MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltg3i Structured version   Visualization version   GIF version

Theorem eltg3i 22019
Description: The union of a set of basic open sets is in the generated topology. (Contributed by Mario Carneiro, 30-Aug-2015.)
Assertion
Ref Expression
eltg3i ((𝐵𝑉𝐴𝐵) → 𝐴 ∈ (topGen‘𝐵))

Proof of Theorem eltg3i
StepHypRef Expression
1 simpr 484 . . . 4 ((𝐵𝑉𝐴𝐵) → 𝐴𝐵)
2 pwuni 4875 . . . 4 𝐴 ⊆ 𝒫 𝐴
3 ssin 4161 . . . 4 ((𝐴𝐵𝐴 ⊆ 𝒫 𝐴) ↔ 𝐴 ⊆ (𝐵 ∩ 𝒫 𝐴))
41, 2, 3sylanblc 588 . . 3 ((𝐵𝑉𝐴𝐵) → 𝐴 ⊆ (𝐵 ∩ 𝒫 𝐴))
54unissd 4846 . 2 ((𝐵𝑉𝐴𝐵) → 𝐴 (𝐵 ∩ 𝒫 𝐴))
6 eltg 22015 . . 3 (𝐵𝑉 → ( 𝐴 ∈ (topGen‘𝐵) ↔ 𝐴 (𝐵 ∩ 𝒫 𝐴)))
76adantr 480 . 2 ((𝐵𝑉𝐴𝐵) → ( 𝐴 ∈ (topGen‘𝐵) ↔ 𝐴 (𝐵 ∩ 𝒫 𝐴)))
85, 7mpbird 256 1 ((𝐵𝑉𝐴𝐵) → 𝐴 ∈ (topGen‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2108  cin 3882  wss 3883  𝒫 cpw 4530   cuni 4836  cfv 6418  topGenctg 17065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-topgen 17071
This theorem is referenced by:  eltg3  22020  tgiun  22037  tgidm  22038  tgrest  22218  leordtval2  22271  fnemeet1  34482  fnejoin2  34485  ontgval  34547
  Copyright terms: Public domain W3C validator