Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sylancom | Structured version Visualization version GIF version |
Description: Syllogism inference with commutation of antecedents. (Contributed by NM, 2-Jul-2008.) |
Ref | Expression |
---|---|
sylancom.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
sylancom.2 | ⊢ ((𝜒 ∧ 𝜓) → 𝜃) |
Ref | Expression |
---|---|
sylancom | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylancom.1 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | simpr 485 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
3 | sylancom.2 | . 2 ⊢ ((𝜒 ∧ 𝜓) → 𝜃) | |
4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Copyright terms: Public domain | W3C validator |