Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > omlsilem | Structured version Visualization version GIF version |
Description: Lemma for orthomodular law in the Hilbert lattice. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
omlsilem.1 | ⊢ 𝐺 ∈ Sℋ |
omlsilem.2 | ⊢ 𝐻 ∈ Sℋ |
omlsilem.3 | ⊢ 𝐺 ⊆ 𝐻 |
omlsilem.4 | ⊢ (𝐻 ∩ (⊥‘𝐺)) = 0ℋ |
omlsilem.5 | ⊢ 𝐴 ∈ 𝐻 |
omlsilem.6 | ⊢ 𝐵 ∈ 𝐺 |
omlsilem.7 | ⊢ 𝐶 ∈ (⊥‘𝐺) |
Ref | Expression |
---|---|
omlsilem | ⊢ (𝐴 = (𝐵 +ℎ 𝐶) → 𝐴 ∈ 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omlsilem.2 | . . . . . . . . . 10 ⊢ 𝐻 ∈ Sℋ | |
2 | omlsilem.5 | . . . . . . . . . 10 ⊢ 𝐴 ∈ 𝐻 | |
3 | 1, 2 | shelii 29478 | . . . . . . . . 9 ⊢ 𝐴 ∈ ℋ |
4 | omlsilem.1 | . . . . . . . . . 10 ⊢ 𝐺 ∈ Sℋ | |
5 | omlsilem.6 | . . . . . . . . . 10 ⊢ 𝐵 ∈ 𝐺 | |
6 | 4, 5 | shelii 29478 | . . . . . . . . 9 ⊢ 𝐵 ∈ ℋ |
7 | shocss 29549 | . . . . . . . . . . 11 ⊢ (𝐺 ∈ Sℋ → (⊥‘𝐺) ⊆ ℋ) | |
8 | 4, 7 | ax-mp 5 | . . . . . . . . . 10 ⊢ (⊥‘𝐺) ⊆ ℋ |
9 | omlsilem.7 | . . . . . . . . . 10 ⊢ 𝐶 ∈ (⊥‘𝐺) | |
10 | 8, 9 | sselii 3914 | . . . . . . . . 9 ⊢ 𝐶 ∈ ℋ |
11 | 3, 6, 10 | hvsubaddi 29329 | . . . . . . . 8 ⊢ ((𝐴 −ℎ 𝐵) = 𝐶 ↔ (𝐵 +ℎ 𝐶) = 𝐴) |
12 | eqcom 2745 | . . . . . . . 8 ⊢ ((𝐵 +ℎ 𝐶) = 𝐴 ↔ 𝐴 = (𝐵 +ℎ 𝐶)) | |
13 | 11, 12 | bitri 274 | . . . . . . 7 ⊢ ((𝐴 −ℎ 𝐵) = 𝐶 ↔ 𝐴 = (𝐵 +ℎ 𝐶)) |
14 | omlsilem.3 | . . . . . . . . . 10 ⊢ 𝐺 ⊆ 𝐻 | |
15 | 14, 5 | sselii 3914 | . . . . . . . . 9 ⊢ 𝐵 ∈ 𝐻 |
16 | shsubcl 29483 | . . . . . . . . 9 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (𝐴 −ℎ 𝐵) ∈ 𝐻) | |
17 | 1, 2, 15, 16 | mp3an 1459 | . . . . . . . 8 ⊢ (𝐴 −ℎ 𝐵) ∈ 𝐻 |
18 | eleq1 2826 | . . . . . . . 8 ⊢ ((𝐴 −ℎ 𝐵) = 𝐶 → ((𝐴 −ℎ 𝐵) ∈ 𝐻 ↔ 𝐶 ∈ 𝐻)) | |
19 | 17, 18 | mpbii 232 | . . . . . . 7 ⊢ ((𝐴 −ℎ 𝐵) = 𝐶 → 𝐶 ∈ 𝐻) |
20 | 13, 19 | sylbir 234 | . . . . . 6 ⊢ (𝐴 = (𝐵 +ℎ 𝐶) → 𝐶 ∈ 𝐻) |
21 | omlsilem.4 | . . . . . . . 8 ⊢ (𝐻 ∩ (⊥‘𝐺)) = 0ℋ | |
22 | 21 | eleq2i 2830 | . . . . . . 7 ⊢ (𝐶 ∈ (𝐻 ∩ (⊥‘𝐺)) ↔ 𝐶 ∈ 0ℋ) |
23 | elin 3899 | . . . . . . 7 ⊢ (𝐶 ∈ (𝐻 ∩ (⊥‘𝐺)) ↔ (𝐶 ∈ 𝐻 ∧ 𝐶 ∈ (⊥‘𝐺))) | |
24 | elch0 29517 | . . . . . . 7 ⊢ (𝐶 ∈ 0ℋ ↔ 𝐶 = 0ℎ) | |
25 | 22, 23, 24 | 3bitr3i 300 | . . . . . 6 ⊢ ((𝐶 ∈ 𝐻 ∧ 𝐶 ∈ (⊥‘𝐺)) ↔ 𝐶 = 0ℎ) |
26 | 20, 9, 25 | sylanblc 588 | . . . . 5 ⊢ (𝐴 = (𝐵 +ℎ 𝐶) → 𝐶 = 0ℎ) |
27 | 26 | oveq2d 7271 | . . . 4 ⊢ (𝐴 = (𝐵 +ℎ 𝐶) → (𝐵 +ℎ 𝐶) = (𝐵 +ℎ 0ℎ)) |
28 | ax-hvaddid 29267 | . . . . 5 ⊢ (𝐵 ∈ ℋ → (𝐵 +ℎ 0ℎ) = 𝐵) | |
29 | 6, 28 | ax-mp 5 | . . . 4 ⊢ (𝐵 +ℎ 0ℎ) = 𝐵 |
30 | 27, 29 | eqtrdi 2795 | . . 3 ⊢ (𝐴 = (𝐵 +ℎ 𝐶) → (𝐵 +ℎ 𝐶) = 𝐵) |
31 | 30, 5 | eqeltrdi 2847 | . 2 ⊢ (𝐴 = (𝐵 +ℎ 𝐶) → (𝐵 +ℎ 𝐶) ∈ 𝐺) |
32 | eleq1 2826 | . 2 ⊢ (𝐴 = (𝐵 +ℎ 𝐶) → (𝐴 ∈ 𝐺 ↔ (𝐵 +ℎ 𝐶) ∈ 𝐺)) | |
33 | 31, 32 | mpbird 256 | 1 ⊢ (𝐴 = (𝐵 +ℎ 𝐶) → 𝐴 ∈ 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∩ cin 3882 ⊆ wss 3883 ‘cfv 6418 (class class class)co 7255 ℋchba 29182 +ℎ cva 29183 0ℎc0v 29187 −ℎ cmv 29188 Sℋ csh 29191 ⊥cort 29193 0ℋc0h 29198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-hilex 29262 ax-hfvadd 29263 ax-hvcom 29264 ax-hvass 29265 ax-hv0cl 29266 ax-hvaddid 29267 ax-hfvmul 29268 ax-hvmulid 29269 ax-hvdistr2 29272 ax-hvmul0 29273 ax-hfi 29342 ax-his2 29346 ax-his3 29347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 df-sub 11137 df-neg 11138 df-hvsub 29234 df-sh 29470 df-oc 29515 df-ch0 29516 |
This theorem is referenced by: omlsii 29666 |
Copyright terms: Public domain | W3C validator |