MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmulpnf1 Structured version   Visualization version   GIF version

Theorem xmulpnf1 12416
Description: Multiplication by plus infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmulpnf1 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (𝐴 ·e +∞) = +∞)

Proof of Theorem xmulpnf1
StepHypRef Expression
1 pnfxr 10430 . . . 4 +∞ ∈ ℝ*
2 xmulval 12368 . . . 4 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 ·e +∞) = if((𝐴 = 0 ∨ +∞ = 0), 0, if((((0 < +∞ ∧ 𝐴 = +∞) ∨ (+∞ < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ +∞ = +∞) ∨ (𝐴 < 0 ∧ +∞ = -∞))), +∞, if((((0 < +∞ ∧ 𝐴 = -∞) ∨ (+∞ < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ +∞ = -∞) ∨ (𝐴 < 0 ∧ +∞ = +∞))), -∞, (𝐴 · +∞)))))
31, 2mpan2 681 . . 3 (𝐴 ∈ ℝ* → (𝐴 ·e +∞) = if((𝐴 = 0 ∨ +∞ = 0), 0, if((((0 < +∞ ∧ 𝐴 = +∞) ∨ (+∞ < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ +∞ = +∞) ∨ (𝐴 < 0 ∧ +∞ = -∞))), +∞, if((((0 < +∞ ∧ 𝐴 = -∞) ∨ (+∞ < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ +∞ = -∞) ∨ (𝐴 < 0 ∧ +∞ = +∞))), -∞, (𝐴 · +∞)))))
43adantr 474 . 2 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (𝐴 ·e +∞) = if((𝐴 = 0 ∨ +∞ = 0), 0, if((((0 < +∞ ∧ 𝐴 = +∞) ∨ (+∞ < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ +∞ = +∞) ∨ (𝐴 < 0 ∧ +∞ = -∞))), +∞, if((((0 < +∞ ∧ 𝐴 = -∞) ∨ (+∞ < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ +∞ = -∞) ∨ (𝐴 < 0 ∧ +∞ = +∞))), -∞, (𝐴 · +∞)))))
5 0xr 10423 . . . . 5 0 ∈ ℝ*
6 xrltne 12306 . . . . 5 ((0 ∈ ℝ*𝐴 ∈ ℝ* ∧ 0 < 𝐴) → 𝐴 ≠ 0)
75, 6mp3an1 1521 . . . 4 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → 𝐴 ≠ 0)
8 0re 10378 . . . . . 6 0 ∈ ℝ
9 renepnf 10424 . . . . . 6 (0 ∈ ℝ → 0 ≠ +∞)
108, 9ax-mp 5 . . . . 5 0 ≠ +∞
1110necomi 3022 . . . 4 +∞ ≠ 0
12 neanior 3061 . . . 4 ((𝐴 ≠ 0 ∧ +∞ ≠ 0) ↔ ¬ (𝐴 = 0 ∨ +∞ = 0))
137, 11, 12sylanblc 583 . . 3 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → ¬ (𝐴 = 0 ∨ +∞ = 0))
1413iffalsed 4317 . 2 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → if((𝐴 = 0 ∨ +∞ = 0), 0, if((((0 < +∞ ∧ 𝐴 = +∞) ∨ (+∞ < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ +∞ = +∞) ∨ (𝐴 < 0 ∧ +∞ = -∞))), +∞, if((((0 < +∞ ∧ 𝐴 = -∞) ∨ (+∞ < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ +∞ = -∞) ∨ (𝐴 < 0 ∧ +∞ = +∞))), -∞, (𝐴 · +∞)))) = if((((0 < +∞ ∧ 𝐴 = +∞) ∨ (+∞ < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ +∞ = +∞) ∨ (𝐴 < 0 ∧ +∞ = -∞))), +∞, if((((0 < +∞ ∧ 𝐴 = -∞) ∨ (+∞ < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ +∞ = -∞) ∨ (𝐴 < 0 ∧ +∞ = +∞))), -∞, (𝐴 · +∞))))
15 simpr 479 . . . . . 6 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → 0 < 𝐴)
16 eqid 2777 . . . . . 6 +∞ = +∞
1715, 16jctir 516 . . . . 5 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (0 < 𝐴 ∧ +∞ = +∞))
1817orcd 862 . . . 4 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → ((0 < 𝐴 ∧ +∞ = +∞) ∨ (𝐴 < 0 ∧ +∞ = -∞)))
1918olcd 863 . . 3 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (((0 < +∞ ∧ 𝐴 = +∞) ∨ (+∞ < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ +∞ = +∞) ∨ (𝐴 < 0 ∧ +∞ = -∞))))
2019iftrued 4314 . 2 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → if((((0 < +∞ ∧ 𝐴 = +∞) ∨ (+∞ < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ +∞ = +∞) ∨ (𝐴 < 0 ∧ +∞ = -∞))), +∞, if((((0 < +∞ ∧ 𝐴 = -∞) ∨ (+∞ < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ +∞ = -∞) ∨ (𝐴 < 0 ∧ +∞ = +∞))), -∞, (𝐴 · +∞))) = +∞)
214, 14, 203eqtrd 2817 1 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (𝐴 ·e +∞) = +∞)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 386  wo 836   = wceq 1601  wcel 2106  wne 2968  ifcif 4306   class class class wbr 4886  (class class class)co 6922  cr 10271  0cc0 10272   · cmul 10277  +∞cpnf 10408  -∞cmnf 10409  *cxr 10410   < clt 10411   ·e cxmu 12256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-i2m1 10340  ax-rnegex 10343  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4672  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-po 5274  df-so 5275  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-xmul 12259
This theorem is referenced by:  xmulpnf2  12417  xmulmnf1  12418  xmulpnf1n  12420  xmulgt0  12425  xmulasslem3  12428  xlemul1a  12430  xadddilem  12436  xdivpnfrp  30203  xrge0adddir  30254  esumcst  30723  esumpinfval  30733
  Copyright terms: Public domain W3C validator