HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  omlsilem Structured version   Visualization version   GIF version

Theorem omlsilem 31431
Description: Lemma for orthomodular law in the Hilbert lattice. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
omlsilem.1 𝐺S
omlsilem.2 𝐻S
omlsilem.3 𝐺𝐻
omlsilem.4 (𝐻 ∩ (⊥‘𝐺)) = 0
omlsilem.5 𝐴𝐻
omlsilem.6 𝐵𝐺
omlsilem.7 𝐶 ∈ (⊥‘𝐺)
Assertion
Ref Expression
omlsilem (𝐴 = (𝐵 + 𝐶) → 𝐴𝐺)

Proof of Theorem omlsilem
StepHypRef Expression
1 omlsilem.2 . . . . . . . . . 10 𝐻S
2 omlsilem.5 . . . . . . . . . 10 𝐴𝐻
31, 2shelii 31244 . . . . . . . . 9 𝐴 ∈ ℋ
4 omlsilem.1 . . . . . . . . . 10 𝐺S
5 omlsilem.6 . . . . . . . . . 10 𝐵𝐺
64, 5shelii 31244 . . . . . . . . 9 𝐵 ∈ ℋ
7 shocss 31315 . . . . . . . . . . 11 (𝐺S → (⊥‘𝐺) ⊆ ℋ)
84, 7ax-mp 5 . . . . . . . . . 10 (⊥‘𝐺) ⊆ ℋ
9 omlsilem.7 . . . . . . . . . 10 𝐶 ∈ (⊥‘𝐺)
108, 9sselii 3992 . . . . . . . . 9 𝐶 ∈ ℋ
113, 6, 10hvsubaddi 31095 . . . . . . . 8 ((𝐴 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴)
12 eqcom 2742 . . . . . . . 8 ((𝐵 + 𝐶) = 𝐴𝐴 = (𝐵 + 𝐶))
1311, 12bitri 275 . . . . . . 7 ((𝐴 𝐵) = 𝐶𝐴 = (𝐵 + 𝐶))
14 omlsilem.3 . . . . . . . . . 10 𝐺𝐻
1514, 5sselii 3992 . . . . . . . . 9 𝐵𝐻
16 shsubcl 31249 . . . . . . . . 9 ((𝐻S𝐴𝐻𝐵𝐻) → (𝐴 𝐵) ∈ 𝐻)
171, 2, 15, 16mp3an 1460 . . . . . . . 8 (𝐴 𝐵) ∈ 𝐻
18 eleq1 2827 . . . . . . . 8 ((𝐴 𝐵) = 𝐶 → ((𝐴 𝐵) ∈ 𝐻𝐶𝐻))
1917, 18mpbii 233 . . . . . . 7 ((𝐴 𝐵) = 𝐶𝐶𝐻)
2013, 19sylbir 235 . . . . . 6 (𝐴 = (𝐵 + 𝐶) → 𝐶𝐻)
21 omlsilem.4 . . . . . . . 8 (𝐻 ∩ (⊥‘𝐺)) = 0
2221eleq2i 2831 . . . . . . 7 (𝐶 ∈ (𝐻 ∩ (⊥‘𝐺)) ↔ 𝐶 ∈ 0)
23 elin 3979 . . . . . . 7 (𝐶 ∈ (𝐻 ∩ (⊥‘𝐺)) ↔ (𝐶𝐻𝐶 ∈ (⊥‘𝐺)))
24 elch0 31283 . . . . . . 7 (𝐶 ∈ 0𝐶 = 0)
2522, 23, 243bitr3i 301 . . . . . 6 ((𝐶𝐻𝐶 ∈ (⊥‘𝐺)) ↔ 𝐶 = 0)
2620, 9, 25sylanblc 589 . . . . 5 (𝐴 = (𝐵 + 𝐶) → 𝐶 = 0)
2726oveq2d 7447 . . . 4 (𝐴 = (𝐵 + 𝐶) → (𝐵 + 𝐶) = (𝐵 + 0))
28 ax-hvaddid 31033 . . . . 5 (𝐵 ∈ ℋ → (𝐵 + 0) = 𝐵)
296, 28ax-mp 5 . . . 4 (𝐵 + 0) = 𝐵
3027, 29eqtrdi 2791 . . 3 (𝐴 = (𝐵 + 𝐶) → (𝐵 + 𝐶) = 𝐵)
3130, 5eqeltrdi 2847 . 2 (𝐴 = (𝐵 + 𝐶) → (𝐵 + 𝐶) ∈ 𝐺)
32 eleq1 2827 . 2 (𝐴 = (𝐵 + 𝐶) → (𝐴𝐺 ↔ (𝐵 + 𝐶) ∈ 𝐺))
3331, 32mpbird 257 1 (𝐴 = (𝐵 + 𝐶) → 𝐴𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  cin 3962  wss 3963  cfv 6563  (class class class)co 7431  chba 30948   + cva 30949  0c0v 30953   cmv 30954   S csh 30957  cort 30959  0c0h 30964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-hilex 31028  ax-hfvadd 31029  ax-hvcom 31030  ax-hvass 31031  ax-hv0cl 31032  ax-hvaddid 31033  ax-hfvmul 31034  ax-hvmulid 31035  ax-hvdistr2 31038  ax-hvmul0 31039  ax-hfi 31108  ax-his2 31112  ax-his3 31113
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-ltxr 11298  df-sub 11492  df-neg 11493  df-hvsub 31000  df-sh 31236  df-oc 31281  df-ch0 31282
This theorem is referenced by:  omlsii  31432
  Copyright terms: Public domain W3C validator