Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  noextendseq Structured version   Visualization version   GIF version

Theorem noextendseq 33797
Description: Extend a surreal by a sequence of ordinals. (Contributed by Scott Fenton, 30-Nov-2021.)
Hypothesis
Ref Expression
noextend.1 𝑋 ∈ {1o, 2o}
Assertion
Ref Expression
noextendseq ((𝐴 No 𝐵 ∈ On) → (𝐴 ∪ ((𝐵 ∖ dom 𝐴) × {𝑋})) ∈ No )

Proof of Theorem noextendseq
StepHypRef Expression
1 nofun 33779 . . . 4 (𝐴 No → Fun 𝐴)
2 noextend.1 . . . . 5 𝑋 ∈ {1o, 2o}
3 fnconstg 6646 . . . . 5 (𝑋 ∈ {1o, 2o} → ((𝐵 ∖ dom 𝐴) × {𝑋}) Fn (𝐵 ∖ dom 𝐴))
4 fnfun 6517 . . . . 5 (((𝐵 ∖ dom 𝐴) × {𝑋}) Fn (𝐵 ∖ dom 𝐴) → Fun ((𝐵 ∖ dom 𝐴) × {𝑋}))
52, 3, 4mp2b 10 . . . 4 Fun ((𝐵 ∖ dom 𝐴) × {𝑋})
6 snnzg 4707 . . . . . . . 8 (𝑋 ∈ {1o, 2o} → {𝑋} ≠ ∅)
7 dmxp 5827 . . . . . . . 8 ({𝑋} ≠ ∅ → dom ((𝐵 ∖ dom 𝐴) × {𝑋}) = (𝐵 ∖ dom 𝐴))
82, 6, 7mp2b 10 . . . . . . 7 dom ((𝐵 ∖ dom 𝐴) × {𝑋}) = (𝐵 ∖ dom 𝐴)
98ineq2i 4140 . . . . . 6 (dom 𝐴 ∩ dom ((𝐵 ∖ dom 𝐴) × {𝑋})) = (dom 𝐴 ∩ (𝐵 ∖ dom 𝐴))
10 disjdif 4402 . . . . . 6 (dom 𝐴 ∩ (𝐵 ∖ dom 𝐴)) = ∅
119, 10eqtri 2766 . . . . 5 (dom 𝐴 ∩ dom ((𝐵 ∖ dom 𝐴) × {𝑋})) = ∅
12 funun 6464 . . . . 5 (((Fun 𝐴 ∧ Fun ((𝐵 ∖ dom 𝐴) × {𝑋})) ∧ (dom 𝐴 ∩ dom ((𝐵 ∖ dom 𝐴) × {𝑋})) = ∅) → Fun (𝐴 ∪ ((𝐵 ∖ dom 𝐴) × {𝑋})))
1311, 12mpan2 687 . . . 4 ((Fun 𝐴 ∧ Fun ((𝐵 ∖ dom 𝐴) × {𝑋})) → Fun (𝐴 ∪ ((𝐵 ∖ dom 𝐴) × {𝑋})))
141, 5, 13sylancl 585 . . 3 (𝐴 No → Fun (𝐴 ∪ ((𝐵 ∖ dom 𝐴) × {𝑋})))
1514adantr 480 . 2 ((𝐴 No 𝐵 ∈ On) → Fun (𝐴 ∪ ((𝐵 ∖ dom 𝐴) × {𝑋})))
16 dmun 5808 . . . 4 dom (𝐴 ∪ ((𝐵 ∖ dom 𝐴) × {𝑋})) = (dom 𝐴 ∪ dom ((𝐵 ∖ dom 𝐴) × {𝑋}))
178uneq2i 4090 . . . 4 (dom 𝐴 ∪ dom ((𝐵 ∖ dom 𝐴) × {𝑋})) = (dom 𝐴 ∪ (𝐵 ∖ dom 𝐴))
1816, 17eqtri 2766 . . 3 dom (𝐴 ∪ ((𝐵 ∖ dom 𝐴) × {𝑋})) = (dom 𝐴 ∪ (𝐵 ∖ dom 𝐴))
19 nodmon 33780 . . . 4 (𝐴 No → dom 𝐴 ∈ On)
20 undif 4412 . . . . . 6 (dom 𝐴𝐵 ↔ (dom 𝐴 ∪ (𝐵 ∖ dom 𝐴)) = 𝐵)
21 eleq1a 2834 . . . . . . 7 (𝐵 ∈ On → ((dom 𝐴 ∪ (𝐵 ∖ dom 𝐴)) = 𝐵 → (dom 𝐴 ∪ (𝐵 ∖ dom 𝐴)) ∈ On))
2221adantl 481 . . . . . 6 ((dom 𝐴 ∈ On ∧ 𝐵 ∈ On) → ((dom 𝐴 ∪ (𝐵 ∖ dom 𝐴)) = 𝐵 → (dom 𝐴 ∪ (𝐵 ∖ dom 𝐴)) ∈ On))
2320, 22syl5bi 241 . . . . 5 ((dom 𝐴 ∈ On ∧ 𝐵 ∈ On) → (dom 𝐴𝐵 → (dom 𝐴 ∪ (𝐵 ∖ dom 𝐴)) ∈ On))
24 ssdif0 4294 . . . . . 6 (𝐵 ⊆ dom 𝐴 ↔ (𝐵 ∖ dom 𝐴) = ∅)
25 uneq2 4087 . . . . . . . . . 10 ((𝐵 ∖ dom 𝐴) = ∅ → (dom 𝐴 ∪ (𝐵 ∖ dom 𝐴)) = (dom 𝐴 ∪ ∅))
26 un0 4321 . . . . . . . . . 10 (dom 𝐴 ∪ ∅) = dom 𝐴
2725, 26eqtrdi 2795 . . . . . . . . 9 ((𝐵 ∖ dom 𝐴) = ∅ → (dom 𝐴 ∪ (𝐵 ∖ dom 𝐴)) = dom 𝐴)
2827eleq1d 2823 . . . . . . . 8 ((𝐵 ∖ dom 𝐴) = ∅ → ((dom 𝐴 ∪ (𝐵 ∖ dom 𝐴)) ∈ On ↔ dom 𝐴 ∈ On))
2928biimprcd 249 . . . . . . 7 (dom 𝐴 ∈ On → ((𝐵 ∖ dom 𝐴) = ∅ → (dom 𝐴 ∪ (𝐵 ∖ dom 𝐴)) ∈ On))
3029adantr 480 . . . . . 6 ((dom 𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐵 ∖ dom 𝐴) = ∅ → (dom 𝐴 ∪ (𝐵 ∖ dom 𝐴)) ∈ On))
3124, 30syl5bi 241 . . . . 5 ((dom 𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 ⊆ dom 𝐴 → (dom 𝐴 ∪ (𝐵 ∖ dom 𝐴)) ∈ On))
32 eloni 6261 . . . . . 6 (dom 𝐴 ∈ On → Ord dom 𝐴)
33 eloni 6261 . . . . . 6 (𝐵 ∈ On → Ord 𝐵)
34 ordtri2or2 6347 . . . . . 6 ((Ord dom 𝐴 ∧ Ord 𝐵) → (dom 𝐴𝐵𝐵 ⊆ dom 𝐴))
3532, 33, 34syl2an 595 . . . . 5 ((dom 𝐴 ∈ On ∧ 𝐵 ∈ On) → (dom 𝐴𝐵𝐵 ⊆ dom 𝐴))
3623, 31, 35mpjaod 856 . . . 4 ((dom 𝐴 ∈ On ∧ 𝐵 ∈ On) → (dom 𝐴 ∪ (𝐵 ∖ dom 𝐴)) ∈ On)
3719, 36sylan 579 . . 3 ((𝐴 No 𝐵 ∈ On) → (dom 𝐴 ∪ (𝐵 ∖ dom 𝐴)) ∈ On)
3818, 37eqeltrid 2843 . 2 ((𝐴 No 𝐵 ∈ On) → dom (𝐴 ∪ ((𝐵 ∖ dom 𝐴) × {𝑋})) ∈ On)
39 rnun 6038 . . 3 ran (𝐴 ∪ ((𝐵 ∖ dom 𝐴) × {𝑋})) = (ran 𝐴 ∪ ran ((𝐵 ∖ dom 𝐴) × {𝑋}))
40 norn 33781 . . . . 5 (𝐴 No → ran 𝐴 ⊆ {1o, 2o})
4140adantr 480 . . . 4 ((𝐴 No 𝐵 ∈ On) → ran 𝐴 ⊆ {1o, 2o})
42 rnxpss 6064 . . . . 5 ran ((𝐵 ∖ dom 𝐴) × {𝑋}) ⊆ {𝑋}
43 snssi 4738 . . . . . 6 (𝑋 ∈ {1o, 2o} → {𝑋} ⊆ {1o, 2o})
442, 43ax-mp 5 . . . . 5 {𝑋} ⊆ {1o, 2o}
4542, 44sstri 3926 . . . 4 ran ((𝐵 ∖ dom 𝐴) × {𝑋}) ⊆ {1o, 2o}
46 unss 4114 . . . 4 ((ran 𝐴 ⊆ {1o, 2o} ∧ ran ((𝐵 ∖ dom 𝐴) × {𝑋}) ⊆ {1o, 2o}) ↔ (ran 𝐴 ∪ ran ((𝐵 ∖ dom 𝐴) × {𝑋})) ⊆ {1o, 2o})
4741, 45, 46sylanblc 588 . . 3 ((𝐴 No 𝐵 ∈ On) → (ran 𝐴 ∪ ran ((𝐵 ∖ dom 𝐴) × {𝑋})) ⊆ {1o, 2o})
4839, 47eqsstrid 3965 . 2 ((𝐴 No 𝐵 ∈ On) → ran (𝐴 ∪ ((𝐵 ∖ dom 𝐴) × {𝑋})) ⊆ {1o, 2o})
49 elno2 33784 . 2 ((𝐴 ∪ ((𝐵 ∖ dom 𝐴) × {𝑋})) ∈ No ↔ (Fun (𝐴 ∪ ((𝐵 ∖ dom 𝐴) × {𝑋})) ∧ dom (𝐴 ∪ ((𝐵 ∖ dom 𝐴) × {𝑋})) ∈ On ∧ ran (𝐴 ∪ ((𝐵 ∖ dom 𝐴) × {𝑋})) ⊆ {1o, 2o}))
5015, 38, 48, 49syl3anbrc 1341 1 ((𝐴 No 𝐵 ∈ On) → (𝐴 ∪ ((𝐵 ∖ dom 𝐴) × {𝑋})) ∈ No )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 843   = wceq 1539  wcel 2108  wne 2942  cdif 3880  cun 3881  cin 3882  wss 3883  c0 4253  {csn 4558  {cpr 4560   × cxp 5578  dom cdm 5580  ran crn 5581  Ord word 6250  Oncon0 6251  Fun wfun 6412   Fn wfn 6413  1oc1o 8260  2oc2o 8261   No csur 33770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-no 33773
This theorem is referenced by:  noetasuplem1  33863  noetainflem1  33867
  Copyright terms: Public domain W3C validator