HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  omlsilem Structured version   Visualization version   GIF version

Theorem omlsilem 29665
Description: Lemma for orthomodular law in the Hilbert lattice. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
omlsilem.1 𝐺S
omlsilem.2 𝐻S
omlsilem.3 𝐺𝐻
omlsilem.4 (𝐻 ∩ (⊥‘𝐺)) = 0
omlsilem.5 𝐴𝐻
omlsilem.6 𝐵𝐺
omlsilem.7 𝐶 ∈ (⊥‘𝐺)
Assertion
Ref Expression
omlsilem (𝐴 = (𝐵 + 𝐶) → 𝐴𝐺)

Proof of Theorem omlsilem
StepHypRef Expression
1 omlsilem.2 . . . . . . . . . 10 𝐻S
2 omlsilem.5 . . . . . . . . . 10 𝐴𝐻
31, 2shelii 29478 . . . . . . . . 9 𝐴 ∈ ℋ
4 omlsilem.1 . . . . . . . . . 10 𝐺S
5 omlsilem.6 . . . . . . . . . 10 𝐵𝐺
64, 5shelii 29478 . . . . . . . . 9 𝐵 ∈ ℋ
7 shocss 29549 . . . . . . . . . . 11 (𝐺S → (⊥‘𝐺) ⊆ ℋ)
84, 7ax-mp 5 . . . . . . . . . 10 (⊥‘𝐺) ⊆ ℋ
9 omlsilem.7 . . . . . . . . . 10 𝐶 ∈ (⊥‘𝐺)
108, 9sselii 3914 . . . . . . . . 9 𝐶 ∈ ℋ
113, 6, 10hvsubaddi 29329 . . . . . . . 8 ((𝐴 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴)
12 eqcom 2745 . . . . . . . 8 ((𝐵 + 𝐶) = 𝐴𝐴 = (𝐵 + 𝐶))
1311, 12bitri 274 . . . . . . 7 ((𝐴 𝐵) = 𝐶𝐴 = (𝐵 + 𝐶))
14 omlsilem.3 . . . . . . . . . 10 𝐺𝐻
1514, 5sselii 3914 . . . . . . . . 9 𝐵𝐻
16 shsubcl 29483 . . . . . . . . 9 ((𝐻S𝐴𝐻𝐵𝐻) → (𝐴 𝐵) ∈ 𝐻)
171, 2, 15, 16mp3an 1459 . . . . . . . 8 (𝐴 𝐵) ∈ 𝐻
18 eleq1 2826 . . . . . . . 8 ((𝐴 𝐵) = 𝐶 → ((𝐴 𝐵) ∈ 𝐻𝐶𝐻))
1917, 18mpbii 232 . . . . . . 7 ((𝐴 𝐵) = 𝐶𝐶𝐻)
2013, 19sylbir 234 . . . . . 6 (𝐴 = (𝐵 + 𝐶) → 𝐶𝐻)
21 omlsilem.4 . . . . . . . 8 (𝐻 ∩ (⊥‘𝐺)) = 0
2221eleq2i 2830 . . . . . . 7 (𝐶 ∈ (𝐻 ∩ (⊥‘𝐺)) ↔ 𝐶 ∈ 0)
23 elin 3899 . . . . . . 7 (𝐶 ∈ (𝐻 ∩ (⊥‘𝐺)) ↔ (𝐶𝐻𝐶 ∈ (⊥‘𝐺)))
24 elch0 29517 . . . . . . 7 (𝐶 ∈ 0𝐶 = 0)
2522, 23, 243bitr3i 300 . . . . . 6 ((𝐶𝐻𝐶 ∈ (⊥‘𝐺)) ↔ 𝐶 = 0)
2620, 9, 25sylanblc 588 . . . . 5 (𝐴 = (𝐵 + 𝐶) → 𝐶 = 0)
2726oveq2d 7271 . . . 4 (𝐴 = (𝐵 + 𝐶) → (𝐵 + 𝐶) = (𝐵 + 0))
28 ax-hvaddid 29267 . . . . 5 (𝐵 ∈ ℋ → (𝐵 + 0) = 𝐵)
296, 28ax-mp 5 . . . 4 (𝐵 + 0) = 𝐵
3027, 29eqtrdi 2795 . . 3 (𝐴 = (𝐵 + 𝐶) → (𝐵 + 𝐶) = 𝐵)
3130, 5eqeltrdi 2847 . 2 (𝐴 = (𝐵 + 𝐶) → (𝐵 + 𝐶) ∈ 𝐺)
32 eleq1 2826 . 2 (𝐴 = (𝐵 + 𝐶) → (𝐴𝐺 ↔ (𝐵 + 𝐶) ∈ 𝐺))
3331, 32mpbird 256 1 (𝐴 = (𝐵 + 𝐶) → 𝐴𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  cin 3882  wss 3883  cfv 6418  (class class class)co 7255  chba 29182   + cva 29183  0c0v 29187   cmv 29188   S csh 29191  cort 29193  0c0h 29198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-hilex 29262  ax-hfvadd 29263  ax-hvcom 29264  ax-hvass 29265  ax-hv0cl 29266  ax-hvaddid 29267  ax-hfvmul 29268  ax-hvmulid 29269  ax-hvdistr2 29272  ax-hvmul0 29273  ax-hfi 29342  ax-his2 29346  ax-his3 29347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-ltxr 10945  df-sub 11137  df-neg 11138  df-hvsub 29234  df-sh 29470  df-oc 29515  df-ch0 29516
This theorem is referenced by:  omlsii  29666
  Copyright terms: Public domain W3C validator