MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isleag Structured version   Visualization version   GIF version

Theorem isleag 26641
Description: Geometrical "less than" property for angles. Definition 11.27 of [Schwabhauser] p. 102. (Contributed by Thierry Arnoux, 7-Oct-2020.)
Hypotheses
Ref Expression
isleag.p 𝑃 = (Base‘𝐺)
isleag.g (𝜑𝐺 ∈ TarskiG)
isleag.a (𝜑𝐴𝑃)
isleag.b (𝜑𝐵𝑃)
isleag.c (𝜑𝐶𝑃)
isleag.d (𝜑𝐷𝑃)
isleag.e (𝜑𝐸𝑃)
isleag.f (𝜑𝐹𝑃)
Assertion
Ref Expression
isleag (𝜑 → (⟨“𝐴𝐵𝐶”⟩(≤𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ ∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑥”⟩)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝑥,𝐸   𝑥,𝐹   𝑥,𝐺   𝑥,𝑃   𝜑,𝑥

Proof of Theorem isleag
Dummy variables 𝑎 𝑏 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isleag.a . . . . 5 (𝜑𝐴𝑃)
2 isleag.b . . . . 5 (𝜑𝐵𝑃)
3 isleag.c . . . . 5 (𝜑𝐶𝑃)
41, 2, 3s3cld 14225 . . . 4 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃)
5 s3len 14247 . . . 4 (♯‘⟨“𝐴𝐵𝐶”⟩) = 3
6 isleag.p . . . . . 6 𝑃 = (Base‘𝐺)
76fvexi 6659 . . . . 5 𝑃 ∈ V
8 3nn0 11903 . . . . 5 3 ∈ ℕ0
9 wrdmap 13889 . . . . 5 ((𝑃 ∈ V ∧ 3 ∈ ℕ0) → ((⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃 ∧ (♯‘⟨“𝐴𝐵𝐶”⟩) = 3) ↔ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3))))
107, 8, 9mp2an 691 . . . 4 ((⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃 ∧ (♯‘⟨“𝐴𝐵𝐶”⟩) = 3) ↔ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)))
114, 5, 10sylanblc 592 . . 3 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)))
12 isleag.d . . . . 5 (𝜑𝐷𝑃)
13 isleag.e . . . . 5 (𝜑𝐸𝑃)
14 isleag.f . . . . 5 (𝜑𝐹𝑃)
1512, 13, 14s3cld 14225 . . . 4 (𝜑 → ⟨“𝐷𝐸𝐹”⟩ ∈ Word 𝑃)
16 s3len 14247 . . . 4 (♯‘⟨“𝐷𝐸𝐹”⟩) = 3
17 wrdmap 13889 . . . . 5 ((𝑃 ∈ V ∧ 3 ∈ ℕ0) → ((⟨“𝐷𝐸𝐹”⟩ ∈ Word 𝑃 ∧ (♯‘⟨“𝐷𝐸𝐹”⟩) = 3) ↔ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃m (0..^3))))
187, 8, 17mp2an 691 . . . 4 ((⟨“𝐷𝐸𝐹”⟩ ∈ Word 𝑃 ∧ (♯‘⟨“𝐷𝐸𝐹”⟩) = 3) ↔ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃m (0..^3)))
1915, 16, 18sylanblc 592 . . 3 (𝜑 → ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃m (0..^3)))
2011, 19jca 515 . 2 (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)) ∧ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃m (0..^3))))
21 isleag.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
22 elex 3459 . . . . 5 (𝐺 ∈ TarskiG → 𝐺 ∈ V)
23 fveq2 6645 . . . . . . . . . . . 12 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
2423, 6eqtr4di 2851 . . . . . . . . . . 11 (𝑔 = 𝐺 → (Base‘𝑔) = 𝑃)
2524oveq1d 7150 . . . . . . . . . 10 (𝑔 = 𝐺 → ((Base‘𝑔) ↑m (0..^3)) = (𝑃m (0..^3)))
2625eleq2d 2875 . . . . . . . . 9 (𝑔 = 𝐺 → (𝑎 ∈ ((Base‘𝑔) ↑m (0..^3)) ↔ 𝑎 ∈ (𝑃m (0..^3))))
2725eleq2d 2875 . . . . . . . . 9 (𝑔 = 𝐺 → (𝑏 ∈ ((Base‘𝑔) ↑m (0..^3)) ↔ 𝑏 ∈ (𝑃m (0..^3))))
2826, 27anbi12d 633 . . . . . . . 8 (𝑔 = 𝐺 → ((𝑎 ∈ ((Base‘𝑔) ↑m (0..^3)) ∧ 𝑏 ∈ ((Base‘𝑔) ↑m (0..^3))) ↔ (𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3)))))
29 fveq2 6645 . . . . . . . . . . 11 (𝑔 = 𝐺 → (inA‘𝑔) = (inA‘𝐺))
3029breqd 5041 . . . . . . . . . 10 (𝑔 = 𝐺 → (𝑥(inA‘𝑔)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ↔ 𝑥(inA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩))
31 fveq2 6645 . . . . . . . . . . 11 (𝑔 = 𝐺 → (cgrA‘𝑔) = (cgrA‘𝐺))
3231breqd 5041 . . . . . . . . . 10 (𝑔 = 𝐺 → (⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝑔)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩ ↔ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩))
3330, 32anbi12d 633 . . . . . . . . 9 (𝑔 = 𝐺 → ((𝑥(inA‘𝑔)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ∧ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝑔)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩) ↔ (𝑥(inA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ∧ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩)))
3424, 33rexeqbidv 3355 . . . . . . . 8 (𝑔 = 𝐺 → (∃𝑥 ∈ (Base‘𝑔)(𝑥(inA‘𝑔)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ∧ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝑔)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩) ↔ ∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ∧ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩)))
3528, 34anbi12d 633 . . . . . . 7 (𝑔 = 𝐺 → (((𝑎 ∈ ((Base‘𝑔) ↑m (0..^3)) ∧ 𝑏 ∈ ((Base‘𝑔) ↑m (0..^3))) ∧ ∃𝑥 ∈ (Base‘𝑔)(𝑥(inA‘𝑔)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ∧ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝑔)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩)) ↔ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ∧ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩))))
3635opabbidv 5096 . . . . . 6 (𝑔 = 𝐺 → {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ((Base‘𝑔) ↑m (0..^3)) ∧ 𝑏 ∈ ((Base‘𝑔) ↑m (0..^3))) ∧ ∃𝑥 ∈ (Base‘𝑔)(𝑥(inA‘𝑔)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ∧ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝑔)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩))} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ∧ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩))})
37 df-leag 26640 . . . . . 6 = (𝑔 ∈ V ↦ {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ((Base‘𝑔) ↑m (0..^3)) ∧ 𝑏 ∈ ((Base‘𝑔) ↑m (0..^3))) ∧ ∃𝑥 ∈ (Base‘𝑔)(𝑥(inA‘𝑔)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ∧ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝑔)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩))})
38 ovex 7168 . . . . . . . 8 (𝑃m (0..^3)) ∈ V
3938, 38xpex 7456 . . . . . . 7 ((𝑃m (0..^3)) × (𝑃m (0..^3))) ∈ V
40 opabssxp 5607 . . . . . . 7 {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ∧ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩))} ⊆ ((𝑃m (0..^3)) × (𝑃m (0..^3)))
4139, 40ssexi 5190 . . . . . 6 {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ∧ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩))} ∈ V
4236, 37, 41fvmpt 6745 . . . . 5 (𝐺 ∈ V → (≤𝐺) = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ∧ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩))})
4321, 22, 423syl 18 . . . 4 (𝜑 → (≤𝐺) = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ∧ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩))})
4443breqd 5041 . . 3 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(≤𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ ⟨“𝐴𝐵𝐶”⟩{⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ∧ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩))}⟨“𝐷𝐸𝐹”⟩))
45 simpr 488 . . . . . . . . . 10 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → 𝑏 = ⟨“𝐷𝐸𝐹”⟩)
4645fveq1d 6647 . . . . . . . . 9 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (𝑏‘0) = (⟨“𝐷𝐸𝐹”⟩‘0))
4745fveq1d 6647 . . . . . . . . 9 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (𝑏‘1) = (⟨“𝐷𝐸𝐹”⟩‘1))
4845fveq1d 6647 . . . . . . . . 9 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (𝑏‘2) = (⟨“𝐷𝐸𝐹”⟩‘2))
4946, 47, 48s3eqd 14217 . . . . . . . 8 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → ⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ = ⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)(⟨“𝐷𝐸𝐹”⟩‘2)”⟩)
5049breq2d 5042 . . . . . . 7 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (𝑥(inA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ↔ 𝑥(inA‘𝐺)⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)(⟨“𝐷𝐸𝐹”⟩‘2)”⟩))
51 simpl 486 . . . . . . . . . 10 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → 𝑎 = ⟨“𝐴𝐵𝐶”⟩)
5251fveq1d 6647 . . . . . . . . 9 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (𝑎‘0) = (⟨“𝐴𝐵𝐶”⟩‘0))
5351fveq1d 6647 . . . . . . . . 9 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (𝑎‘1) = (⟨“𝐴𝐵𝐶”⟩‘1))
5451fveq1d 6647 . . . . . . . . 9 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (𝑎‘2) = (⟨“𝐴𝐵𝐶”⟩‘2))
5552, 53, 54s3eqd 14217 . . . . . . . 8 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩ = ⟨“(⟨“𝐴𝐵𝐶”⟩‘0)(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)”⟩)
56 eqidd 2799 . . . . . . . . 9 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → 𝑥 = 𝑥)
5746, 47, 56s3eqd 14217 . . . . . . . 8 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → ⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩ = ⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)𝑥”⟩)
5855, 57breq12d 5043 . . . . . . 7 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩ ↔ ⟨“(⟨“𝐴𝐵𝐶”⟩‘0)(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)”⟩(cgrA‘𝐺)⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)𝑥”⟩))
5950, 58anbi12d 633 . . . . . 6 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → ((𝑥(inA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ∧ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩) ↔ (𝑥(inA‘𝐺)⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)(⟨“𝐷𝐸𝐹”⟩‘2)”⟩ ∧ ⟨“(⟨“𝐴𝐵𝐶”⟩‘0)(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)”⟩(cgrA‘𝐺)⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)𝑥”⟩)))
6059rexbidv 3256 . . . . 5 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ∧ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩) ↔ ∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)(⟨“𝐷𝐸𝐹”⟩‘2)”⟩ ∧ ⟨“(⟨“𝐴𝐵𝐶”⟩‘0)(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)”⟩(cgrA‘𝐺)⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)𝑥”⟩)))
61 eqid 2798 . . . . 5 {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ∧ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩))} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ∧ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩))}
6260, 61brab2a 5608 . . . 4 (⟨“𝐴𝐵𝐶”⟩{⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ∧ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩))}⟨“𝐷𝐸𝐹”⟩ ↔ ((⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)) ∧ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)(⟨“𝐷𝐸𝐹”⟩‘2)”⟩ ∧ ⟨“(⟨“𝐴𝐵𝐶”⟩‘0)(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)”⟩(cgrA‘𝐺)⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)𝑥”⟩)))
6362a1i 11 . . 3 (𝜑 → (⟨“𝐴𝐵𝐶”⟩{⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ∧ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩))}⟨“𝐷𝐸𝐹”⟩ ↔ ((⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)) ∧ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)(⟨“𝐷𝐸𝐹”⟩‘2)”⟩ ∧ ⟨“(⟨“𝐴𝐵𝐶”⟩‘0)(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)”⟩(cgrA‘𝐺)⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)𝑥”⟩))))
64 s3fv0 14244 . . . . . . . . 9 (𝐷𝑃 → (⟨“𝐷𝐸𝐹”⟩‘0) = 𝐷)
6512, 64syl 17 . . . . . . . 8 (𝜑 → (⟨“𝐷𝐸𝐹”⟩‘0) = 𝐷)
66 s3fv1 14245 . . . . . . . . 9 (𝐸𝑃 → (⟨“𝐷𝐸𝐹”⟩‘1) = 𝐸)
6713, 66syl 17 . . . . . . . 8 (𝜑 → (⟨“𝐷𝐸𝐹”⟩‘1) = 𝐸)
68 s3fv2 14246 . . . . . . . . 9 (𝐹𝑃 → (⟨“𝐷𝐸𝐹”⟩‘2) = 𝐹)
6914, 68syl 17 . . . . . . . 8 (𝜑 → (⟨“𝐷𝐸𝐹”⟩‘2) = 𝐹)
7065, 67, 69s3eqd 14217 . . . . . . 7 (𝜑 → ⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)(⟨“𝐷𝐸𝐹”⟩‘2)”⟩ = ⟨“𝐷𝐸𝐹”⟩)
7170breq2d 5042 . . . . . 6 (𝜑 → (𝑥(inA‘𝐺)⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)(⟨“𝐷𝐸𝐹”⟩‘2)”⟩ ↔ 𝑥(inA‘𝐺)⟨“𝐷𝐸𝐹”⟩))
72 s3fv0 14244 . . . . . . . . 9 (𝐴𝑃 → (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
731, 72syl 17 . . . . . . . 8 (𝜑 → (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
74 s3fv1 14245 . . . . . . . . 9 (𝐵𝑃 → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
752, 74syl 17 . . . . . . . 8 (𝜑 → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
76 s3fv2 14246 . . . . . . . . 9 (𝐶𝑃 → (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)
773, 76syl 17 . . . . . . . 8 (𝜑 → (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)
7873, 75, 77s3eqd 14217 . . . . . . 7 (𝜑 → ⟨“(⟨“𝐴𝐵𝐶”⟩‘0)(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)”⟩ = ⟨“𝐴𝐵𝐶”⟩)
79 eqidd 2799 . . . . . . . 8 (𝜑𝑥 = 𝑥)
8065, 67, 79s3eqd 14217 . . . . . . 7 (𝜑 → ⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)𝑥”⟩ = ⟨“𝐷𝐸𝑥”⟩)
8178, 80breq12d 5043 . . . . . 6 (𝜑 → (⟨“(⟨“𝐴𝐵𝐶”⟩‘0)(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)”⟩(cgrA‘𝐺)⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)𝑥”⟩ ↔ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑥”⟩))
8271, 81anbi12d 633 . . . . 5 (𝜑 → ((𝑥(inA‘𝐺)⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)(⟨“𝐷𝐸𝐹”⟩‘2)”⟩ ∧ ⟨“(⟨“𝐴𝐵𝐶”⟩‘0)(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)”⟩(cgrA‘𝐺)⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)𝑥”⟩) ↔ (𝑥(inA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑥”⟩)))
8382rexbidv 3256 . . . 4 (𝜑 → (∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)(⟨“𝐷𝐸𝐹”⟩‘2)”⟩ ∧ ⟨“(⟨“𝐴𝐵𝐶”⟩‘0)(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)”⟩(cgrA‘𝐺)⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)𝑥”⟩) ↔ ∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑥”⟩)))
8483anbi2d 631 . . 3 (𝜑 → (((⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)) ∧ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)(⟨“𝐷𝐸𝐹”⟩‘2)”⟩ ∧ ⟨“(⟨“𝐴𝐵𝐶”⟩‘0)(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)”⟩(cgrA‘𝐺)⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)𝑥”⟩)) ↔ ((⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)) ∧ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑥”⟩))))
8544, 63, 843bitrd 308 . 2 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(≤𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ ((⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)) ∧ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑥”⟩))))
8620, 85mpbirand 706 1 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(≤𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ ∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑥”⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wrex 3107  Vcvv 3441   class class class wbr 5030  {copab 5092   × cxp 5517  cfv 6324  (class class class)co 7135  m cmap 8389  0cc0 10526  1c1 10527  2c2 11680  3c3 11681  0cn0 11885  ..^cfzo 13028  chash 13686  Word cword 13857  ⟨“cs3 14195  Basecbs 16475  TarskiGcstrkg 26224  cgrAccgra 26601  inAcinag 26629  cleag 26630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-concat 13914  df-s1 13941  df-s2 14201  df-s3 14202  df-leag 26640
This theorem is referenced by:  isleagd  26642  leagne1  26643  leagne2  26644  leagne3  26645  leagne4  26646
  Copyright terms: Public domain W3C validator