MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmulpnf1 Structured version   Visualization version   GIF version

Theorem xmulpnf1 13313
Description: Multiplication by plus infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmulpnf1 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (𝐴 ·e +∞) = +∞)

Proof of Theorem xmulpnf1
StepHypRef Expression
1 pnfxr 11313 . . . 4 +∞ ∈ ℝ*
2 xmulval 13264 . . . 4 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 ·e +∞) = if((𝐴 = 0 ∨ +∞ = 0), 0, if((((0 < +∞ ∧ 𝐴 = +∞) ∨ (+∞ < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ +∞ = +∞) ∨ (𝐴 < 0 ∧ +∞ = -∞))), +∞, if((((0 < +∞ ∧ 𝐴 = -∞) ∨ (+∞ < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ +∞ = -∞) ∨ (𝐴 < 0 ∧ +∞ = +∞))), -∞, (𝐴 · +∞)))))
31, 2mpan2 691 . . 3 (𝐴 ∈ ℝ* → (𝐴 ·e +∞) = if((𝐴 = 0 ∨ +∞ = 0), 0, if((((0 < +∞ ∧ 𝐴 = +∞) ∨ (+∞ < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ +∞ = +∞) ∨ (𝐴 < 0 ∧ +∞ = -∞))), +∞, if((((0 < +∞ ∧ 𝐴 = -∞) ∨ (+∞ < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ +∞ = -∞) ∨ (𝐴 < 0 ∧ +∞ = +∞))), -∞, (𝐴 · +∞)))))
43adantr 480 . 2 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (𝐴 ·e +∞) = if((𝐴 = 0 ∨ +∞ = 0), 0, if((((0 < +∞ ∧ 𝐴 = +∞) ∨ (+∞ < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ +∞ = +∞) ∨ (𝐴 < 0 ∧ +∞ = -∞))), +∞, if((((0 < +∞ ∧ 𝐴 = -∞) ∨ (+∞ < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ +∞ = -∞) ∨ (𝐴 < 0 ∧ +∞ = +∞))), -∞, (𝐴 · +∞)))))
5 0xr 11306 . . . . 5 0 ∈ ℝ*
6 xrltne 13202 . . . . 5 ((0 ∈ ℝ*𝐴 ∈ ℝ* ∧ 0 < 𝐴) → 𝐴 ≠ 0)
75, 6mp3an1 1447 . . . 4 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → 𝐴 ≠ 0)
8 0re 11261 . . . . . 6 0 ∈ ℝ
9 renepnf 11307 . . . . . 6 (0 ∈ ℝ → 0 ≠ +∞)
108, 9ax-mp 5 . . . . 5 0 ≠ +∞
1110necomi 2993 . . . 4 +∞ ≠ 0
12 neanior 3033 . . . 4 ((𝐴 ≠ 0 ∧ +∞ ≠ 0) ↔ ¬ (𝐴 = 0 ∨ +∞ = 0))
137, 11, 12sylanblc 589 . . 3 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → ¬ (𝐴 = 0 ∨ +∞ = 0))
1413iffalsed 4542 . 2 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → if((𝐴 = 0 ∨ +∞ = 0), 0, if((((0 < +∞ ∧ 𝐴 = +∞) ∨ (+∞ < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ +∞ = +∞) ∨ (𝐴 < 0 ∧ +∞ = -∞))), +∞, if((((0 < +∞ ∧ 𝐴 = -∞) ∨ (+∞ < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ +∞ = -∞) ∨ (𝐴 < 0 ∧ +∞ = +∞))), -∞, (𝐴 · +∞)))) = if((((0 < +∞ ∧ 𝐴 = +∞) ∨ (+∞ < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ +∞ = +∞) ∨ (𝐴 < 0 ∧ +∞ = -∞))), +∞, if((((0 < +∞ ∧ 𝐴 = -∞) ∨ (+∞ < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ +∞ = -∞) ∨ (𝐴 < 0 ∧ +∞ = +∞))), -∞, (𝐴 · +∞))))
15 simpr 484 . . . . . 6 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → 0 < 𝐴)
16 eqid 2735 . . . . . 6 +∞ = +∞
1715, 16jctir 520 . . . . 5 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (0 < 𝐴 ∧ +∞ = +∞))
1817orcd 873 . . . 4 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → ((0 < 𝐴 ∧ +∞ = +∞) ∨ (𝐴 < 0 ∧ +∞ = -∞)))
1918olcd 874 . . 3 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (((0 < +∞ ∧ 𝐴 = +∞) ∨ (+∞ < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ +∞ = +∞) ∨ (𝐴 < 0 ∧ +∞ = -∞))))
2019iftrued 4539 . 2 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → if((((0 < +∞ ∧ 𝐴 = +∞) ∨ (+∞ < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ +∞ = +∞) ∨ (𝐴 < 0 ∧ +∞ = -∞))), +∞, if((((0 < +∞ ∧ 𝐴 = -∞) ∨ (+∞ < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ +∞ = -∞) ∨ (𝐴 < 0 ∧ +∞ = +∞))), -∞, (𝐴 · +∞))) = +∞)
214, 14, 203eqtrd 2779 1 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (𝐴 ·e +∞) = +∞)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1537  wcel 2106  wne 2938  ifcif 4531   class class class wbr 5148  (class class class)co 7431  cr 11152  0cc0 11153   · cmul 11158  +∞cpnf 11290  -∞cmnf 11291  *cxr 11292   < clt 11293   ·e cxmu 13151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-i2m1 11221  ax-rnegex 11224  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-xmul 13154
This theorem is referenced by:  xmulpnf2  13314  xmulmnf1  13315  xmulpnf1n  13317  xmulgt0  13322  xmulasslem3  13325  xlemul1a  13327  xadddilem  13333  nn0xmulclb  32782  hashxpe  32817  xdivpnfrp  32900  xrge0adddir  33006  esumcst  34044  esumpinfval  34054
  Copyright terms: Public domain W3C validator