Proof of Theorem xmulpnf1
| Step | Hyp | Ref
| Expression |
| 1 | | pnfxr 11294 |
. . . 4
⊢ +∞
∈ ℝ* |
| 2 | | xmulval 13246 |
. . . 4
⊢ ((𝐴 ∈ ℝ*
∧ +∞ ∈ ℝ*) → (𝐴 ·e +∞) = if((𝐴 = 0 ∨ +∞ = 0), 0,
if((((0 < +∞ ∧ 𝐴 = +∞) ∨ (+∞ < 0 ∧
𝐴 = -∞)) ∨ ((0
< 𝐴 ∧ +∞ =
+∞) ∨ (𝐴 < 0
∧ +∞ = -∞))), +∞, if((((0 < +∞ ∧ 𝐴 = -∞) ∨ (+∞ <
0 ∧ 𝐴 = +∞)) ∨
((0 < 𝐴 ∧ +∞ =
-∞) ∨ (𝐴 < 0
∧ +∞ = +∞))), -∞, (𝐴 · +∞))))) |
| 3 | 1, 2 | mpan2 691 |
. . 3
⊢ (𝐴 ∈ ℝ*
→ (𝐴
·e +∞) = if((𝐴 = 0 ∨ +∞ = 0), 0, if((((0 <
+∞ ∧ 𝐴 =
+∞) ∨ (+∞ < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ +∞ = +∞) ∨
(𝐴 < 0 ∧ +∞ =
-∞))), +∞, if((((0 < +∞ ∧ 𝐴 = -∞) ∨ (+∞ < 0 ∧
𝐴 = +∞)) ∨ ((0
< 𝐴 ∧ +∞ =
-∞) ∨ (𝐴 < 0
∧ +∞ = +∞))), -∞, (𝐴 · +∞))))) |
| 4 | 3 | adantr 480 |
. 2
⊢ ((𝐴 ∈ ℝ*
∧ 0 < 𝐴) →
(𝐴 ·e
+∞) = if((𝐴 = 0 ∨
+∞ = 0), 0, if((((0 < +∞ ∧ 𝐴 = +∞) ∨ (+∞ < 0 ∧
𝐴 = -∞)) ∨ ((0
< 𝐴 ∧ +∞ =
+∞) ∨ (𝐴 < 0
∧ +∞ = -∞))), +∞, if((((0 < +∞ ∧ 𝐴 = -∞) ∨ (+∞ <
0 ∧ 𝐴 = +∞)) ∨
((0 < 𝐴 ∧ +∞ =
-∞) ∨ (𝐴 < 0
∧ +∞ = +∞))), -∞, (𝐴 · +∞))))) |
| 5 | | 0xr 11287 |
. . . . 5
⊢ 0 ∈
ℝ* |
| 6 | | xrltne 13184 |
. . . . 5
⊢ ((0
∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 0 <
𝐴) → 𝐴 ≠ 0) |
| 7 | 5, 6 | mp3an1 1450 |
. . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 0 < 𝐴) →
𝐴 ≠ 0) |
| 8 | | 0re 11242 |
. . . . . 6
⊢ 0 ∈
ℝ |
| 9 | | renepnf 11288 |
. . . . . 6
⊢ (0 ∈
ℝ → 0 ≠ +∞) |
| 10 | 8, 9 | ax-mp 5 |
. . . . 5
⊢ 0 ≠
+∞ |
| 11 | 10 | necomi 2987 |
. . . 4
⊢ +∞
≠ 0 |
| 12 | | neanior 3026 |
. . . 4
⊢ ((𝐴 ≠ 0 ∧ +∞ ≠ 0)
↔ ¬ (𝐴 = 0 ∨
+∞ = 0)) |
| 13 | 7, 11, 12 | sylanblc 589 |
. . 3
⊢ ((𝐴 ∈ ℝ*
∧ 0 < 𝐴) →
¬ (𝐴 = 0 ∨ +∞
= 0)) |
| 14 | 13 | iffalsed 4516 |
. 2
⊢ ((𝐴 ∈ ℝ*
∧ 0 < 𝐴) →
if((𝐴 = 0 ∨ +∞ =
0), 0, if((((0 < +∞ ∧ 𝐴 = +∞) ∨ (+∞ < 0 ∧
𝐴 = -∞)) ∨ ((0
< 𝐴 ∧ +∞ =
+∞) ∨ (𝐴 < 0
∧ +∞ = -∞))), +∞, if((((0 < +∞ ∧ 𝐴 = -∞) ∨ (+∞ <
0 ∧ 𝐴 = +∞)) ∨
((0 < 𝐴 ∧ +∞ =
-∞) ∨ (𝐴 < 0
∧ +∞ = +∞))), -∞, (𝐴 · +∞)))) = if((((0 <
+∞ ∧ 𝐴 =
+∞) ∨ (+∞ < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ +∞ = +∞) ∨
(𝐴 < 0 ∧ +∞ =
-∞))), +∞, if((((0 < +∞ ∧ 𝐴 = -∞) ∨ (+∞ < 0 ∧
𝐴 = +∞)) ∨ ((0
< 𝐴 ∧ +∞ =
-∞) ∨ (𝐴 < 0
∧ +∞ = +∞))), -∞, (𝐴 · +∞)))) |
| 15 | | simpr 484 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ 0 < 𝐴) → 0
< 𝐴) |
| 16 | | eqid 2736 |
. . . . . 6
⊢ +∞
= +∞ |
| 17 | 15, 16 | jctir 520 |
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 0 < 𝐴) → (0
< 𝐴 ∧ +∞ =
+∞)) |
| 18 | 17 | orcd 873 |
. . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 0 < 𝐴) → ((0
< 𝐴 ∧ +∞ =
+∞) ∨ (𝐴 < 0
∧ +∞ = -∞))) |
| 19 | 18 | olcd 874 |
. . 3
⊢ ((𝐴 ∈ ℝ*
∧ 0 < 𝐴) → (((0
< +∞ ∧ 𝐴 =
+∞) ∨ (+∞ < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ +∞ = +∞) ∨
(𝐴 < 0 ∧ +∞ =
-∞)))) |
| 20 | 19 | iftrued 4513 |
. 2
⊢ ((𝐴 ∈ ℝ*
∧ 0 < 𝐴) →
if((((0 < +∞ ∧ 𝐴 = +∞) ∨ (+∞ < 0 ∧
𝐴 = -∞)) ∨ ((0
< 𝐴 ∧ +∞ =
+∞) ∨ (𝐴 < 0
∧ +∞ = -∞))), +∞, if((((0 < +∞ ∧ 𝐴 = -∞) ∨ (+∞ <
0 ∧ 𝐴 = +∞)) ∨
((0 < 𝐴 ∧ +∞ =
-∞) ∨ (𝐴 < 0
∧ +∞ = +∞))), -∞, (𝐴 · +∞))) =
+∞) |
| 21 | 4, 14, 20 | 3eqtrd 2775 |
1
⊢ ((𝐴 ∈ ℝ*
∧ 0 < 𝐴) →
(𝐴 ·e
+∞) = +∞) |