HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  omlsilem Structured version   Visualization version   GIF version

Theorem omlsilem 29106
Description: Lemma for orthomodular law in the Hilbert lattice. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
omlsilem.1 𝐺S
omlsilem.2 𝐻S
omlsilem.3 𝐺𝐻
omlsilem.4 (𝐻 ∩ (⊥‘𝐺)) = 0
omlsilem.5 𝐴𝐻
omlsilem.6 𝐵𝐺
omlsilem.7 𝐶 ∈ (⊥‘𝐺)
Assertion
Ref Expression
omlsilem (𝐴 = (𝐵 + 𝐶) → 𝐴𝐺)

Proof of Theorem omlsilem
StepHypRef Expression
1 omlsilem.2 . . . . . . . . . 10 𝐻S
2 omlsilem.5 . . . . . . . . . 10 𝐴𝐻
31, 2shelii 28919 . . . . . . . . 9 𝐴 ∈ ℋ
4 omlsilem.1 . . . . . . . . . 10 𝐺S
5 omlsilem.6 . . . . . . . . . 10 𝐵𝐺
64, 5shelii 28919 . . . . . . . . 9 𝐵 ∈ ℋ
7 shocss 28990 . . . . . . . . . . 11 (𝐺S → (⊥‘𝐺) ⊆ ℋ)
84, 7ax-mp 5 . . . . . . . . . 10 (⊥‘𝐺) ⊆ ℋ
9 omlsilem.7 . . . . . . . . . 10 𝐶 ∈ (⊥‘𝐺)
108, 9sselii 3961 . . . . . . . . 9 𝐶 ∈ ℋ
113, 6, 10hvsubaddi 28770 . . . . . . . 8 ((𝐴 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴)
12 eqcom 2825 . . . . . . . 8 ((𝐵 + 𝐶) = 𝐴𝐴 = (𝐵 + 𝐶))
1311, 12bitri 276 . . . . . . 7 ((𝐴 𝐵) = 𝐶𝐴 = (𝐵 + 𝐶))
14 omlsilem.3 . . . . . . . . . 10 𝐺𝐻
1514, 5sselii 3961 . . . . . . . . 9 𝐵𝐻
16 shsubcl 28924 . . . . . . . . 9 ((𝐻S𝐴𝐻𝐵𝐻) → (𝐴 𝐵) ∈ 𝐻)
171, 2, 15, 16mp3an 1452 . . . . . . . 8 (𝐴 𝐵) ∈ 𝐻
18 eleq1 2897 . . . . . . . 8 ((𝐴 𝐵) = 𝐶 → ((𝐴 𝐵) ∈ 𝐻𝐶𝐻))
1917, 18mpbii 234 . . . . . . 7 ((𝐴 𝐵) = 𝐶𝐶𝐻)
2013, 19sylbir 236 . . . . . 6 (𝐴 = (𝐵 + 𝐶) → 𝐶𝐻)
21 omlsilem.4 . . . . . . . 8 (𝐻 ∩ (⊥‘𝐺)) = 0
2221eleq2i 2901 . . . . . . 7 (𝐶 ∈ (𝐻 ∩ (⊥‘𝐺)) ↔ 𝐶 ∈ 0)
23 elin 4166 . . . . . . 7 (𝐶 ∈ (𝐻 ∩ (⊥‘𝐺)) ↔ (𝐶𝐻𝐶 ∈ (⊥‘𝐺)))
24 elch0 28958 . . . . . . 7 (𝐶 ∈ 0𝐶 = 0)
2522, 23, 243bitr3i 302 . . . . . 6 ((𝐶𝐻𝐶 ∈ (⊥‘𝐺)) ↔ 𝐶 = 0)
2620, 9, 25sylanblc 589 . . . . 5 (𝐴 = (𝐵 + 𝐶) → 𝐶 = 0)
2726oveq2d 7161 . . . 4 (𝐴 = (𝐵 + 𝐶) → (𝐵 + 𝐶) = (𝐵 + 0))
28 ax-hvaddid 28708 . . . . 5 (𝐵 ∈ ℋ → (𝐵 + 0) = 𝐵)
296, 28ax-mp 5 . . . 4 (𝐵 + 0) = 𝐵
3027, 29syl6eq 2869 . . 3 (𝐴 = (𝐵 + 𝐶) → (𝐵 + 𝐶) = 𝐵)
3130, 5syl6eqel 2918 . 2 (𝐴 = (𝐵 + 𝐶) → (𝐵 + 𝐶) ∈ 𝐺)
32 eleq1 2897 . 2 (𝐴 = (𝐵 + 𝐶) → (𝐴𝐺 ↔ (𝐵 + 𝐶) ∈ 𝐺))
3331, 32mpbird 258 1 (𝐴 = (𝐵 + 𝐶) → 𝐴𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  cin 3932  wss 3933  cfv 6348  (class class class)co 7145  chba 28623   + cva 28624  0c0v 28628   cmv 28629   S csh 28632  cort 28634  0c0h 28639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-hilex 28703  ax-hfvadd 28704  ax-hvcom 28705  ax-hvass 28706  ax-hv0cl 28707  ax-hvaddid 28708  ax-hfvmul 28709  ax-hvmulid 28710  ax-hvdistr2 28713  ax-hvmul0 28714  ax-hfi 28783  ax-his2 28787  ax-his3 28788
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-ltxr 10668  df-sub 10860  df-neg 10861  df-hvsub 28675  df-sh 28911  df-oc 28956  df-ch0 28957
This theorem is referenced by:  omlsii  29107
  Copyright terms: Public domain W3C validator