MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmulpnf1 Structured version   Visualization version   GIF version

Theorem xmulpnf1 13241
Description: Multiplication by plus infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmulpnf1 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (𝐴 ·e +∞) = +∞)

Proof of Theorem xmulpnf1
StepHypRef Expression
1 pnfxr 11235 . . . 4 +∞ ∈ ℝ*
2 xmulval 13192 . . . 4 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 ·e +∞) = if((𝐴 = 0 ∨ +∞ = 0), 0, if((((0 < +∞ ∧ 𝐴 = +∞) ∨ (+∞ < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ +∞ = +∞) ∨ (𝐴 < 0 ∧ +∞ = -∞))), +∞, if((((0 < +∞ ∧ 𝐴 = -∞) ∨ (+∞ < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ +∞ = -∞) ∨ (𝐴 < 0 ∧ +∞ = +∞))), -∞, (𝐴 · +∞)))))
31, 2mpan2 691 . . 3 (𝐴 ∈ ℝ* → (𝐴 ·e +∞) = if((𝐴 = 0 ∨ +∞ = 0), 0, if((((0 < +∞ ∧ 𝐴 = +∞) ∨ (+∞ < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ +∞ = +∞) ∨ (𝐴 < 0 ∧ +∞ = -∞))), +∞, if((((0 < +∞ ∧ 𝐴 = -∞) ∨ (+∞ < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ +∞ = -∞) ∨ (𝐴 < 0 ∧ +∞ = +∞))), -∞, (𝐴 · +∞)))))
43adantr 480 . 2 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (𝐴 ·e +∞) = if((𝐴 = 0 ∨ +∞ = 0), 0, if((((0 < +∞ ∧ 𝐴 = +∞) ∨ (+∞ < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ +∞ = +∞) ∨ (𝐴 < 0 ∧ +∞ = -∞))), +∞, if((((0 < +∞ ∧ 𝐴 = -∞) ∨ (+∞ < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ +∞ = -∞) ∨ (𝐴 < 0 ∧ +∞ = +∞))), -∞, (𝐴 · +∞)))))
5 0xr 11228 . . . . 5 0 ∈ ℝ*
6 xrltne 13130 . . . . 5 ((0 ∈ ℝ*𝐴 ∈ ℝ* ∧ 0 < 𝐴) → 𝐴 ≠ 0)
75, 6mp3an1 1450 . . . 4 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → 𝐴 ≠ 0)
8 0re 11183 . . . . . 6 0 ∈ ℝ
9 renepnf 11229 . . . . . 6 (0 ∈ ℝ → 0 ≠ +∞)
108, 9ax-mp 5 . . . . 5 0 ≠ +∞
1110necomi 2980 . . . 4 +∞ ≠ 0
12 neanior 3019 . . . 4 ((𝐴 ≠ 0 ∧ +∞ ≠ 0) ↔ ¬ (𝐴 = 0 ∨ +∞ = 0))
137, 11, 12sylanblc 589 . . 3 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → ¬ (𝐴 = 0 ∨ +∞ = 0))
1413iffalsed 4502 . 2 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → if((𝐴 = 0 ∨ +∞ = 0), 0, if((((0 < +∞ ∧ 𝐴 = +∞) ∨ (+∞ < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ +∞ = +∞) ∨ (𝐴 < 0 ∧ +∞ = -∞))), +∞, if((((0 < +∞ ∧ 𝐴 = -∞) ∨ (+∞ < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ +∞ = -∞) ∨ (𝐴 < 0 ∧ +∞ = +∞))), -∞, (𝐴 · +∞)))) = if((((0 < +∞ ∧ 𝐴 = +∞) ∨ (+∞ < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ +∞ = +∞) ∨ (𝐴 < 0 ∧ +∞ = -∞))), +∞, if((((0 < +∞ ∧ 𝐴 = -∞) ∨ (+∞ < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ +∞ = -∞) ∨ (𝐴 < 0 ∧ +∞ = +∞))), -∞, (𝐴 · +∞))))
15 simpr 484 . . . . . 6 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → 0 < 𝐴)
16 eqid 2730 . . . . . 6 +∞ = +∞
1715, 16jctir 520 . . . . 5 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (0 < 𝐴 ∧ +∞ = +∞))
1817orcd 873 . . . 4 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → ((0 < 𝐴 ∧ +∞ = +∞) ∨ (𝐴 < 0 ∧ +∞ = -∞)))
1918olcd 874 . . 3 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (((0 < +∞ ∧ 𝐴 = +∞) ∨ (+∞ < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ +∞ = +∞) ∨ (𝐴 < 0 ∧ +∞ = -∞))))
2019iftrued 4499 . 2 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → if((((0 < +∞ ∧ 𝐴 = +∞) ∨ (+∞ < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ +∞ = +∞) ∨ (𝐴 < 0 ∧ +∞ = -∞))), +∞, if((((0 < +∞ ∧ 𝐴 = -∞) ∨ (+∞ < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ +∞ = -∞) ∨ (𝐴 < 0 ∧ +∞ = +∞))), -∞, (𝐴 · +∞))) = +∞)
214, 14, 203eqtrd 2769 1 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (𝐴 ·e +∞) = +∞)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2926  ifcif 4491   class class class wbr 5110  (class class class)co 7390  cr 11074  0cc0 11075   · cmul 11080  +∞cpnf 11212  -∞cmnf 11213  *cxr 11214   < clt 11215   ·e cxmu 13078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-i2m1 11143  ax-rnegex 11146  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-xmul 13081
This theorem is referenced by:  xmulpnf2  13242  xmulmnf1  13243  xmulpnf1n  13245  xmulgt0  13250  xmulasslem3  13253  xlemul1a  13255  xadddilem  13261  nn0xmulclb  32701  hashxpe  32739  xdivpnfrp  32860  xrge0adddir  32966  esumcst  34060  esumpinfval  34070
  Copyright terms: Public domain W3C validator