![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eltg3i | Structured version Visualization version GIF version |
Description: The union of a set of basic open sets is in the generated topology. (Contributed by Mario Carneiro, 30-Aug-2015.) |
Ref | Expression |
---|---|
eltg3i | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → ∪ 𝐴 ∈ (topGen‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → 𝐴 ⊆ 𝐵) | |
2 | pwuni 4969 | . . . 4 ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 | |
3 | ssin 4260 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝒫 ∪ 𝐴) ↔ 𝐴 ⊆ (𝐵 ∩ 𝒫 ∪ 𝐴)) | |
4 | 1, 2, 3 | sylanblc 588 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → 𝐴 ⊆ (𝐵 ∩ 𝒫 ∪ 𝐴)) |
5 | 4 | unissd 4941 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → ∪ 𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 ∪ 𝐴)) |
6 | eltg 22985 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (∪ 𝐴 ∈ (topGen‘𝐵) ↔ ∪ 𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 ∪ 𝐴))) | |
7 | 6 | adantr 480 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (∪ 𝐴 ∈ (topGen‘𝐵) ↔ ∪ 𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 ∪ 𝐴))) |
8 | 5, 7 | mpbird 257 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → ∪ 𝐴 ∈ (topGen‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ∩ cin 3975 ⊆ wss 3976 𝒫 cpw 4622 ∪ cuni 4931 ‘cfv 6573 topGenctg 17497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-topgen 17503 |
This theorem is referenced by: eltg3 22990 tgiun 23007 tgidm 23008 tgrest 23188 leordtval2 23241 fnemeet1 36332 fnejoin2 36335 ontgval 36397 |
Copyright terms: Public domain | W3C validator |