MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isleag Structured version   Visualization version   GIF version

Theorem isleag 26755
Description: Geometrical "less than" property for angles. Definition 11.27 of [Schwabhauser] p. 102. (Contributed by Thierry Arnoux, 7-Oct-2020.)
Hypotheses
Ref Expression
isleag.p 𝑃 = (Base‘𝐺)
isleag.g (𝜑𝐺 ∈ TarskiG)
isleag.a (𝜑𝐴𝑃)
isleag.b (𝜑𝐵𝑃)
isleag.c (𝜑𝐶𝑃)
isleag.d (𝜑𝐷𝑃)
isleag.e (𝜑𝐸𝑃)
isleag.f (𝜑𝐹𝑃)
Assertion
Ref Expression
isleag (𝜑 → (⟨“𝐴𝐵𝐶”⟩(≤𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ ∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑥”⟩)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝑥,𝐸   𝑥,𝐹   𝑥,𝐺   𝑥,𝑃   𝜑,𝑥

Proof of Theorem isleag
Dummy variables 𝑎 𝑏 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isleag.a . . . . 5 (𝜑𝐴𝑃)
2 isleag.b . . . . 5 (𝜑𝐵𝑃)
3 isleag.c . . . . 5 (𝜑𝐶𝑃)
41, 2, 3s3cld 14295 . . . 4 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃)
5 s3len 14317 . . . 4 (♯‘⟨“𝐴𝐵𝐶”⟩) = 3
6 isleag.p . . . . . 6 𝑃 = (Base‘𝐺)
76fvexi 6678 . . . . 5 𝑃 ∈ V
8 3nn0 11966 . . . . 5 3 ∈ ℕ0
9 wrdmap 13959 . . . . 5 ((𝑃 ∈ V ∧ 3 ∈ ℕ0) → ((⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃 ∧ (♯‘⟨“𝐴𝐵𝐶”⟩) = 3) ↔ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3))))
107, 8, 9mp2an 691 . . . 4 ((⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃 ∧ (♯‘⟨“𝐴𝐵𝐶”⟩) = 3) ↔ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)))
114, 5, 10sylanblc 592 . . 3 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)))
12 isleag.d . . . . 5 (𝜑𝐷𝑃)
13 isleag.e . . . . 5 (𝜑𝐸𝑃)
14 isleag.f . . . . 5 (𝜑𝐹𝑃)
1512, 13, 14s3cld 14295 . . . 4 (𝜑 → ⟨“𝐷𝐸𝐹”⟩ ∈ Word 𝑃)
16 s3len 14317 . . . 4 (♯‘⟨“𝐷𝐸𝐹”⟩) = 3
17 wrdmap 13959 . . . . 5 ((𝑃 ∈ V ∧ 3 ∈ ℕ0) → ((⟨“𝐷𝐸𝐹”⟩ ∈ Word 𝑃 ∧ (♯‘⟨“𝐷𝐸𝐹”⟩) = 3) ↔ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃m (0..^3))))
187, 8, 17mp2an 691 . . . 4 ((⟨“𝐷𝐸𝐹”⟩ ∈ Word 𝑃 ∧ (♯‘⟨“𝐷𝐸𝐹”⟩) = 3) ↔ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃m (0..^3)))
1915, 16, 18sylanblc 592 . . 3 (𝜑 → ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃m (0..^3)))
2011, 19jca 515 . 2 (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)) ∧ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃m (0..^3))))
21 isleag.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
22 elex 3429 . . . . 5 (𝐺 ∈ TarskiG → 𝐺 ∈ V)
23 fveq2 6664 . . . . . . . . . . . 12 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
2423, 6eqtr4di 2812 . . . . . . . . . . 11 (𝑔 = 𝐺 → (Base‘𝑔) = 𝑃)
2524oveq1d 7172 . . . . . . . . . 10 (𝑔 = 𝐺 → ((Base‘𝑔) ↑m (0..^3)) = (𝑃m (0..^3)))
2625eleq2d 2838 . . . . . . . . 9 (𝑔 = 𝐺 → (𝑎 ∈ ((Base‘𝑔) ↑m (0..^3)) ↔ 𝑎 ∈ (𝑃m (0..^3))))
2725eleq2d 2838 . . . . . . . . 9 (𝑔 = 𝐺 → (𝑏 ∈ ((Base‘𝑔) ↑m (0..^3)) ↔ 𝑏 ∈ (𝑃m (0..^3))))
2826, 27anbi12d 633 . . . . . . . 8 (𝑔 = 𝐺 → ((𝑎 ∈ ((Base‘𝑔) ↑m (0..^3)) ∧ 𝑏 ∈ ((Base‘𝑔) ↑m (0..^3))) ↔ (𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3)))))
29 fveq2 6664 . . . . . . . . . . 11 (𝑔 = 𝐺 → (inA‘𝑔) = (inA‘𝐺))
3029breqd 5048 . . . . . . . . . 10 (𝑔 = 𝐺 → (𝑥(inA‘𝑔)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ↔ 𝑥(inA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩))
31 fveq2 6664 . . . . . . . . . . 11 (𝑔 = 𝐺 → (cgrA‘𝑔) = (cgrA‘𝐺))
3231breqd 5048 . . . . . . . . . 10 (𝑔 = 𝐺 → (⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝑔)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩ ↔ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩))
3330, 32anbi12d 633 . . . . . . . . 9 (𝑔 = 𝐺 → ((𝑥(inA‘𝑔)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ∧ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝑔)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩) ↔ (𝑥(inA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ∧ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩)))
3424, 33rexeqbidv 3321 . . . . . . . 8 (𝑔 = 𝐺 → (∃𝑥 ∈ (Base‘𝑔)(𝑥(inA‘𝑔)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ∧ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝑔)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩) ↔ ∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ∧ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩)))
3528, 34anbi12d 633 . . . . . . 7 (𝑔 = 𝐺 → (((𝑎 ∈ ((Base‘𝑔) ↑m (0..^3)) ∧ 𝑏 ∈ ((Base‘𝑔) ↑m (0..^3))) ∧ ∃𝑥 ∈ (Base‘𝑔)(𝑥(inA‘𝑔)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ∧ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝑔)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩)) ↔ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ∧ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩))))
3635opabbidv 5103 . . . . . 6 (𝑔 = 𝐺 → {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ((Base‘𝑔) ↑m (0..^3)) ∧ 𝑏 ∈ ((Base‘𝑔) ↑m (0..^3))) ∧ ∃𝑥 ∈ (Base‘𝑔)(𝑥(inA‘𝑔)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ∧ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝑔)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩))} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ∧ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩))})
37 df-leag 26754 . . . . . 6 = (𝑔 ∈ V ↦ {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ((Base‘𝑔) ↑m (0..^3)) ∧ 𝑏 ∈ ((Base‘𝑔) ↑m (0..^3))) ∧ ∃𝑥 ∈ (Base‘𝑔)(𝑥(inA‘𝑔)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ∧ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝑔)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩))})
38 ovex 7190 . . . . . . . 8 (𝑃m (0..^3)) ∈ V
3938, 38xpex 7481 . . . . . . 7 ((𝑃m (0..^3)) × (𝑃m (0..^3))) ∈ V
40 opabssxp 5618 . . . . . . 7 {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ∧ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩))} ⊆ ((𝑃m (0..^3)) × (𝑃m (0..^3)))
4139, 40ssexi 5197 . . . . . 6 {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ∧ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩))} ∈ V
4236, 37, 41fvmpt 6765 . . . . 5 (𝐺 ∈ V → (≤𝐺) = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ∧ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩))})
4321, 22, 423syl 18 . . . 4 (𝜑 → (≤𝐺) = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ∧ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩))})
4443breqd 5048 . . 3 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(≤𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ ⟨“𝐴𝐵𝐶”⟩{⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ∧ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩))}⟨“𝐷𝐸𝐹”⟩))
45 simpr 488 . . . . . . . . . 10 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → 𝑏 = ⟨“𝐷𝐸𝐹”⟩)
4645fveq1d 6666 . . . . . . . . 9 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (𝑏‘0) = (⟨“𝐷𝐸𝐹”⟩‘0))
4745fveq1d 6666 . . . . . . . . 9 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (𝑏‘1) = (⟨“𝐷𝐸𝐹”⟩‘1))
4845fveq1d 6666 . . . . . . . . 9 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (𝑏‘2) = (⟨“𝐷𝐸𝐹”⟩‘2))
4946, 47, 48s3eqd 14287 . . . . . . . 8 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → ⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ = ⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)(⟨“𝐷𝐸𝐹”⟩‘2)”⟩)
5049breq2d 5049 . . . . . . 7 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (𝑥(inA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ↔ 𝑥(inA‘𝐺)⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)(⟨“𝐷𝐸𝐹”⟩‘2)”⟩))
51 simpl 486 . . . . . . . . . 10 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → 𝑎 = ⟨“𝐴𝐵𝐶”⟩)
5251fveq1d 6666 . . . . . . . . 9 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (𝑎‘0) = (⟨“𝐴𝐵𝐶”⟩‘0))
5351fveq1d 6666 . . . . . . . . 9 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (𝑎‘1) = (⟨“𝐴𝐵𝐶”⟩‘1))
5451fveq1d 6666 . . . . . . . . 9 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (𝑎‘2) = (⟨“𝐴𝐵𝐶”⟩‘2))
5552, 53, 54s3eqd 14287 . . . . . . . 8 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩ = ⟨“(⟨“𝐴𝐵𝐶”⟩‘0)(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)”⟩)
56 eqidd 2760 . . . . . . . . 9 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → 𝑥 = 𝑥)
5746, 47, 56s3eqd 14287 . . . . . . . 8 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → ⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩ = ⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)𝑥”⟩)
5855, 57breq12d 5050 . . . . . . 7 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩ ↔ ⟨“(⟨“𝐴𝐵𝐶”⟩‘0)(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)”⟩(cgrA‘𝐺)⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)𝑥”⟩))
5950, 58anbi12d 633 . . . . . 6 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → ((𝑥(inA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ∧ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩) ↔ (𝑥(inA‘𝐺)⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)(⟨“𝐷𝐸𝐹”⟩‘2)”⟩ ∧ ⟨“(⟨“𝐴𝐵𝐶”⟩‘0)(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)”⟩(cgrA‘𝐺)⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)𝑥”⟩)))
6059rexbidv 3222 . . . . 5 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ∧ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩) ↔ ∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)(⟨“𝐷𝐸𝐹”⟩‘2)”⟩ ∧ ⟨“(⟨“𝐴𝐵𝐶”⟩‘0)(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)”⟩(cgrA‘𝐺)⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)𝑥”⟩)))
61 eqid 2759 . . . . 5 {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ∧ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩))} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ∧ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩))}
6260, 61brab2a 5619 . . . 4 (⟨“𝐴𝐵𝐶”⟩{⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ∧ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩))}⟨“𝐷𝐸𝐹”⟩ ↔ ((⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)) ∧ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)(⟨“𝐷𝐸𝐹”⟩‘2)”⟩ ∧ ⟨“(⟨“𝐴𝐵𝐶”⟩‘0)(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)”⟩(cgrA‘𝐺)⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)𝑥”⟩)))
6362a1i 11 . . 3 (𝜑 → (⟨“𝐴𝐵𝐶”⟩{⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ∧ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩))}⟨“𝐷𝐸𝐹”⟩ ↔ ((⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)) ∧ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)(⟨“𝐷𝐸𝐹”⟩‘2)”⟩ ∧ ⟨“(⟨“𝐴𝐵𝐶”⟩‘0)(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)”⟩(cgrA‘𝐺)⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)𝑥”⟩))))
64 s3fv0 14314 . . . . . . . . 9 (𝐷𝑃 → (⟨“𝐷𝐸𝐹”⟩‘0) = 𝐷)
6512, 64syl 17 . . . . . . . 8 (𝜑 → (⟨“𝐷𝐸𝐹”⟩‘0) = 𝐷)
66 s3fv1 14315 . . . . . . . . 9 (𝐸𝑃 → (⟨“𝐷𝐸𝐹”⟩‘1) = 𝐸)
6713, 66syl 17 . . . . . . . 8 (𝜑 → (⟨“𝐷𝐸𝐹”⟩‘1) = 𝐸)
68 s3fv2 14316 . . . . . . . . 9 (𝐹𝑃 → (⟨“𝐷𝐸𝐹”⟩‘2) = 𝐹)
6914, 68syl 17 . . . . . . . 8 (𝜑 → (⟨“𝐷𝐸𝐹”⟩‘2) = 𝐹)
7065, 67, 69s3eqd 14287 . . . . . . 7 (𝜑 → ⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)(⟨“𝐷𝐸𝐹”⟩‘2)”⟩ = ⟨“𝐷𝐸𝐹”⟩)
7170breq2d 5049 . . . . . 6 (𝜑 → (𝑥(inA‘𝐺)⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)(⟨“𝐷𝐸𝐹”⟩‘2)”⟩ ↔ 𝑥(inA‘𝐺)⟨“𝐷𝐸𝐹”⟩))
72 s3fv0 14314 . . . . . . . . 9 (𝐴𝑃 → (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
731, 72syl 17 . . . . . . . 8 (𝜑 → (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
74 s3fv1 14315 . . . . . . . . 9 (𝐵𝑃 → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
752, 74syl 17 . . . . . . . 8 (𝜑 → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
76 s3fv2 14316 . . . . . . . . 9 (𝐶𝑃 → (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)
773, 76syl 17 . . . . . . . 8 (𝜑 → (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)
7873, 75, 77s3eqd 14287 . . . . . . 7 (𝜑 → ⟨“(⟨“𝐴𝐵𝐶”⟩‘0)(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)”⟩ = ⟨“𝐴𝐵𝐶”⟩)
79 eqidd 2760 . . . . . . . 8 (𝜑𝑥 = 𝑥)
8065, 67, 79s3eqd 14287 . . . . . . 7 (𝜑 → ⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)𝑥”⟩ = ⟨“𝐷𝐸𝑥”⟩)
8178, 80breq12d 5050 . . . . . 6 (𝜑 → (⟨“(⟨“𝐴𝐵𝐶”⟩‘0)(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)”⟩(cgrA‘𝐺)⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)𝑥”⟩ ↔ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑥”⟩))
8271, 81anbi12d 633 . . . . 5 (𝜑 → ((𝑥(inA‘𝐺)⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)(⟨“𝐷𝐸𝐹”⟩‘2)”⟩ ∧ ⟨“(⟨“𝐴𝐵𝐶”⟩‘0)(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)”⟩(cgrA‘𝐺)⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)𝑥”⟩) ↔ (𝑥(inA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑥”⟩)))
8382rexbidv 3222 . . . 4 (𝜑 → (∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)(⟨“𝐷𝐸𝐹”⟩‘2)”⟩ ∧ ⟨“(⟨“𝐴𝐵𝐶”⟩‘0)(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)”⟩(cgrA‘𝐺)⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)𝑥”⟩) ↔ ∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑥”⟩)))
8483anbi2d 631 . . 3 (𝜑 → (((⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)) ∧ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)(⟨“𝐷𝐸𝐹”⟩‘2)”⟩ ∧ ⟨“(⟨“𝐴𝐵𝐶”⟩‘0)(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)”⟩(cgrA‘𝐺)⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)𝑥”⟩)) ↔ ((⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)) ∧ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑥”⟩))))
8544, 63, 843bitrd 308 . 2 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(≤𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ ((⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)) ∧ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑥”⟩))))
8620, 85mpbirand 706 1 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(≤𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ ∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑥”⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1539  wcel 2112  wrex 3072  Vcvv 3410   class class class wbr 5037  {copab 5099   × cxp 5527  cfv 6341  (class class class)co 7157  m cmap 8423  0cc0 10589  1c1 10590  2c2 11743  3c3 11744  0cn0 11948  ..^cfzo 13096  chash 13754  Word cword 13927  ⟨“cs3 14265  Basecbs 16556  TarskiGcstrkg 26338  cgrAccgra 26715  inAcinag 26743  cleag 26744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5161  ax-sep 5174  ax-nul 5181  ax-pow 5239  ax-pr 5303  ax-un 7466  ax-cnex 10645  ax-resscn 10646  ax-1cn 10647  ax-icn 10648  ax-addcl 10649  ax-addrcl 10650  ax-mulcl 10651  ax-mulrcl 10652  ax-mulcom 10653  ax-addass 10654  ax-mulass 10655  ax-distr 10656  ax-i2m1 10657  ax-1ne0 10658  ax-1rid 10659  ax-rnegex 10660  ax-rrecex 10661  ax-cnre 10662  ax-pre-lttri 10663  ax-pre-lttrn 10664  ax-pre-ltadd 10665  ax-pre-mulgt0 10666
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3700  df-csb 3809  df-dif 3864  df-un 3866  df-in 3868  df-ss 3878  df-pss 3880  df-nul 4229  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4803  df-int 4843  df-iun 4889  df-br 5038  df-opab 5100  df-mpt 5118  df-tr 5144  df-id 5435  df-eprel 5440  df-po 5448  df-so 5449  df-fr 5488  df-we 5490  df-xp 5535  df-rel 5536  df-cnv 5537  df-co 5538  df-dm 5539  df-rn 5540  df-res 5541  df-ima 5542  df-pred 6132  df-ord 6178  df-on 6179  df-lim 6180  df-suc 6181  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-riota 7115  df-ov 7160  df-oprab 7161  df-mpo 7162  df-om 7587  df-1st 7700  df-2nd 7701  df-wrecs 7964  df-recs 8025  df-rdg 8063  df-1o 8119  df-er 8306  df-map 8425  df-en 8542  df-dom 8543  df-sdom 8544  df-fin 8545  df-card 9415  df-pnf 10729  df-mnf 10730  df-xr 10731  df-ltxr 10732  df-le 10733  df-sub 10924  df-neg 10925  df-nn 11689  df-2 11751  df-3 11752  df-n0 11949  df-z 12035  df-uz 12297  df-fz 12954  df-fzo 13097  df-hash 13755  df-word 13928  df-concat 13984  df-s1 14011  df-s2 14271  df-s3 14272  df-leag 26754
This theorem is referenced by:  isleagd  26756  leagne1  26757  leagne2  26758  leagne3  26759  leagne4  26760
  Copyright terms: Public domain W3C validator