| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > omlsilem | Structured version Visualization version GIF version | ||
| Description: Lemma for orthomodular law in the Hilbert lattice. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| omlsilem.1 | ⊢ 𝐺 ∈ Sℋ |
| omlsilem.2 | ⊢ 𝐻 ∈ Sℋ |
| omlsilem.3 | ⊢ 𝐺 ⊆ 𝐻 |
| omlsilem.4 | ⊢ (𝐻 ∩ (⊥‘𝐺)) = 0ℋ |
| omlsilem.5 | ⊢ 𝐴 ∈ 𝐻 |
| omlsilem.6 | ⊢ 𝐵 ∈ 𝐺 |
| omlsilem.7 | ⊢ 𝐶 ∈ (⊥‘𝐺) |
| Ref | Expression |
|---|---|
| omlsilem | ⊢ (𝐴 = (𝐵 +ℎ 𝐶) → 𝐴 ∈ 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omlsilem.2 | . . . . . . . . . 10 ⊢ 𝐻 ∈ Sℋ | |
| 2 | omlsilem.5 | . . . . . . . . . 10 ⊢ 𝐴 ∈ 𝐻 | |
| 3 | 1, 2 | shelii 31195 | . . . . . . . . 9 ⊢ 𝐴 ∈ ℋ |
| 4 | omlsilem.1 | . . . . . . . . . 10 ⊢ 𝐺 ∈ Sℋ | |
| 5 | omlsilem.6 | . . . . . . . . . 10 ⊢ 𝐵 ∈ 𝐺 | |
| 6 | 4, 5 | shelii 31195 | . . . . . . . . 9 ⊢ 𝐵 ∈ ℋ |
| 7 | shocss 31266 | . . . . . . . . . . 11 ⊢ (𝐺 ∈ Sℋ → (⊥‘𝐺) ⊆ ℋ) | |
| 8 | 4, 7 | ax-mp 5 | . . . . . . . . . 10 ⊢ (⊥‘𝐺) ⊆ ℋ |
| 9 | omlsilem.7 | . . . . . . . . . 10 ⊢ 𝐶 ∈ (⊥‘𝐺) | |
| 10 | 8, 9 | sselii 3926 | . . . . . . . . 9 ⊢ 𝐶 ∈ ℋ |
| 11 | 3, 6, 10 | hvsubaddi 31046 | . . . . . . . 8 ⊢ ((𝐴 −ℎ 𝐵) = 𝐶 ↔ (𝐵 +ℎ 𝐶) = 𝐴) |
| 12 | eqcom 2738 | . . . . . . . 8 ⊢ ((𝐵 +ℎ 𝐶) = 𝐴 ↔ 𝐴 = (𝐵 +ℎ 𝐶)) | |
| 13 | 11, 12 | bitri 275 | . . . . . . 7 ⊢ ((𝐴 −ℎ 𝐵) = 𝐶 ↔ 𝐴 = (𝐵 +ℎ 𝐶)) |
| 14 | omlsilem.3 | . . . . . . . . . 10 ⊢ 𝐺 ⊆ 𝐻 | |
| 15 | 14, 5 | sselii 3926 | . . . . . . . . 9 ⊢ 𝐵 ∈ 𝐻 |
| 16 | shsubcl 31200 | . . . . . . . . 9 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (𝐴 −ℎ 𝐵) ∈ 𝐻) | |
| 17 | 1, 2, 15, 16 | mp3an 1463 | . . . . . . . 8 ⊢ (𝐴 −ℎ 𝐵) ∈ 𝐻 |
| 18 | eleq1 2819 | . . . . . . . 8 ⊢ ((𝐴 −ℎ 𝐵) = 𝐶 → ((𝐴 −ℎ 𝐵) ∈ 𝐻 ↔ 𝐶 ∈ 𝐻)) | |
| 19 | 17, 18 | mpbii 233 | . . . . . . 7 ⊢ ((𝐴 −ℎ 𝐵) = 𝐶 → 𝐶 ∈ 𝐻) |
| 20 | 13, 19 | sylbir 235 | . . . . . 6 ⊢ (𝐴 = (𝐵 +ℎ 𝐶) → 𝐶 ∈ 𝐻) |
| 21 | omlsilem.4 | . . . . . . . 8 ⊢ (𝐻 ∩ (⊥‘𝐺)) = 0ℋ | |
| 22 | 21 | eleq2i 2823 | . . . . . . 7 ⊢ (𝐶 ∈ (𝐻 ∩ (⊥‘𝐺)) ↔ 𝐶 ∈ 0ℋ) |
| 23 | elin 3913 | . . . . . . 7 ⊢ (𝐶 ∈ (𝐻 ∩ (⊥‘𝐺)) ↔ (𝐶 ∈ 𝐻 ∧ 𝐶 ∈ (⊥‘𝐺))) | |
| 24 | elch0 31234 | . . . . . . 7 ⊢ (𝐶 ∈ 0ℋ ↔ 𝐶 = 0ℎ) | |
| 25 | 22, 23, 24 | 3bitr3i 301 | . . . . . 6 ⊢ ((𝐶 ∈ 𝐻 ∧ 𝐶 ∈ (⊥‘𝐺)) ↔ 𝐶 = 0ℎ) |
| 26 | 20, 9, 25 | sylanblc 589 | . . . . 5 ⊢ (𝐴 = (𝐵 +ℎ 𝐶) → 𝐶 = 0ℎ) |
| 27 | 26 | oveq2d 7362 | . . . 4 ⊢ (𝐴 = (𝐵 +ℎ 𝐶) → (𝐵 +ℎ 𝐶) = (𝐵 +ℎ 0ℎ)) |
| 28 | ax-hvaddid 30984 | . . . . 5 ⊢ (𝐵 ∈ ℋ → (𝐵 +ℎ 0ℎ) = 𝐵) | |
| 29 | 6, 28 | ax-mp 5 | . . . 4 ⊢ (𝐵 +ℎ 0ℎ) = 𝐵 |
| 30 | 27, 29 | eqtrdi 2782 | . . 3 ⊢ (𝐴 = (𝐵 +ℎ 𝐶) → (𝐵 +ℎ 𝐶) = 𝐵) |
| 31 | 30, 5 | eqeltrdi 2839 | . 2 ⊢ (𝐴 = (𝐵 +ℎ 𝐶) → (𝐵 +ℎ 𝐶) ∈ 𝐺) |
| 32 | eleq1 2819 | . 2 ⊢ (𝐴 = (𝐵 +ℎ 𝐶) → (𝐴 ∈ 𝐺 ↔ (𝐵 +ℎ 𝐶) ∈ 𝐺)) | |
| 33 | 31, 32 | mpbird 257 | 1 ⊢ (𝐴 = (𝐵 +ℎ 𝐶) → 𝐴 ∈ 𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∩ cin 3896 ⊆ wss 3897 ‘cfv 6481 (class class class)co 7346 ℋchba 30899 +ℎ cva 30900 0ℎc0v 30904 −ℎ cmv 30905 Sℋ csh 30908 ⊥cort 30910 0ℋc0h 30915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-hilex 30979 ax-hfvadd 30980 ax-hvcom 30981 ax-hvass 30982 ax-hv0cl 30983 ax-hvaddid 30984 ax-hfvmul 30985 ax-hvmulid 30986 ax-hvdistr2 30989 ax-hvmul0 30990 ax-hfi 31059 ax-his2 31063 ax-his3 31064 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-ltxr 11151 df-sub 11346 df-neg 11347 df-hvsub 30951 df-sh 31187 df-oc 31232 df-ch0 31233 |
| This theorem is referenced by: omlsii 31383 |
| Copyright terms: Public domain | W3C validator |