MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noextendseq Structured version   Visualization version   GIF version

Theorem noextendseq 27629
Description: Extend a surreal by a sequence of ordinals. (Contributed by Scott Fenton, 30-Nov-2021.)
Hypothesis
Ref Expression
noextend.1 𝑋 ∈ {1o, 2o}
Assertion
Ref Expression
noextendseq ((𝐴 No 𝐵 ∈ On) → (𝐴 ∪ ((𝐵 ∖ dom 𝐴) × {𝑋})) ∈ No )

Proof of Theorem noextendseq
StepHypRef Expression
1 nofun 27611 . . . 4 (𝐴 No → Fun 𝐴)
2 noextend.1 . . . . 5 𝑋 ∈ {1o, 2o}
3 fnconstg 6765 . . . . 5 (𝑋 ∈ {1o, 2o} → ((𝐵 ∖ dom 𝐴) × {𝑋}) Fn (𝐵 ∖ dom 𝐴))
4 fnfun 6637 . . . . 5 (((𝐵 ∖ dom 𝐴) × {𝑋}) Fn (𝐵 ∖ dom 𝐴) → Fun ((𝐵 ∖ dom 𝐴) × {𝑋}))
52, 3, 4mp2b 10 . . . 4 Fun ((𝐵 ∖ dom 𝐴) × {𝑋})
6 snnzg 4750 . . . . . . . 8 (𝑋 ∈ {1o, 2o} → {𝑋} ≠ ∅)
7 dmxp 5908 . . . . . . . 8 ({𝑋} ≠ ∅ → dom ((𝐵 ∖ dom 𝐴) × {𝑋}) = (𝐵 ∖ dom 𝐴))
82, 6, 7mp2b 10 . . . . . . 7 dom ((𝐵 ∖ dom 𝐴) × {𝑋}) = (𝐵 ∖ dom 𝐴)
98ineq2i 4192 . . . . . 6 (dom 𝐴 ∩ dom ((𝐵 ∖ dom 𝐴) × {𝑋})) = (dom 𝐴 ∩ (𝐵 ∖ dom 𝐴))
10 disjdif 4447 . . . . . 6 (dom 𝐴 ∩ (𝐵 ∖ dom 𝐴)) = ∅
119, 10eqtri 2758 . . . . 5 (dom 𝐴 ∩ dom ((𝐵 ∖ dom 𝐴) × {𝑋})) = ∅
12 funun 6581 . . . . 5 (((Fun 𝐴 ∧ Fun ((𝐵 ∖ dom 𝐴) × {𝑋})) ∧ (dom 𝐴 ∩ dom ((𝐵 ∖ dom 𝐴) × {𝑋})) = ∅) → Fun (𝐴 ∪ ((𝐵 ∖ dom 𝐴) × {𝑋})))
1311, 12mpan2 691 . . . 4 ((Fun 𝐴 ∧ Fun ((𝐵 ∖ dom 𝐴) × {𝑋})) → Fun (𝐴 ∪ ((𝐵 ∖ dom 𝐴) × {𝑋})))
141, 5, 13sylancl 586 . . 3 (𝐴 No → Fun (𝐴 ∪ ((𝐵 ∖ dom 𝐴) × {𝑋})))
1514adantr 480 . 2 ((𝐴 No 𝐵 ∈ On) → Fun (𝐴 ∪ ((𝐵 ∖ dom 𝐴) × {𝑋})))
16 dmun 5890 . . . 4 dom (𝐴 ∪ ((𝐵 ∖ dom 𝐴) × {𝑋})) = (dom 𝐴 ∪ dom ((𝐵 ∖ dom 𝐴) × {𝑋}))
178uneq2i 4140 . . . 4 (dom 𝐴 ∪ dom ((𝐵 ∖ dom 𝐴) × {𝑋})) = (dom 𝐴 ∪ (𝐵 ∖ dom 𝐴))
1816, 17eqtri 2758 . . 3 dom (𝐴 ∪ ((𝐵 ∖ dom 𝐴) × {𝑋})) = (dom 𝐴 ∪ (𝐵 ∖ dom 𝐴))
19 nodmon 27612 . . . 4 (𝐴 No → dom 𝐴 ∈ On)
20 undif 4457 . . . . . 6 (dom 𝐴𝐵 ↔ (dom 𝐴 ∪ (𝐵 ∖ dom 𝐴)) = 𝐵)
21 eleq1a 2829 . . . . . . 7 (𝐵 ∈ On → ((dom 𝐴 ∪ (𝐵 ∖ dom 𝐴)) = 𝐵 → (dom 𝐴 ∪ (𝐵 ∖ dom 𝐴)) ∈ On))
2221adantl 481 . . . . . 6 ((dom 𝐴 ∈ On ∧ 𝐵 ∈ On) → ((dom 𝐴 ∪ (𝐵 ∖ dom 𝐴)) = 𝐵 → (dom 𝐴 ∪ (𝐵 ∖ dom 𝐴)) ∈ On))
2320, 22biimtrid 242 . . . . 5 ((dom 𝐴 ∈ On ∧ 𝐵 ∈ On) → (dom 𝐴𝐵 → (dom 𝐴 ∪ (𝐵 ∖ dom 𝐴)) ∈ On))
24 ssdif0 4341 . . . . . 6 (𝐵 ⊆ dom 𝐴 ↔ (𝐵 ∖ dom 𝐴) = ∅)
25 uneq2 4137 . . . . . . . . . 10 ((𝐵 ∖ dom 𝐴) = ∅ → (dom 𝐴 ∪ (𝐵 ∖ dom 𝐴)) = (dom 𝐴 ∪ ∅))
26 un0 4369 . . . . . . . . . 10 (dom 𝐴 ∪ ∅) = dom 𝐴
2725, 26eqtrdi 2786 . . . . . . . . 9 ((𝐵 ∖ dom 𝐴) = ∅ → (dom 𝐴 ∪ (𝐵 ∖ dom 𝐴)) = dom 𝐴)
2827eleq1d 2819 . . . . . . . 8 ((𝐵 ∖ dom 𝐴) = ∅ → ((dom 𝐴 ∪ (𝐵 ∖ dom 𝐴)) ∈ On ↔ dom 𝐴 ∈ On))
2928biimprcd 250 . . . . . . 7 (dom 𝐴 ∈ On → ((𝐵 ∖ dom 𝐴) = ∅ → (dom 𝐴 ∪ (𝐵 ∖ dom 𝐴)) ∈ On))
3029adantr 480 . . . . . 6 ((dom 𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐵 ∖ dom 𝐴) = ∅ → (dom 𝐴 ∪ (𝐵 ∖ dom 𝐴)) ∈ On))
3124, 30biimtrid 242 . . . . 5 ((dom 𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 ⊆ dom 𝐴 → (dom 𝐴 ∪ (𝐵 ∖ dom 𝐴)) ∈ On))
32 eloni 6362 . . . . . 6 (dom 𝐴 ∈ On → Ord dom 𝐴)
33 eloni 6362 . . . . . 6 (𝐵 ∈ On → Ord 𝐵)
34 ordtri2or2 6452 . . . . . 6 ((Ord dom 𝐴 ∧ Ord 𝐵) → (dom 𝐴𝐵𝐵 ⊆ dom 𝐴))
3532, 33, 34syl2an 596 . . . . 5 ((dom 𝐴 ∈ On ∧ 𝐵 ∈ On) → (dom 𝐴𝐵𝐵 ⊆ dom 𝐴))
3623, 31, 35mpjaod 860 . . . 4 ((dom 𝐴 ∈ On ∧ 𝐵 ∈ On) → (dom 𝐴 ∪ (𝐵 ∖ dom 𝐴)) ∈ On)
3719, 36sylan 580 . . 3 ((𝐴 No 𝐵 ∈ On) → (dom 𝐴 ∪ (𝐵 ∖ dom 𝐴)) ∈ On)
3818, 37eqeltrid 2838 . 2 ((𝐴 No 𝐵 ∈ On) → dom (𝐴 ∪ ((𝐵 ∖ dom 𝐴) × {𝑋})) ∈ On)
39 rnun 6134 . . 3 ran (𝐴 ∪ ((𝐵 ∖ dom 𝐴) × {𝑋})) = (ran 𝐴 ∪ ran ((𝐵 ∖ dom 𝐴) × {𝑋}))
40 norn 27613 . . . . 5 (𝐴 No → ran 𝐴 ⊆ {1o, 2o})
4140adantr 480 . . . 4 ((𝐴 No 𝐵 ∈ On) → ran 𝐴 ⊆ {1o, 2o})
42 rnxpss 6161 . . . . 5 ran ((𝐵 ∖ dom 𝐴) × {𝑋}) ⊆ {𝑋}
43 snssi 4784 . . . . . 6 (𝑋 ∈ {1o, 2o} → {𝑋} ⊆ {1o, 2o})
442, 43ax-mp 5 . . . . 5 {𝑋} ⊆ {1o, 2o}
4542, 44sstri 3968 . . . 4 ran ((𝐵 ∖ dom 𝐴) × {𝑋}) ⊆ {1o, 2o}
46 unss 4165 . . . 4 ((ran 𝐴 ⊆ {1o, 2o} ∧ ran ((𝐵 ∖ dom 𝐴) × {𝑋}) ⊆ {1o, 2o}) ↔ (ran 𝐴 ∪ ran ((𝐵 ∖ dom 𝐴) × {𝑋})) ⊆ {1o, 2o})
4741, 45, 46sylanblc 589 . . 3 ((𝐴 No 𝐵 ∈ On) → (ran 𝐴 ∪ ran ((𝐵 ∖ dom 𝐴) × {𝑋})) ⊆ {1o, 2o})
4839, 47eqsstrid 3997 . 2 ((𝐴 No 𝐵 ∈ On) → ran (𝐴 ∪ ((𝐵 ∖ dom 𝐴) × {𝑋})) ⊆ {1o, 2o})
49 elno2 27616 . 2 ((𝐴 ∪ ((𝐵 ∖ dom 𝐴) × {𝑋})) ∈ No ↔ (Fun (𝐴 ∪ ((𝐵 ∖ dom 𝐴) × {𝑋})) ∧ dom (𝐴 ∪ ((𝐵 ∖ dom 𝐴) × {𝑋})) ∈ On ∧ ran (𝐴 ∪ ((𝐵 ∖ dom 𝐴) × {𝑋})) ⊆ {1o, 2o}))
5015, 38, 48, 49syl3anbrc 1344 1 ((𝐴 No 𝐵 ∈ On) → (𝐴 ∪ ((𝐵 ∖ dom 𝐴) × {𝑋})) ∈ No )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2108  wne 2932  cdif 3923  cun 3924  cin 3925  wss 3926  c0 4308  {csn 4601  {cpr 4603   × cxp 5652  dom cdm 5654  ran crn 5655  Ord word 6351  Oncon0 6352  Fun wfun 6524   Fn wfn 6525  1oc1o 8471  2oc2o 8472   No csur 27601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-ord 6355  df-on 6356  df-fun 6532  df-fn 6533  df-f 6534  df-no 27604
This theorem is referenced by:  noetasuplem1  27695  noetainflem1  27699
  Copyright terms: Public domain W3C validator