MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnelfm Structured version   Visualization version   GIF version

Theorem rnelfm 23873
Description: A condition for a filter to be an image filter for a given function. (Contributed by Jeff Hankins, 14-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Assertion
Ref Expression
rnelfm ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (𝐿 ∈ ran (𝑋 FilMap 𝐹) ↔ ran 𝐹𝐿))

Proof of Theorem rnelfm
Dummy variables 𝑏 𝑠 𝑡 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 filtop 23775 . . . . . . 7 (𝐿 ∈ (Fil‘𝑋) → 𝑋𝐿)
213ad2ant2 1134 . . . . . 6 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → 𝑋𝐿)
3 simp1 1136 . . . . . 6 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → 𝑌𝐴)
4 simp3 1138 . . . . . 6 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → 𝐹:𝑌𝑋)
5 fmf 23865 . . . . . 6 ((𝑋𝐿𝑌𝐴𝐹:𝑌𝑋) → (𝑋 FilMap 𝐹):(fBas‘𝑌)⟶(Fil‘𝑋))
62, 3, 4, 5syl3anc 1373 . . . . 5 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (𝑋 FilMap 𝐹):(fBas‘𝑌)⟶(Fil‘𝑋))
76ffnd 6671 . . . 4 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (𝑋 FilMap 𝐹) Fn (fBas‘𝑌))
8 fvelrnb 6903 . . . 4 ((𝑋 FilMap 𝐹) Fn (fBas‘𝑌) → (𝐿 ∈ ran (𝑋 FilMap 𝐹) ↔ ∃𝑏 ∈ (fBas‘𝑌)((𝑋 FilMap 𝐹)‘𝑏) = 𝐿))
97, 8syl 17 . . 3 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (𝐿 ∈ ran (𝑋 FilMap 𝐹) ↔ ∃𝑏 ∈ (fBas‘𝑌)((𝑋 FilMap 𝐹)‘𝑏) = 𝐿))
10 ffn 6670 . . . . . . . . . . . 12 (𝐹:𝑌𝑋𝐹 Fn 𝑌)
11 dffn4 6760 . . . . . . . . . . . 12 (𝐹 Fn 𝑌𝐹:𝑌onto→ran 𝐹)
1210, 11sylib 218 . . . . . . . . . . 11 (𝐹:𝑌𝑋𝐹:𝑌onto→ran 𝐹)
13 foima 6759 . . . . . . . . . . 11 (𝐹:𝑌onto→ran 𝐹 → (𝐹𝑌) = ran 𝐹)
1412, 13syl 17 . . . . . . . . . 10 (𝐹:𝑌𝑋 → (𝐹𝑌) = ran 𝐹)
1514ad2antlr 727 . . . . . . . . 9 (((𝑋𝐿𝐹:𝑌𝑋) ∧ 𝑏 ∈ (fBas‘𝑌)) → (𝐹𝑌) = ran 𝐹)
16 simpll 766 . . . . . . . . . 10 (((𝑋𝐿𝐹:𝑌𝑋) ∧ 𝑏 ∈ (fBas‘𝑌)) → 𝑋𝐿)
17 simpr 484 . . . . . . . . . 10 (((𝑋𝐿𝐹:𝑌𝑋) ∧ 𝑏 ∈ (fBas‘𝑌)) → 𝑏 ∈ (fBas‘𝑌))
18 simplr 768 . . . . . . . . . 10 (((𝑋𝐿𝐹:𝑌𝑋) ∧ 𝑏 ∈ (fBas‘𝑌)) → 𝐹:𝑌𝑋)
19 fgcl 23798 . . . . . . . . . . . 12 (𝑏 ∈ (fBas‘𝑌) → (𝑌filGen𝑏) ∈ (Fil‘𝑌))
20 filtop 23775 . . . . . . . . . . . 12 ((𝑌filGen𝑏) ∈ (Fil‘𝑌) → 𝑌 ∈ (𝑌filGen𝑏))
2119, 20syl 17 . . . . . . . . . . 11 (𝑏 ∈ (fBas‘𝑌) → 𝑌 ∈ (𝑌filGen𝑏))
2221adantl 481 . . . . . . . . . 10 (((𝑋𝐿𝐹:𝑌𝑋) ∧ 𝑏 ∈ (fBas‘𝑌)) → 𝑌 ∈ (𝑌filGen𝑏))
23 eqid 2729 . . . . . . . . . . 11 (𝑌filGen𝑏) = (𝑌filGen𝑏)
2423imaelfm 23871 . . . . . . . . . 10 (((𝑋𝐿𝑏 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑌 ∈ (𝑌filGen𝑏)) → (𝐹𝑌) ∈ ((𝑋 FilMap 𝐹)‘𝑏))
2516, 17, 18, 22, 24syl31anc 1375 . . . . . . . . 9 (((𝑋𝐿𝐹:𝑌𝑋) ∧ 𝑏 ∈ (fBas‘𝑌)) → (𝐹𝑌) ∈ ((𝑋 FilMap 𝐹)‘𝑏))
2615, 25eqeltrrd 2829 . . . . . . . 8 (((𝑋𝐿𝐹:𝑌𝑋) ∧ 𝑏 ∈ (fBas‘𝑌)) → ran 𝐹 ∈ ((𝑋 FilMap 𝐹)‘𝑏))
27 eleq2 2817 . . . . . . . 8 (((𝑋 FilMap 𝐹)‘𝑏) = 𝐿 → (ran 𝐹 ∈ ((𝑋 FilMap 𝐹)‘𝑏) ↔ ran 𝐹𝐿))
2826, 27syl5ibcom 245 . . . . . . 7 (((𝑋𝐿𝐹:𝑌𝑋) ∧ 𝑏 ∈ (fBas‘𝑌)) → (((𝑋 FilMap 𝐹)‘𝑏) = 𝐿 → ran 𝐹𝐿))
2928ex 412 . . . . . 6 ((𝑋𝐿𝐹:𝑌𝑋) → (𝑏 ∈ (fBas‘𝑌) → (((𝑋 FilMap 𝐹)‘𝑏) = 𝐿 → ran 𝐹𝐿)))
301, 29sylan 580 . . . . 5 ((𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (𝑏 ∈ (fBas‘𝑌) → (((𝑋 FilMap 𝐹)‘𝑏) = 𝐿 → ran 𝐹𝐿)))
31303adant1 1130 . . . 4 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (𝑏 ∈ (fBas‘𝑌) → (((𝑋 FilMap 𝐹)‘𝑏) = 𝐿 → ran 𝐹𝐿)))
3231rexlimdv 3132 . . 3 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (∃𝑏 ∈ (fBas‘𝑌)((𝑋 FilMap 𝐹)‘𝑏) = 𝐿 → ran 𝐹𝐿))
339, 32sylbid 240 . 2 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (𝐿 ∈ ran (𝑋 FilMap 𝐹) → ran 𝐹𝐿))
34 simpl2 1193 . . . . . . . . 9 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → 𝐿 ∈ (Fil‘𝑋))
35 filelss 23772 . . . . . . . . . 10 ((𝐿 ∈ (Fil‘𝑋) ∧ 𝑡𝐿) → 𝑡𝑋)
3635ex 412 . . . . . . . . 9 (𝐿 ∈ (Fil‘𝑋) → (𝑡𝐿𝑡𝑋))
3734, 36syl 17 . . . . . . . 8 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (𝑡𝐿𝑡𝑋))
38 simpr 484 . . . . . . . . . . . 12 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑡𝐿) → 𝑡𝐿)
39 eqidd 2730 . . . . . . . . . . . 12 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑡𝐿) → (𝐹𝑡) = (𝐹𝑡))
40 imaeq2 6016 . . . . . . . . . . . . 13 (𝑥 = 𝑡 → (𝐹𝑥) = (𝐹𝑡))
4140rspceeqv 3608 . . . . . . . . . . . 12 ((𝑡𝐿 ∧ (𝐹𝑡) = (𝐹𝑡)) → ∃𝑥𝐿 (𝐹𝑡) = (𝐹𝑥))
4238, 39, 41syl2anc 584 . . . . . . . . . . 11 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑡𝐿) → ∃𝑥𝐿 (𝐹𝑡) = (𝐹𝑥))
43 simpl1 1192 . . . . . . . . . . . . . 14 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → 𝑌𝐴)
44 cnvimass 6042 . . . . . . . . . . . . . . . . 17 (𝐹𝑡) ⊆ dom 𝐹
45 fdm 6679 . . . . . . . . . . . . . . . . 17 (𝐹:𝑌𝑋 → dom 𝐹 = 𝑌)
4644, 45sseqtrid 3986 . . . . . . . . . . . . . . . 16 (𝐹:𝑌𝑋 → (𝐹𝑡) ⊆ 𝑌)
47463ad2ant3 1135 . . . . . . . . . . . . . . 15 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (𝐹𝑡) ⊆ 𝑌)
4847adantr 480 . . . . . . . . . . . . . 14 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (𝐹𝑡) ⊆ 𝑌)
4943, 48ssexd 5274 . . . . . . . . . . . . 13 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (𝐹𝑡) ∈ V)
50 eqid 2729 . . . . . . . . . . . . . 14 (𝑥𝐿 ↦ (𝐹𝑥)) = (𝑥𝐿 ↦ (𝐹𝑥))
5150elrnmpt 5911 . . . . . . . . . . . . 13 ((𝐹𝑡) ∈ V → ((𝐹𝑡) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 (𝐹𝑡) = (𝐹𝑥)))
5249, 51syl 17 . . . . . . . . . . . 12 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ((𝐹𝑡) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 (𝐹𝑡) = (𝐹𝑥)))
5352adantr 480 . . . . . . . . . . 11 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑡𝐿) → ((𝐹𝑡) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 (𝐹𝑡) = (𝐹𝑥)))
5442, 53mpbird 257 . . . . . . . . . 10 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑡𝐿) → (𝐹𝑡) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)))
55 ssid 3966 . . . . . . . . . . 11 (𝐹𝑡) ⊆ (𝐹𝑡)
56 ffun 6673 . . . . . . . . . . . . . 14 (𝐹:𝑌𝑋 → Fun 𝐹)
57563ad2ant3 1135 . . . . . . . . . . . . 13 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → Fun 𝐹)
5857ad2antrr 726 . . . . . . . . . . . 12 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑡𝐿) → Fun 𝐹)
59 funimass3 7008 . . . . . . . . . . . 12 ((Fun 𝐹 ∧ (𝐹𝑡) ⊆ dom 𝐹) → ((𝐹 “ (𝐹𝑡)) ⊆ 𝑡 ↔ (𝐹𝑡) ⊆ (𝐹𝑡)))
6058, 44, 59sylancl 586 . . . . . . . . . . 11 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑡𝐿) → ((𝐹 “ (𝐹𝑡)) ⊆ 𝑡 ↔ (𝐹𝑡) ⊆ (𝐹𝑡)))
6155, 60mpbiri 258 . . . . . . . . . 10 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑡𝐿) → (𝐹 “ (𝐹𝑡)) ⊆ 𝑡)
62 imaeq2 6016 . . . . . . . . . . . 12 (𝑠 = (𝐹𝑡) → (𝐹𝑠) = (𝐹 “ (𝐹𝑡)))
6362sseq1d 3975 . . . . . . . . . . 11 (𝑠 = (𝐹𝑡) → ((𝐹𝑠) ⊆ 𝑡 ↔ (𝐹 “ (𝐹𝑡)) ⊆ 𝑡))
6463rspcev 3585 . . . . . . . . . 10 (((𝐹𝑡) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∧ (𝐹 “ (𝐹𝑡)) ⊆ 𝑡) → ∃𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝐹𝑠) ⊆ 𝑡)
6554, 61, 64syl2anc 584 . . . . . . . . 9 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑡𝐿) → ∃𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝐹𝑠) ⊆ 𝑡)
6665ex 412 . . . . . . . 8 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (𝑡𝐿 → ∃𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝐹𝑠) ⊆ 𝑡))
6737, 66jcad 512 . . . . . . 7 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (𝑡𝐿 → (𝑡𝑋 ∧ ∃𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝐹𝑠) ⊆ 𝑡)))
6834adantr 480 . . . . . . . . . . 11 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∧ (𝐹𝑠) ⊆ 𝑡) ∧ 𝑡𝑋)) → 𝐿 ∈ (Fil‘𝑋))
6950elrnmpt 5911 . . . . . . . . . . . . . 14 (𝑠 ∈ V → (𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑠 = (𝐹𝑥)))
7069elv 3449 . . . . . . . . . . . . 13 (𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑠 = (𝐹𝑥))
71 ssid 3966 . . . . . . . . . . . . . . . . . . . 20 (𝐹𝑥) ⊆ (𝐹𝑥)
7257ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → Fun 𝐹)
73 cnvimass 6042 . . . . . . . . . . . . . . . . . . . . 21 (𝐹𝑥) ⊆ dom 𝐹
74 funimass3 7008 . . . . . . . . . . . . . . . . . . . . 21 ((Fun 𝐹 ∧ (𝐹𝑥) ⊆ dom 𝐹) → ((𝐹 “ (𝐹𝑥)) ⊆ 𝑥 ↔ (𝐹𝑥) ⊆ (𝐹𝑥)))
7572, 73, 74sylancl 586 . . . . . . . . . . . . . . . . . . . 20 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → ((𝐹 “ (𝐹𝑥)) ⊆ 𝑥 ↔ (𝐹𝑥) ⊆ (𝐹𝑥)))
7671, 75mpbiri 258 . . . . . . . . . . . . . . . . . . 19 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → (𝐹 “ (𝐹𝑥)) ⊆ 𝑥)
77 imassrn 6031 . . . . . . . . . . . . . . . . . . 19 (𝐹 “ (𝐹𝑥)) ⊆ ran 𝐹
78 ssin 4198 . . . . . . . . . . . . . . . . . . 19 (((𝐹 “ (𝐹𝑥)) ⊆ 𝑥 ∧ (𝐹 “ (𝐹𝑥)) ⊆ ran 𝐹) ↔ (𝐹 “ (𝐹𝑥)) ⊆ (𝑥 ∩ ran 𝐹))
7976, 77, 78sylanblc 589 . . . . . . . . . . . . . . . . . 18 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → (𝐹 “ (𝐹𝑥)) ⊆ (𝑥 ∩ ran 𝐹))
80 elin 3927 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ (𝑥 ∩ ran 𝐹) ↔ (𝑧𝑥𝑧 ∈ ran 𝐹))
81 fvelrnb 6903 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐹 Fn 𝑌 → (𝑧 ∈ ran 𝐹 ↔ ∃𝑦𝑌 (𝐹𝑦) = 𝑧))
8210, 81syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐹:𝑌𝑋 → (𝑧 ∈ ran 𝐹 ↔ ∃𝑦𝑌 (𝐹𝑦) = 𝑧))
83823ad2ant3 1135 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (𝑧 ∈ ran 𝐹 ↔ ∃𝑦𝑌 (𝐹𝑦) = 𝑧))
8483ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → (𝑧 ∈ ran 𝐹 ↔ ∃𝑦𝑌 (𝐹𝑦) = 𝑧))
8572ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) ∧ 𝑦𝑌) ∧ (𝐹𝑦) ∈ 𝑥) → Fun 𝐹)
8685, 73jctir 520 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) ∧ 𝑦𝑌) ∧ (𝐹𝑦) ∈ 𝑥) → (Fun 𝐹 ∧ (𝐹𝑥) ⊆ dom 𝐹))
8757ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) → Fun 𝐹)
8887ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) ∧ 𝑦𝑌) → Fun 𝐹)
89453ad2ant3 1135 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → dom 𝐹 = 𝑌)
9089ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → dom 𝐹 = 𝑌)
9190eleq2d 2814 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → (𝑦 ∈ dom 𝐹𝑦𝑌))
9291biimpar 477 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) ∧ 𝑦𝑌) → 𝑦 ∈ dom 𝐹)
93 fvimacnv 7007 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((Fun 𝐹𝑦 ∈ dom 𝐹) → ((𝐹𝑦) ∈ 𝑥𝑦 ∈ (𝐹𝑥)))
9488, 92, 93syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) ∧ 𝑦𝑌) → ((𝐹𝑦) ∈ 𝑥𝑦 ∈ (𝐹𝑥)))
9594biimpa 476 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) ∧ 𝑦𝑌) ∧ (𝐹𝑦) ∈ 𝑥) → 𝑦 ∈ (𝐹𝑥))
96 funfvima2 7187 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((Fun 𝐹 ∧ (𝐹𝑥) ⊆ dom 𝐹) → (𝑦 ∈ (𝐹𝑥) → (𝐹𝑦) ∈ (𝐹 “ (𝐹𝑥))))
9786, 95, 96sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) ∧ 𝑦𝑌) ∧ (𝐹𝑦) ∈ 𝑥) → (𝐹𝑦) ∈ (𝐹 “ (𝐹𝑥)))
9897ex 412 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) ∧ 𝑦𝑌) → ((𝐹𝑦) ∈ 𝑥 → (𝐹𝑦) ∈ (𝐹 “ (𝐹𝑥))))
99 eleq1 2816 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐹𝑦) = 𝑧 → ((𝐹𝑦) ∈ 𝑥𝑧𝑥))
100 eleq1 2816 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐹𝑦) = 𝑧 → ((𝐹𝑦) ∈ (𝐹 “ (𝐹𝑥)) ↔ 𝑧 ∈ (𝐹 “ (𝐹𝑥))))
10199, 100imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹𝑦) = 𝑧 → (((𝐹𝑦) ∈ 𝑥 → (𝐹𝑦) ∈ (𝐹 “ (𝐹𝑥))) ↔ (𝑧𝑥𝑧 ∈ (𝐹 “ (𝐹𝑥)))))
10298, 101syl5ibcom 245 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) ∧ 𝑦𝑌) → ((𝐹𝑦) = 𝑧 → (𝑧𝑥𝑧 ∈ (𝐹 “ (𝐹𝑥)))))
103102rexlimdva 3134 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → (∃𝑦𝑌 (𝐹𝑦) = 𝑧 → (𝑧𝑥𝑧 ∈ (𝐹 “ (𝐹𝑥)))))
10484, 103sylbid 240 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → (𝑧 ∈ ran 𝐹 → (𝑧𝑥𝑧 ∈ (𝐹 “ (𝐹𝑥)))))
105104impcomd 411 . . . . . . . . . . . . . . . . . . . 20 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → ((𝑧𝑥𝑧 ∈ ran 𝐹) → 𝑧 ∈ (𝐹 “ (𝐹𝑥))))
10680, 105biimtrid 242 . . . . . . . . . . . . . . . . . . 19 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → (𝑧 ∈ (𝑥 ∩ ran 𝐹) → 𝑧 ∈ (𝐹 “ (𝐹𝑥))))
107106ssrdv 3949 . . . . . . . . . . . . . . . . . 18 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → (𝑥 ∩ ran 𝐹) ⊆ (𝐹 “ (𝐹𝑥)))
10879, 107eqssd 3961 . . . . . . . . . . . . . . . . 17 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → (𝐹 “ (𝐹𝑥)) = (𝑥 ∩ ran 𝐹))
109 filin 23774 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐿 ∈ (Fil‘𝑋) ∧ 𝑥𝐿 ∧ ran 𝐹𝐿) → (𝑥 ∩ ran 𝐹) ∈ 𝐿)
1101093exp 1119 . . . . . . . . . . . . . . . . . . . . 21 (𝐿 ∈ (Fil‘𝑋) → (𝑥𝐿 → (ran 𝐹𝐿 → (𝑥 ∩ ran 𝐹) ∈ 𝐿)))
111110com23 86 . . . . . . . . . . . . . . . . . . . 20 (𝐿 ∈ (Fil‘𝑋) → (ran 𝐹𝐿 → (𝑥𝐿 → (𝑥 ∩ ran 𝐹) ∈ 𝐿)))
1121113ad2ant2 1134 . . . . . . . . . . . . . . . . . . 19 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (ran 𝐹𝐿 → (𝑥𝐿 → (𝑥 ∩ ran 𝐹) ∈ 𝐿)))
113112imp31 417 . . . . . . . . . . . . . . . . . 18 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) → (𝑥 ∩ ran 𝐹) ∈ 𝐿)
114113adantr 480 . . . . . . . . . . . . . . . . 17 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → (𝑥 ∩ ran 𝐹) ∈ 𝐿)
115108, 114eqeltrd 2828 . . . . . . . . . . . . . . . 16 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → (𝐹 “ (𝐹𝑥)) ∈ 𝐿)
116115exp32 420 . . . . . . . . . . . . . . 15 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) → ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡 → (𝑡𝑋 → (𝐹 “ (𝐹𝑥)) ∈ 𝐿)))
117 imaeq2 6016 . . . . . . . . . . . . . . . . 17 (𝑠 = (𝐹𝑥) → (𝐹𝑠) = (𝐹 “ (𝐹𝑥)))
118117sseq1d 3975 . . . . . . . . . . . . . . . 16 (𝑠 = (𝐹𝑥) → ((𝐹𝑠) ⊆ 𝑡 ↔ (𝐹 “ (𝐹𝑥)) ⊆ 𝑡))
119117eleq1d 2813 . . . . . . . . . . . . . . . . 17 (𝑠 = (𝐹𝑥) → ((𝐹𝑠) ∈ 𝐿 ↔ (𝐹 “ (𝐹𝑥)) ∈ 𝐿))
120119imbi2d 340 . . . . . . . . . . . . . . . 16 (𝑠 = (𝐹𝑥) → ((𝑡𝑋 → (𝐹𝑠) ∈ 𝐿) ↔ (𝑡𝑋 → (𝐹 “ (𝐹𝑥)) ∈ 𝐿)))
121118, 120imbi12d 344 . . . . . . . . . . . . . . 15 (𝑠 = (𝐹𝑥) → (((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋 → (𝐹𝑠) ∈ 𝐿)) ↔ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡 → (𝑡𝑋 → (𝐹 “ (𝐹𝑥)) ∈ 𝐿))))
122116, 121syl5ibrcom 247 . . . . . . . . . . . . . 14 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) → (𝑠 = (𝐹𝑥) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋 → (𝐹𝑠) ∈ 𝐿))))
123122rexlimdva 3134 . . . . . . . . . . . . 13 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (∃𝑥𝐿 𝑠 = (𝐹𝑥) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋 → (𝐹𝑠) ∈ 𝐿))))
12470, 123biimtrid 242 . . . . . . . . . . . 12 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋 → (𝐹𝑠) ∈ 𝐿))))
125124imp44 428 . . . . . . . . . . 11 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∧ (𝐹𝑠) ⊆ 𝑡) ∧ 𝑡𝑋)) → (𝐹𝑠) ∈ 𝐿)
126 simprr 772 . . . . . . . . . . 11 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∧ (𝐹𝑠) ⊆ 𝑡) ∧ 𝑡𝑋)) → 𝑡𝑋)
127 simprlr 779 . . . . . . . . . . 11 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∧ (𝐹𝑠) ⊆ 𝑡) ∧ 𝑡𝑋)) → (𝐹𝑠) ⊆ 𝑡)
128 filss 23773 . . . . . . . . . . 11 ((𝐿 ∈ (Fil‘𝑋) ∧ ((𝐹𝑠) ∈ 𝐿𝑡𝑋 ∧ (𝐹𝑠) ⊆ 𝑡)) → 𝑡𝐿)
12968, 125, 126, 127, 128syl13anc 1374 . . . . . . . . . 10 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∧ (𝐹𝑠) ⊆ 𝑡) ∧ 𝑡𝑋)) → 𝑡𝐿)
130129exp44 437 . . . . . . . . 9 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
131130rexlimdv 3132 . . . . . . . 8 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (∃𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿)))
132131impcomd 411 . . . . . . 7 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ((𝑡𝑋 ∧ ∃𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝐹𝑠) ⊆ 𝑡) → 𝑡𝐿))
13367, 132impbid 212 . . . . . 6 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (𝑡𝐿 ↔ (𝑡𝑋 ∧ ∃𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝐹𝑠) ⊆ 𝑡)))
1342adantr 480 . . . . . . 7 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → 𝑋𝐿)
135 rnelfmlem 23872 . . . . . . 7 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ (fBas‘𝑌))
136 simpl3 1194 . . . . . . 7 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → 𝐹:𝑌𝑋)
137 elfm 23867 . . . . . . 7 ((𝑋𝐿 ∧ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑡 ∈ ((𝑋 FilMap 𝐹)‘ran (𝑥𝐿 ↦ (𝐹𝑥))) ↔ (𝑡𝑋 ∧ ∃𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝐹𝑠) ⊆ 𝑡)))
138134, 135, 136, 137syl3anc 1373 . . . . . 6 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (𝑡 ∈ ((𝑋 FilMap 𝐹)‘ran (𝑥𝐿 ↦ (𝐹𝑥))) ↔ (𝑡𝑋 ∧ ∃𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝐹𝑠) ⊆ 𝑡)))
139133, 138bitr4d 282 . . . . 5 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (𝑡𝐿𝑡 ∈ ((𝑋 FilMap 𝐹)‘ran (𝑥𝐿 ↦ (𝐹𝑥)))))
140139eqrdv 2727 . . . 4 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → 𝐿 = ((𝑋 FilMap 𝐹)‘ran (𝑥𝐿 ↦ (𝐹𝑥))))
1417adantr 480 . . . . 5 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (𝑋 FilMap 𝐹) Fn (fBas‘𝑌))
142 fnfvelrn 7034 . . . . 5 (((𝑋 FilMap 𝐹) Fn (fBas‘𝑌) ∧ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ (fBas‘𝑌)) → ((𝑋 FilMap 𝐹)‘ran (𝑥𝐿 ↦ (𝐹𝑥))) ∈ ran (𝑋 FilMap 𝐹))
143141, 135, 142syl2anc 584 . . . 4 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ((𝑋 FilMap 𝐹)‘ran (𝑥𝐿 ↦ (𝐹𝑥))) ∈ ran (𝑋 FilMap 𝐹))
144140, 143eqeltrd 2828 . . 3 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → 𝐿 ∈ ran (𝑋 FilMap 𝐹))
145144ex 412 . 2 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (ran 𝐹𝐿𝐿 ∈ ran (𝑋 FilMap 𝐹)))
14633, 145impbid 212 1 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (𝐿 ∈ ran (𝑋 FilMap 𝐹) ↔ ran 𝐹𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  Vcvv 3444  cin 3910  wss 3911  cmpt 5183  ccnv 5630  dom cdm 5631  ran crn 5632  cima 5634  Fun wfun 6493   Fn wfn 6494  wf 6495  ontowfo 6497  cfv 6499  (class class class)co 7369  fBascfbas 21284  filGencfg 21285  Filcfil 23765   FilMap cfm 23853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-fbas 21293  df-fg 21294  df-fil 23766  df-fm 23858
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator