MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmulpnf1 Structured version   Visualization version   GIF version

Theorem xmulpnf1 12655
Description: Multiplication by plus infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmulpnf1 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (𝐴 ·e +∞) = +∞)

Proof of Theorem xmulpnf1
StepHypRef Expression
1 pnfxr 10684 . . . 4 +∞ ∈ ℝ*
2 xmulval 12606 . . . 4 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 ·e +∞) = if((𝐴 = 0 ∨ +∞ = 0), 0, if((((0 < +∞ ∧ 𝐴 = +∞) ∨ (+∞ < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ +∞ = +∞) ∨ (𝐴 < 0 ∧ +∞ = -∞))), +∞, if((((0 < +∞ ∧ 𝐴 = -∞) ∨ (+∞ < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ +∞ = -∞) ∨ (𝐴 < 0 ∧ +∞ = +∞))), -∞, (𝐴 · +∞)))))
31, 2mpan2 690 . . 3 (𝐴 ∈ ℝ* → (𝐴 ·e +∞) = if((𝐴 = 0 ∨ +∞ = 0), 0, if((((0 < +∞ ∧ 𝐴 = +∞) ∨ (+∞ < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ +∞ = +∞) ∨ (𝐴 < 0 ∧ +∞ = -∞))), +∞, if((((0 < +∞ ∧ 𝐴 = -∞) ∨ (+∞ < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ +∞ = -∞) ∨ (𝐴 < 0 ∧ +∞ = +∞))), -∞, (𝐴 · +∞)))))
43adantr 484 . 2 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (𝐴 ·e +∞) = if((𝐴 = 0 ∨ +∞ = 0), 0, if((((0 < +∞ ∧ 𝐴 = +∞) ∨ (+∞ < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ +∞ = +∞) ∨ (𝐴 < 0 ∧ +∞ = -∞))), +∞, if((((0 < +∞ ∧ 𝐴 = -∞) ∨ (+∞ < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ +∞ = -∞) ∨ (𝐴 < 0 ∧ +∞ = +∞))), -∞, (𝐴 · +∞)))))
5 0xr 10677 . . . . 5 0 ∈ ℝ*
6 xrltne 12544 . . . . 5 ((0 ∈ ℝ*𝐴 ∈ ℝ* ∧ 0 < 𝐴) → 𝐴 ≠ 0)
75, 6mp3an1 1445 . . . 4 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → 𝐴 ≠ 0)
8 0re 10632 . . . . . 6 0 ∈ ℝ
9 renepnf 10678 . . . . . 6 (0 ∈ ℝ → 0 ≠ +∞)
108, 9ax-mp 5 . . . . 5 0 ≠ +∞
1110necomi 3041 . . . 4 +∞ ≠ 0
12 neanior 3079 . . . 4 ((𝐴 ≠ 0 ∧ +∞ ≠ 0) ↔ ¬ (𝐴 = 0 ∨ +∞ = 0))
137, 11, 12sylanblc 592 . . 3 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → ¬ (𝐴 = 0 ∨ +∞ = 0))
1413iffalsed 4436 . 2 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → if((𝐴 = 0 ∨ +∞ = 0), 0, if((((0 < +∞ ∧ 𝐴 = +∞) ∨ (+∞ < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ +∞ = +∞) ∨ (𝐴 < 0 ∧ +∞ = -∞))), +∞, if((((0 < +∞ ∧ 𝐴 = -∞) ∨ (+∞ < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ +∞ = -∞) ∨ (𝐴 < 0 ∧ +∞ = +∞))), -∞, (𝐴 · +∞)))) = if((((0 < +∞ ∧ 𝐴 = +∞) ∨ (+∞ < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ +∞ = +∞) ∨ (𝐴 < 0 ∧ +∞ = -∞))), +∞, if((((0 < +∞ ∧ 𝐴 = -∞) ∨ (+∞ < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ +∞ = -∞) ∨ (𝐴 < 0 ∧ +∞ = +∞))), -∞, (𝐴 · +∞))))
15 simpr 488 . . . . . 6 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → 0 < 𝐴)
16 eqid 2798 . . . . . 6 +∞ = +∞
1715, 16jctir 524 . . . . 5 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (0 < 𝐴 ∧ +∞ = +∞))
1817orcd 870 . . . 4 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → ((0 < 𝐴 ∧ +∞ = +∞) ∨ (𝐴 < 0 ∧ +∞ = -∞)))
1918olcd 871 . . 3 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (((0 < +∞ ∧ 𝐴 = +∞) ∨ (+∞ < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ +∞ = +∞) ∨ (𝐴 < 0 ∧ +∞ = -∞))))
2019iftrued 4433 . 2 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → if((((0 < +∞ ∧ 𝐴 = +∞) ∨ (+∞ < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ +∞ = +∞) ∨ (𝐴 < 0 ∧ +∞ = -∞))), +∞, if((((0 < +∞ ∧ 𝐴 = -∞) ∨ (+∞ < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ +∞ = -∞) ∨ (𝐴 < 0 ∧ +∞ = +∞))), -∞, (𝐴 · +∞))) = +∞)
214, 14, 203eqtrd 2837 1 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (𝐴 ·e +∞) = +∞)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wo 844   = wceq 1538  wcel 2111  wne 2987  ifcif 4425   class class class wbr 5030  (class class class)co 7135  cr 10525  0cc0 10526   · cmul 10531  +∞cpnf 10661  -∞cmnf 10662  *cxr 10663   < clt 10664   ·e cxmu 12494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-i2m1 10594  ax-rnegex 10597  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-xmul 12497
This theorem is referenced by:  xmulpnf2  12656  xmulmnf1  12657  xmulpnf1n  12659  xmulgt0  12664  xmulasslem3  12667  xlemul1a  12669  xadddilem  12675  nn0xmulclb  30522  hashxpe  30555  xdivpnfrp  30635  xrge0adddir  30726  esumcst  31432  esumpinfval  31442
  Copyright terms: Public domain W3C validator