌) ⊆ ((int‘𝐾)‘𝑆))
10880, 14, 87, 106, 107syl22anc 836 . 2 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌) ⊆ ((int‘𝐾)‘𝑆))
10979, 108eqssd 3986 1 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((int‘𝐾)‘𝑆) = (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  wrex 3141  Vcvv 3496  cdif 3935  cun 3936  cin 3937  wss 3938   cuni 4840  cfv 6357  (class class class)co 7158  t crest 16696  Topctop 21503  intcnt 21627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-oadd 8108  df-er 8291  df-en 8512  df-fin 8515  df-fi 8877  df-rest 16698  df-topgen 16719  df-top 21504  df-topon 21521  df-bases 21556  df-ntr 21630
This theorem is referenced by:  llycmpkgen2  22160  dvreslem  24509  dvres2lem  24510  dvaddbr  24537  dvmulbr  24538  dvcnvrelem2  24617  limciccioolb  41909  limcicciooub  41925  ioccncflimc  42175  icocncflimc  42179  cncfiooicclem1  42183  fourierdlem62  42460
  Copyright terms: Public domain W3C validator