| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > omlsilem | Structured version Visualization version GIF version | ||
| Description: Lemma for orthomodular law in the Hilbert lattice. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| omlsilem.1 | ⊢ 𝐺 ∈ Sℋ |
| omlsilem.2 | ⊢ 𝐻 ∈ Sℋ |
| omlsilem.3 | ⊢ 𝐺 ⊆ 𝐻 |
| omlsilem.4 | ⊢ (𝐻 ∩ (⊥‘𝐺)) = 0ℋ |
| omlsilem.5 | ⊢ 𝐴 ∈ 𝐻 |
| omlsilem.6 | ⊢ 𝐵 ∈ 𝐺 |
| omlsilem.7 | ⊢ 𝐶 ∈ (⊥‘𝐺) |
| Ref | Expression |
|---|---|
| omlsilem | ⊢ (𝐴 = (𝐵 +ℎ 𝐶) → 𝐴 ∈ 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omlsilem.2 | . . . . . . . . . 10 ⊢ 𝐻 ∈ Sℋ | |
| 2 | omlsilem.5 | . . . . . . . . . 10 ⊢ 𝐴 ∈ 𝐻 | |
| 3 | 1, 2 | shelii 31194 | . . . . . . . . 9 ⊢ 𝐴 ∈ ℋ |
| 4 | omlsilem.1 | . . . . . . . . . 10 ⊢ 𝐺 ∈ Sℋ | |
| 5 | omlsilem.6 | . . . . . . . . . 10 ⊢ 𝐵 ∈ 𝐺 | |
| 6 | 4, 5 | shelii 31194 | . . . . . . . . 9 ⊢ 𝐵 ∈ ℋ |
| 7 | shocss 31265 | . . . . . . . . . . 11 ⊢ (𝐺 ∈ Sℋ → (⊥‘𝐺) ⊆ ℋ) | |
| 8 | 4, 7 | ax-mp 5 | . . . . . . . . . 10 ⊢ (⊥‘𝐺) ⊆ ℋ |
| 9 | omlsilem.7 | . . . . . . . . . 10 ⊢ 𝐶 ∈ (⊥‘𝐺) | |
| 10 | 8, 9 | sselii 3940 | . . . . . . . . 9 ⊢ 𝐶 ∈ ℋ |
| 11 | 3, 6, 10 | hvsubaddi 31045 | . . . . . . . 8 ⊢ ((𝐴 −ℎ 𝐵) = 𝐶 ↔ (𝐵 +ℎ 𝐶) = 𝐴) |
| 12 | eqcom 2736 | . . . . . . . 8 ⊢ ((𝐵 +ℎ 𝐶) = 𝐴 ↔ 𝐴 = (𝐵 +ℎ 𝐶)) | |
| 13 | 11, 12 | bitri 275 | . . . . . . 7 ⊢ ((𝐴 −ℎ 𝐵) = 𝐶 ↔ 𝐴 = (𝐵 +ℎ 𝐶)) |
| 14 | omlsilem.3 | . . . . . . . . . 10 ⊢ 𝐺 ⊆ 𝐻 | |
| 15 | 14, 5 | sselii 3940 | . . . . . . . . 9 ⊢ 𝐵 ∈ 𝐻 |
| 16 | shsubcl 31199 | . . . . . . . . 9 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (𝐴 −ℎ 𝐵) ∈ 𝐻) | |
| 17 | 1, 2, 15, 16 | mp3an 1463 | . . . . . . . 8 ⊢ (𝐴 −ℎ 𝐵) ∈ 𝐻 |
| 18 | eleq1 2816 | . . . . . . . 8 ⊢ ((𝐴 −ℎ 𝐵) = 𝐶 → ((𝐴 −ℎ 𝐵) ∈ 𝐻 ↔ 𝐶 ∈ 𝐻)) | |
| 19 | 17, 18 | mpbii 233 | . . . . . . 7 ⊢ ((𝐴 −ℎ 𝐵) = 𝐶 → 𝐶 ∈ 𝐻) |
| 20 | 13, 19 | sylbir 235 | . . . . . 6 ⊢ (𝐴 = (𝐵 +ℎ 𝐶) → 𝐶 ∈ 𝐻) |
| 21 | omlsilem.4 | . . . . . . . 8 ⊢ (𝐻 ∩ (⊥‘𝐺)) = 0ℋ | |
| 22 | 21 | eleq2i 2820 | . . . . . . 7 ⊢ (𝐶 ∈ (𝐻 ∩ (⊥‘𝐺)) ↔ 𝐶 ∈ 0ℋ) |
| 23 | elin 3927 | . . . . . . 7 ⊢ (𝐶 ∈ (𝐻 ∩ (⊥‘𝐺)) ↔ (𝐶 ∈ 𝐻 ∧ 𝐶 ∈ (⊥‘𝐺))) | |
| 24 | elch0 31233 | . . . . . . 7 ⊢ (𝐶 ∈ 0ℋ ↔ 𝐶 = 0ℎ) | |
| 25 | 22, 23, 24 | 3bitr3i 301 | . . . . . 6 ⊢ ((𝐶 ∈ 𝐻 ∧ 𝐶 ∈ (⊥‘𝐺)) ↔ 𝐶 = 0ℎ) |
| 26 | 20, 9, 25 | sylanblc 589 | . . . . 5 ⊢ (𝐴 = (𝐵 +ℎ 𝐶) → 𝐶 = 0ℎ) |
| 27 | 26 | oveq2d 7385 | . . . 4 ⊢ (𝐴 = (𝐵 +ℎ 𝐶) → (𝐵 +ℎ 𝐶) = (𝐵 +ℎ 0ℎ)) |
| 28 | ax-hvaddid 30983 | . . . . 5 ⊢ (𝐵 ∈ ℋ → (𝐵 +ℎ 0ℎ) = 𝐵) | |
| 29 | 6, 28 | ax-mp 5 | . . . 4 ⊢ (𝐵 +ℎ 0ℎ) = 𝐵 |
| 30 | 27, 29 | eqtrdi 2780 | . . 3 ⊢ (𝐴 = (𝐵 +ℎ 𝐶) → (𝐵 +ℎ 𝐶) = 𝐵) |
| 31 | 30, 5 | eqeltrdi 2836 | . 2 ⊢ (𝐴 = (𝐵 +ℎ 𝐶) → (𝐵 +ℎ 𝐶) ∈ 𝐺) |
| 32 | eleq1 2816 | . 2 ⊢ (𝐴 = (𝐵 +ℎ 𝐶) → (𝐴 ∈ 𝐺 ↔ (𝐵 +ℎ 𝐶) ∈ 𝐺)) | |
| 33 | 31, 32 | mpbird 257 | 1 ⊢ (𝐴 = (𝐵 +ℎ 𝐶) → 𝐴 ∈ 𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3910 ⊆ wss 3911 ‘cfv 6499 (class class class)co 7369 ℋchba 30898 +ℎ cva 30899 0ℎc0v 30903 −ℎ cmv 30904 Sℋ csh 30907 ⊥cort 30909 0ℋc0h 30914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-hilex 30978 ax-hfvadd 30979 ax-hvcom 30980 ax-hvass 30981 ax-hv0cl 30982 ax-hvaddid 30983 ax-hfvmul 30984 ax-hvmulid 30985 ax-hvdistr2 30988 ax-hvmul0 30989 ax-hfi 31058 ax-his2 31062 ax-his3 31063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-ltxr 11189 df-sub 11383 df-neg 11384 df-hvsub 30950 df-sh 31186 df-oc 31231 df-ch0 31232 |
| This theorem is referenced by: omlsii 31382 |
| Copyright terms: Public domain | W3C validator |