Step | Hyp | Ref
| Expression |
1 | | filtop 22914 |
. . . . . . 7
⊢ (𝐿 ∈ (Fil‘𝑋) → 𝑋 ∈ 𝐿) |
2 | 1 | 3ad2ant2 1132 |
. . . . . 6
⊢ ((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) → 𝑋 ∈ 𝐿) |
3 | | simp1 1134 |
. . . . . 6
⊢ ((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) → 𝑌 ∈ 𝐴) |
4 | | simp3 1136 |
. . . . . 6
⊢ ((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) → 𝐹:𝑌⟶𝑋) |
5 | | fmf 23004 |
. . . . . 6
⊢ ((𝑋 ∈ 𝐿 ∧ 𝑌 ∈ 𝐴 ∧ 𝐹:𝑌⟶𝑋) → (𝑋 FilMap 𝐹):(fBas‘𝑌)⟶(Fil‘𝑋)) |
6 | 2, 3, 4, 5 | syl3anc 1369 |
. . . . 5
⊢ ((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) → (𝑋 FilMap 𝐹):(fBas‘𝑌)⟶(Fil‘𝑋)) |
7 | 6 | ffnd 6585 |
. . . 4
⊢ ((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) → (𝑋 FilMap 𝐹) Fn (fBas‘𝑌)) |
8 | | fvelrnb 6812 |
. . . 4
⊢ ((𝑋 FilMap 𝐹) Fn (fBas‘𝑌) → (𝐿 ∈ ran (𝑋 FilMap 𝐹) ↔ ∃𝑏 ∈ (fBas‘𝑌)((𝑋 FilMap 𝐹)‘𝑏) = 𝐿)) |
9 | 7, 8 | syl 17 |
. . 3
⊢ ((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) → (𝐿 ∈ ran (𝑋 FilMap 𝐹) ↔ ∃𝑏 ∈ (fBas‘𝑌)((𝑋 FilMap 𝐹)‘𝑏) = 𝐿)) |
10 | | ffn 6584 |
. . . . . . . . . . . 12
⊢ (𝐹:𝑌⟶𝑋 → 𝐹 Fn 𝑌) |
11 | | dffn4 6678 |
. . . . . . . . . . . 12
⊢ (𝐹 Fn 𝑌 ↔ 𝐹:𝑌–onto→ran 𝐹) |
12 | 10, 11 | sylib 217 |
. . . . . . . . . . 11
⊢ (𝐹:𝑌⟶𝑋 → 𝐹:𝑌–onto→ran 𝐹) |
13 | | foima 6677 |
. . . . . . . . . . 11
⊢ (𝐹:𝑌–onto→ran 𝐹 → (𝐹 “ 𝑌) = ran 𝐹) |
14 | 12, 13 | syl 17 |
. . . . . . . . . 10
⊢ (𝐹:𝑌⟶𝑋 → (𝐹 “ 𝑌) = ran 𝐹) |
15 | 14 | ad2antlr 723 |
. . . . . . . . 9
⊢ (((𝑋 ∈ 𝐿 ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑏 ∈ (fBas‘𝑌)) → (𝐹 “ 𝑌) = ran 𝐹) |
16 | | simpll 763 |
. . . . . . . . . 10
⊢ (((𝑋 ∈ 𝐿 ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑏 ∈ (fBas‘𝑌)) → 𝑋 ∈ 𝐿) |
17 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝑋 ∈ 𝐿 ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑏 ∈ (fBas‘𝑌)) → 𝑏 ∈ (fBas‘𝑌)) |
18 | | simplr 765 |
. . . . . . . . . 10
⊢ (((𝑋 ∈ 𝐿 ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑏 ∈ (fBas‘𝑌)) → 𝐹:𝑌⟶𝑋) |
19 | | fgcl 22937 |
. . . . . . . . . . . 12
⊢ (𝑏 ∈ (fBas‘𝑌) → (𝑌filGen𝑏) ∈ (Fil‘𝑌)) |
20 | | filtop 22914 |
. . . . . . . . . . . 12
⊢ ((𝑌filGen𝑏) ∈ (Fil‘𝑌) → 𝑌 ∈ (𝑌filGen𝑏)) |
21 | 19, 20 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑏 ∈ (fBas‘𝑌) → 𝑌 ∈ (𝑌filGen𝑏)) |
22 | 21 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝑋 ∈ 𝐿 ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑏 ∈ (fBas‘𝑌)) → 𝑌 ∈ (𝑌filGen𝑏)) |
23 | | eqid 2738 |
. . . . . . . . . . 11
⊢ (𝑌filGen𝑏) = (𝑌filGen𝑏) |
24 | 23 | imaelfm 23010 |
. . . . . . . . . 10
⊢ (((𝑋 ∈ 𝐿 ∧ 𝑏 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑌 ∈ (𝑌filGen𝑏)) → (𝐹 “ 𝑌) ∈ ((𝑋 FilMap 𝐹)‘𝑏)) |
25 | 16, 17, 18, 22, 24 | syl31anc 1371 |
. . . . . . . . 9
⊢ (((𝑋 ∈ 𝐿 ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑏 ∈ (fBas‘𝑌)) → (𝐹 “ 𝑌) ∈ ((𝑋 FilMap 𝐹)‘𝑏)) |
26 | 15, 25 | eqeltrrd 2840 |
. . . . . . . 8
⊢ (((𝑋 ∈ 𝐿 ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑏 ∈ (fBas‘𝑌)) → ran 𝐹 ∈ ((𝑋 FilMap 𝐹)‘𝑏)) |
27 | | eleq2 2827 |
. . . . . . . 8
⊢ (((𝑋 FilMap 𝐹)‘𝑏) = 𝐿 → (ran 𝐹 ∈ ((𝑋 FilMap 𝐹)‘𝑏) ↔ ran 𝐹 ∈ 𝐿)) |
28 | 26, 27 | syl5ibcom 244 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝐿 ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑏 ∈ (fBas‘𝑌)) → (((𝑋 FilMap 𝐹)‘𝑏) = 𝐿 → ran 𝐹 ∈ 𝐿)) |
29 | 28 | ex 412 |
. . . . . 6
⊢ ((𝑋 ∈ 𝐿 ∧ 𝐹:𝑌⟶𝑋) → (𝑏 ∈ (fBas‘𝑌) → (((𝑋 FilMap 𝐹)‘𝑏) = 𝐿 → ran 𝐹 ∈ 𝐿))) |
30 | 1, 29 | sylan 579 |
. . . . 5
⊢ ((𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) → (𝑏 ∈ (fBas‘𝑌) → (((𝑋 FilMap 𝐹)‘𝑏) = 𝐿 → ran 𝐹 ∈ 𝐿))) |
31 | 30 | 3adant1 1128 |
. . . 4
⊢ ((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) → (𝑏 ∈ (fBas‘𝑌) → (((𝑋 FilMap 𝐹)‘𝑏) = 𝐿 → ran 𝐹 ∈ 𝐿))) |
32 | 31 | rexlimdv 3211 |
. . 3
⊢ ((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) → (∃𝑏 ∈ (fBas‘𝑌)((𝑋 FilMap 𝐹)‘𝑏) = 𝐿 → ran 𝐹 ∈ 𝐿)) |
33 | 9, 32 | sylbid 239 |
. 2
⊢ ((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) → (𝐿 ∈ ran (𝑋 FilMap 𝐹) → ran 𝐹 ∈ 𝐿)) |
34 | | simpl2 1190 |
. . . . . . . . 9
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → 𝐿 ∈ (Fil‘𝑋)) |
35 | | filelss 22911 |
. . . . . . . . . 10
⊢ ((𝐿 ∈ (Fil‘𝑋) ∧ 𝑡 ∈ 𝐿) → 𝑡 ⊆ 𝑋) |
36 | 35 | ex 412 |
. . . . . . . . 9
⊢ (𝐿 ∈ (Fil‘𝑋) → (𝑡 ∈ 𝐿 → 𝑡 ⊆ 𝑋)) |
37 | 34, 36 | syl 17 |
. . . . . . . 8
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → (𝑡 ∈ 𝐿 → 𝑡 ⊆ 𝑋)) |
38 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑡 ∈ 𝐿) → 𝑡 ∈ 𝐿) |
39 | | eqidd 2739 |
. . . . . . . . . . . 12
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑡 ∈ 𝐿) → (◡𝐹 “ 𝑡) = (◡𝐹 “ 𝑡)) |
40 | | imaeq2 5954 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑡 → (◡𝐹 “ 𝑥) = (◡𝐹 “ 𝑡)) |
41 | 40 | rspceeqv 3567 |
. . . . . . . . . . . 12
⊢ ((𝑡 ∈ 𝐿 ∧ (◡𝐹 “ 𝑡) = (◡𝐹 “ 𝑡)) → ∃𝑥 ∈ 𝐿 (◡𝐹 “ 𝑡) = (◡𝐹 “ 𝑥)) |
42 | 38, 39, 41 | syl2anc 583 |
. . . . . . . . . . 11
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑡 ∈ 𝐿) → ∃𝑥 ∈ 𝐿 (◡𝐹 “ 𝑡) = (◡𝐹 “ 𝑥)) |
43 | | simpl1 1189 |
. . . . . . . . . . . . . 14
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → 𝑌 ∈ 𝐴) |
44 | | cnvimass 5978 |
. . . . . . . . . . . . . . . . 17
⊢ (◡𝐹 “ 𝑡) ⊆ dom 𝐹 |
45 | | fdm 6593 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹:𝑌⟶𝑋 → dom 𝐹 = 𝑌) |
46 | 44, 45 | sseqtrid 3969 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹:𝑌⟶𝑋 → (◡𝐹 “ 𝑡) ⊆ 𝑌) |
47 | 46 | 3ad2ant3 1133 |
. . . . . . . . . . . . . . 15
⊢ ((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) → (◡𝐹 “ 𝑡) ⊆ 𝑌) |
48 | 47 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → (◡𝐹 “ 𝑡) ⊆ 𝑌) |
49 | 43, 48 | ssexd 5243 |
. . . . . . . . . . . . 13
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → (◡𝐹 “ 𝑡) ∈ V) |
50 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) = (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) |
51 | 50 | elrnmpt 5854 |
. . . . . . . . . . . . 13
⊢ ((◡𝐹 “ 𝑡) ∈ V → ((◡𝐹 “ 𝑡) ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐿 (◡𝐹 “ 𝑡) = (◡𝐹 “ 𝑥))) |
52 | 49, 51 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → ((◡𝐹 “ 𝑡) ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐿 (◡𝐹 “ 𝑡) = (◡𝐹 “ 𝑥))) |
53 | 52 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑡 ∈ 𝐿) → ((◡𝐹 “ 𝑡) ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐿 (◡𝐹 “ 𝑡) = (◡𝐹 “ 𝑥))) |
54 | 42, 53 | mpbird 256 |
. . . . . . . . . 10
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑡 ∈ 𝐿) → (◡𝐹 “ 𝑡) ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) |
55 | | ssid 3939 |
. . . . . . . . . . 11
⊢ (◡𝐹 “ 𝑡) ⊆ (◡𝐹 “ 𝑡) |
56 | | ffun 6587 |
. . . . . . . . . . . . . 14
⊢ (𝐹:𝑌⟶𝑋 → Fun 𝐹) |
57 | 56 | 3ad2ant3 1133 |
. . . . . . . . . . . . 13
⊢ ((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) → Fun 𝐹) |
58 | 57 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑡 ∈ 𝐿) → Fun 𝐹) |
59 | | funimass3 6913 |
. . . . . . . . . . . 12
⊢ ((Fun
𝐹 ∧ (◡𝐹 “ 𝑡) ⊆ dom 𝐹) → ((𝐹 “ (◡𝐹 “ 𝑡)) ⊆ 𝑡 ↔ (◡𝐹 “ 𝑡) ⊆ (◡𝐹 “ 𝑡))) |
60 | 58, 44, 59 | sylancl 585 |
. . . . . . . . . . 11
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑡 ∈ 𝐿) → ((𝐹 “ (◡𝐹 “ 𝑡)) ⊆ 𝑡 ↔ (◡𝐹 “ 𝑡) ⊆ (◡𝐹 “ 𝑡))) |
61 | 55, 60 | mpbiri 257 |
. . . . . . . . . 10
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑡 ∈ 𝐿) → (𝐹 “ (◡𝐹 “ 𝑡)) ⊆ 𝑡) |
62 | | imaeq2 5954 |
. . . . . . . . . . . 12
⊢ (𝑠 = (◡𝐹 “ 𝑡) → (𝐹 “ 𝑠) = (𝐹 “ (◡𝐹 “ 𝑡))) |
63 | 62 | sseq1d 3948 |
. . . . . . . . . . 11
⊢ (𝑠 = (◡𝐹 “ 𝑡) → ((𝐹 “ 𝑠) ⊆ 𝑡 ↔ (𝐹 “ (◡𝐹 “ 𝑡)) ⊆ 𝑡)) |
64 | 63 | rspcev 3552 |
. . . . . . . . . 10
⊢ (((◡𝐹 “ 𝑡) ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∧ (𝐹 “ (◡𝐹 “ 𝑡)) ⊆ 𝑡) → ∃𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))(𝐹 “ 𝑠) ⊆ 𝑡) |
65 | 54, 61, 64 | syl2anc 583 |
. . . . . . . . 9
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑡 ∈ 𝐿) → ∃𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))(𝐹 “ 𝑠) ⊆ 𝑡) |
66 | 65 | ex 412 |
. . . . . . . 8
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → (𝑡 ∈ 𝐿 → ∃𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))(𝐹 “ 𝑠) ⊆ 𝑡)) |
67 | 37, 66 | jcad 512 |
. . . . . . 7
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → (𝑡 ∈ 𝐿 → (𝑡 ⊆ 𝑋 ∧ ∃𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))(𝐹 “ 𝑠) ⊆ 𝑡))) |
68 | 34 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ ((𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∧ (𝐹 “ 𝑠) ⊆ 𝑡) ∧ 𝑡 ⊆ 𝑋)) → 𝐿 ∈ (Fil‘𝑋)) |
69 | 50 | elrnmpt 5854 |
. . . . . . . . . . . . . 14
⊢ (𝑠 ∈ V → (𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐿 𝑠 = (◡𝐹 “ 𝑥))) |
70 | 69 | elv 3428 |
. . . . . . . . . . . . 13
⊢ (𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐿 𝑠 = (◡𝐹 “ 𝑥)) |
71 | | ssid 3939 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (◡𝐹 “ 𝑥) ⊆ (◡𝐹 “ 𝑥) |
72 | 57 | ad3antrrr 726 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) ∧ ((𝐹 “ (◡𝐹 “ 𝑥)) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋)) → Fun 𝐹) |
73 | | cnvimass 5978 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (◡𝐹 “ 𝑥) ⊆ dom 𝐹 |
74 | | funimass3 6913 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((Fun
𝐹 ∧ (◡𝐹 “ 𝑥) ⊆ dom 𝐹) → ((𝐹 “ (◡𝐹 “ 𝑥)) ⊆ 𝑥 ↔ (◡𝐹 “ 𝑥) ⊆ (◡𝐹 “ 𝑥))) |
75 | 72, 73, 74 | sylancl 585 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) ∧ ((𝐹 “ (◡𝐹 “ 𝑥)) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋)) → ((𝐹 “ (◡𝐹 “ 𝑥)) ⊆ 𝑥 ↔ (◡𝐹 “ 𝑥) ⊆ (◡𝐹 “ 𝑥))) |
76 | 71, 75 | mpbiri 257 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) ∧ ((𝐹 “ (◡𝐹 “ 𝑥)) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋)) → (𝐹 “ (◡𝐹 “ 𝑥)) ⊆ 𝑥) |
77 | | imassrn 5969 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐹 “ (◡𝐹 “ 𝑥)) ⊆ ran 𝐹 |
78 | | ssin 4161 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐹 “ (◡𝐹 “ 𝑥)) ⊆ 𝑥 ∧ (𝐹 “ (◡𝐹 “ 𝑥)) ⊆ ran 𝐹) ↔ (𝐹 “ (◡𝐹 “ 𝑥)) ⊆ (𝑥 ∩ ran 𝐹)) |
79 | 76, 77, 78 | sylanblc 588 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) ∧ ((𝐹 “ (◡𝐹 “ 𝑥)) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋)) → (𝐹 “ (◡𝐹 “ 𝑥)) ⊆ (𝑥 ∩ ran 𝐹)) |
80 | | elin 3899 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 ∈ (𝑥 ∩ ran 𝐹) ↔ (𝑧 ∈ 𝑥 ∧ 𝑧 ∈ ran 𝐹)) |
81 | | fvelrnb 6812 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝐹 Fn 𝑌 → (𝑧 ∈ ran 𝐹 ↔ ∃𝑦 ∈ 𝑌 (𝐹‘𝑦) = 𝑧)) |
82 | 10, 81 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐹:𝑌⟶𝑋 → (𝑧 ∈ ran 𝐹 ↔ ∃𝑦 ∈ 𝑌 (𝐹‘𝑦) = 𝑧)) |
83 | 82 | 3ad2ant3 1133 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) → (𝑧 ∈ ran 𝐹 ↔ ∃𝑦 ∈ 𝑌 (𝐹‘𝑦) = 𝑧)) |
84 | 83 | ad3antrrr 726 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) ∧ ((𝐹 “ (◡𝐹 “ 𝑥)) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋)) → (𝑧 ∈ ran 𝐹 ↔ ∃𝑦 ∈ 𝑌 (𝐹‘𝑦) = 𝑧)) |
85 | 72 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((((𝑌 ∈
𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) ∧ ((𝐹 “ (◡𝐹 “ 𝑥)) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋)) ∧ 𝑦 ∈ 𝑌) ∧ (𝐹‘𝑦) ∈ 𝑥) → Fun 𝐹) |
86 | 85, 73 | jctir 520 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((((𝑌 ∈
𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) ∧ ((𝐹 “ (◡𝐹 “ 𝑥)) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋)) ∧ 𝑦 ∈ 𝑌) ∧ (𝐹‘𝑦) ∈ 𝑥) → (Fun 𝐹 ∧ (◡𝐹 “ 𝑥) ⊆ dom 𝐹)) |
87 | 57 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) → Fun 𝐹) |
88 | 87 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) ∧ ((𝐹 “ (◡𝐹 “ 𝑥)) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋)) ∧ 𝑦 ∈ 𝑌) → Fun 𝐹) |
89 | 45 | 3ad2ant3 1133 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) → dom 𝐹 = 𝑌) |
90 | 89 | ad3antrrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) ∧ ((𝐹 “ (◡𝐹 “ 𝑥)) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋)) → dom 𝐹 = 𝑌) |
91 | 90 | eleq2d 2824 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) ∧ ((𝐹 “ (◡𝐹 “ 𝑥)) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋)) → (𝑦 ∈ dom 𝐹 ↔ 𝑦 ∈ 𝑌)) |
92 | 91 | biimpar 477 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) ∧ ((𝐹 “ (◡𝐹 “ 𝑥)) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋)) ∧ 𝑦 ∈ 𝑌) → 𝑦 ∈ dom 𝐹) |
93 | | fvimacnv 6912 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((Fun
𝐹 ∧ 𝑦 ∈ dom 𝐹) → ((𝐹‘𝑦) ∈ 𝑥 ↔ 𝑦 ∈ (◡𝐹 “ 𝑥))) |
94 | 88, 92, 93 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) ∧ ((𝐹 “ (◡𝐹 “ 𝑥)) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋)) ∧ 𝑦 ∈ 𝑌) → ((𝐹‘𝑦) ∈ 𝑥 ↔ 𝑦 ∈ (◡𝐹 “ 𝑥))) |
95 | 94 | biimpa 476 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((((𝑌 ∈
𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) ∧ ((𝐹 “ (◡𝐹 “ 𝑥)) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋)) ∧ 𝑦 ∈ 𝑌) ∧ (𝐹‘𝑦) ∈ 𝑥) → 𝑦 ∈ (◡𝐹 “ 𝑥)) |
96 | | funfvima2 7089 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((Fun
𝐹 ∧ (◡𝐹 “ 𝑥) ⊆ dom 𝐹) → (𝑦 ∈ (◡𝐹 “ 𝑥) → (𝐹‘𝑦) ∈ (𝐹 “ (◡𝐹 “ 𝑥)))) |
97 | 86, 95, 96 | sylc 65 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((((𝑌 ∈
𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) ∧ ((𝐹 “ (◡𝐹 “ 𝑥)) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋)) ∧ 𝑦 ∈ 𝑌) ∧ (𝐹‘𝑦) ∈ 𝑥) → (𝐹‘𝑦) ∈ (𝐹 “ (◡𝐹 “ 𝑥))) |
98 | 97 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) ∧ ((𝐹 “ (◡𝐹 “ 𝑥)) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋)) ∧ 𝑦 ∈ 𝑌) → ((𝐹‘𝑦) ∈ 𝑥 → (𝐹‘𝑦) ∈ (𝐹 “ (◡𝐹 “ 𝑥)))) |
99 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝐹‘𝑦) = 𝑧 → ((𝐹‘𝑦) ∈ 𝑥 ↔ 𝑧 ∈ 𝑥)) |
100 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝐹‘𝑦) = 𝑧 → ((𝐹‘𝑦) ∈ (𝐹 “ (◡𝐹 “ 𝑥)) ↔ 𝑧 ∈ (𝐹 “ (◡𝐹 “ 𝑥)))) |
101 | 99, 100 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐹‘𝑦) = 𝑧 → (((𝐹‘𝑦) ∈ 𝑥 → (𝐹‘𝑦) ∈ (𝐹 “ (◡𝐹 “ 𝑥))) ↔ (𝑧 ∈ 𝑥 → 𝑧 ∈ (𝐹 “ (◡𝐹 “ 𝑥))))) |
102 | 98, 101 | syl5ibcom 244 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) ∧ ((𝐹 “ (◡𝐹 “ 𝑥)) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋)) ∧ 𝑦 ∈ 𝑌) → ((𝐹‘𝑦) = 𝑧 → (𝑧 ∈ 𝑥 → 𝑧 ∈ (𝐹 “ (◡𝐹 “ 𝑥))))) |
103 | 102 | rexlimdva 3212 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) ∧ ((𝐹 “ (◡𝐹 “ 𝑥)) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋)) → (∃𝑦 ∈ 𝑌 (𝐹‘𝑦) = 𝑧 → (𝑧 ∈ 𝑥 → 𝑧 ∈ (𝐹 “ (◡𝐹 “ 𝑥))))) |
104 | 84, 103 | sylbid 239 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) ∧ ((𝐹 “ (◡𝐹 “ 𝑥)) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋)) → (𝑧 ∈ ran 𝐹 → (𝑧 ∈ 𝑥 → 𝑧 ∈ (𝐹 “ (◡𝐹 “ 𝑥))))) |
105 | 104 | impcomd 411 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) ∧ ((𝐹 “ (◡𝐹 “ 𝑥)) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋)) → ((𝑧 ∈ 𝑥 ∧ 𝑧 ∈ ran 𝐹) → 𝑧 ∈ (𝐹 “ (◡𝐹 “ 𝑥)))) |
106 | 80, 105 | syl5bi 241 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) ∧ ((𝐹 “ (◡𝐹 “ 𝑥)) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋)) → (𝑧 ∈ (𝑥 ∩ ran 𝐹) → 𝑧 ∈ (𝐹 “ (◡𝐹 “ 𝑥)))) |
107 | 106 | ssrdv 3923 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) ∧ ((𝐹 “ (◡𝐹 “ 𝑥)) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋)) → (𝑥 ∩ ran 𝐹) ⊆ (𝐹 “ (◡𝐹 “ 𝑥))) |
108 | 79, 107 | eqssd 3934 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) ∧ ((𝐹 “ (◡𝐹 “ 𝑥)) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋)) → (𝐹 “ (◡𝐹 “ 𝑥)) = (𝑥 ∩ ran 𝐹)) |
109 | | filin 22913 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐿 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ 𝐿 ∧ ran 𝐹 ∈ 𝐿) → (𝑥 ∩ ran 𝐹) ∈ 𝐿) |
110 | 109 | 3exp 1117 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐿 ∈ (Fil‘𝑋) → (𝑥 ∈ 𝐿 → (ran 𝐹 ∈ 𝐿 → (𝑥 ∩ ran 𝐹) ∈ 𝐿))) |
111 | 110 | com23 86 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐿 ∈ (Fil‘𝑋) → (ran 𝐹 ∈ 𝐿 → (𝑥 ∈ 𝐿 → (𝑥 ∩ ran 𝐹) ∈ 𝐿))) |
112 | 111 | 3ad2ant2 1132 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) → (ran 𝐹 ∈ 𝐿 → (𝑥 ∈ 𝐿 → (𝑥 ∩ ran 𝐹) ∈ 𝐿))) |
113 | 112 | imp31 417 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) → (𝑥 ∩ ran 𝐹) ∈ 𝐿) |
114 | 113 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) ∧ ((𝐹 “ (◡𝐹 “ 𝑥)) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋)) → (𝑥 ∩ ran 𝐹) ∈ 𝐿) |
115 | 108, 114 | eqeltrd 2839 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) ∧ ((𝐹 “ (◡𝐹 “ 𝑥)) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋)) → (𝐹 “ (◡𝐹 “ 𝑥)) ∈ 𝐿) |
116 | 115 | exp32 420 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) → ((𝐹 “ (◡𝐹 “ 𝑥)) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → (𝐹 “ (◡𝐹 “ 𝑥)) ∈ 𝐿))) |
117 | | imaeq2 5954 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑠 = (◡𝐹 “ 𝑥) → (𝐹 “ 𝑠) = (𝐹 “ (◡𝐹 “ 𝑥))) |
118 | 117 | sseq1d 3948 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 = (◡𝐹 “ 𝑥) → ((𝐹 “ 𝑠) ⊆ 𝑡 ↔ (𝐹 “ (◡𝐹 “ 𝑥)) ⊆ 𝑡)) |
119 | 117 | eleq1d 2823 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑠 = (◡𝐹 “ 𝑥) → ((𝐹 “ 𝑠) ∈ 𝐿 ↔ (𝐹 “ (◡𝐹 “ 𝑥)) ∈ 𝐿)) |
120 | 119 | imbi2d 340 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 = (◡𝐹 “ 𝑥) → ((𝑡 ⊆ 𝑋 → (𝐹 “ 𝑠) ∈ 𝐿) ↔ (𝑡 ⊆ 𝑋 → (𝐹 “ (◡𝐹 “ 𝑥)) ∈ 𝐿))) |
121 | 118, 120 | imbi12d 344 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 = (◡𝐹 “ 𝑥) → (((𝐹 “ 𝑠) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → (𝐹 “ 𝑠) ∈ 𝐿)) ↔ ((𝐹 “ (◡𝐹 “ 𝑥)) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → (𝐹 “ (◡𝐹 “ 𝑥)) ∈ 𝐿)))) |
122 | 116, 121 | syl5ibrcom 246 |
. . . . . . . . . . . . . 14
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) → (𝑠 = (◡𝐹 “ 𝑥) → ((𝐹 “ 𝑠) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → (𝐹 “ 𝑠) ∈ 𝐿)))) |
123 | 122 | rexlimdva 3212 |
. . . . . . . . . . . . 13
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → (∃𝑥 ∈ 𝐿 𝑠 = (◡𝐹 “ 𝑥) → ((𝐹 “ 𝑠) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → (𝐹 “ 𝑠) ∈ 𝐿)))) |
124 | 70, 123 | syl5bi 241 |
. . . . . . . . . . . 12
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → (𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) → ((𝐹 “ 𝑠) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → (𝐹 “ 𝑠) ∈ 𝐿)))) |
125 | 124 | imp44 428 |
. . . . . . . . . . 11
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ ((𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∧ (𝐹 “ 𝑠) ⊆ 𝑡) ∧ 𝑡 ⊆ 𝑋)) → (𝐹 “ 𝑠) ∈ 𝐿) |
126 | | simprr 769 |
. . . . . . . . . . 11
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ ((𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∧ (𝐹 “ 𝑠) ⊆ 𝑡) ∧ 𝑡 ⊆ 𝑋)) → 𝑡 ⊆ 𝑋) |
127 | | simprlr 776 |
. . . . . . . . . . 11
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ ((𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∧ (𝐹 “ 𝑠) ⊆ 𝑡) ∧ 𝑡 ⊆ 𝑋)) → (𝐹 “ 𝑠) ⊆ 𝑡) |
128 | | filss 22912 |
. . . . . . . . . . 11
⊢ ((𝐿 ∈ (Fil‘𝑋) ∧ ((𝐹 “ 𝑠) ∈ 𝐿 ∧ 𝑡 ⊆ 𝑋 ∧ (𝐹 “ 𝑠) ⊆ 𝑡)) → 𝑡 ∈ 𝐿) |
129 | 68, 125, 126, 127, 128 | syl13anc 1370 |
. . . . . . . . . 10
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ ((𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∧ (𝐹 “ 𝑠) ⊆ 𝑡) ∧ 𝑡 ⊆ 𝑋)) → 𝑡 ∈ 𝐿) |
130 | 129 | exp44 437 |
. . . . . . . . 9
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → (𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) → ((𝐹 “ 𝑠) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿)))) |
131 | 130 | rexlimdv 3211 |
. . . . . . . 8
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → (∃𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))(𝐹 “ 𝑠) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿))) |
132 | 131 | impcomd 411 |
. . . . . . 7
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → ((𝑡 ⊆ 𝑋 ∧ ∃𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))(𝐹 “ 𝑠) ⊆ 𝑡) → 𝑡 ∈ 𝐿)) |
133 | 67, 132 | impbid 211 |
. . . . . 6
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → (𝑡 ∈ 𝐿 ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))(𝐹 “ 𝑠) ⊆ 𝑡))) |
134 | 2 | adantr 480 |
. . . . . . 7
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → 𝑋 ∈ 𝐿) |
135 | | rnelfmlem 23011 |
. . . . . . 7
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∈ (fBas‘𝑌)) |
136 | | simpl3 1191 |
. . . . . . 7
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → 𝐹:𝑌⟶𝑋) |
137 | | elfm 23006 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝐿 ∧ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝑡 ∈ ((𝑋 FilMap 𝐹)‘ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))(𝐹 “ 𝑠) ⊆ 𝑡))) |
138 | 134, 135,
136, 137 | syl3anc 1369 |
. . . . . 6
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → (𝑡 ∈ ((𝑋 FilMap 𝐹)‘ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))(𝐹 “ 𝑠) ⊆ 𝑡))) |
139 | 133, 138 | bitr4d 281 |
. . . . 5
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → (𝑡 ∈ 𝐿 ↔ 𝑡 ∈ ((𝑋 FilMap 𝐹)‘ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))) |
140 | 139 | eqrdv 2736 |
. . . 4
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → 𝐿 = ((𝑋 FilMap 𝐹)‘ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)))) |
141 | 7 | adantr 480 |
. . . . 5
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → (𝑋 FilMap 𝐹) Fn (fBas‘𝑌)) |
142 | | fnfvelrn 6940 |
. . . . 5
⊢ (((𝑋 FilMap 𝐹) Fn (fBas‘𝑌) ∧ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∈ (fBas‘𝑌)) → ((𝑋 FilMap 𝐹)‘ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) ∈ ran (𝑋 FilMap 𝐹)) |
143 | 141, 135,
142 | syl2anc 583 |
. . . 4
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → ((𝑋 FilMap 𝐹)‘ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) ∈ ran (𝑋 FilMap 𝐹)) |
144 | 140, 143 | eqeltrd 2839 |
. . 3
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → 𝐿 ∈ ran (𝑋 FilMap 𝐹)) |
145 | 144 | ex 412 |
. 2
⊢ ((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) → (ran 𝐹 ∈ 𝐿 → 𝐿 ∈ ran (𝑋 FilMap 𝐹))) |
146 | 33, 145 | impbid 211 |
1
⊢ ((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) → (𝐿 ∈ ran (𝑋 FilMap 𝐹) ↔ ran 𝐹 ∈ 𝐿)) |