| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | isleag.a | . . . . 5
⊢ (𝜑 → 𝐴 ∈ 𝑃) | 
| 2 |  | isleag.b | . . . . 5
⊢ (𝜑 → 𝐵 ∈ 𝑃) | 
| 3 |  | isleag.c | . . . . 5
⊢ (𝜑 → 𝐶 ∈ 𝑃) | 
| 4 | 1, 2, 3 | s3cld 14912 | . . . 4
⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ Word 𝑃) | 
| 5 |  | s3len 14934 | . . . 4
⊢
(♯‘〈“𝐴𝐵𝐶”〉) = 3 | 
| 6 |  | isleag.p | . . . . . 6
⊢ 𝑃 = (Base‘𝐺) | 
| 7 | 6 | fvexi 6919 | . . . . 5
⊢ 𝑃 ∈ V | 
| 8 |  | 3nn0 12546 | . . . . 5
⊢ 3 ∈
ℕ0 | 
| 9 |  | wrdmap 14585 | . . . . 5
⊢ ((𝑃 ∈ V ∧ 3 ∈
ℕ0) → ((〈“𝐴𝐵𝐶”〉 ∈ Word 𝑃 ∧ (♯‘〈“𝐴𝐵𝐶”〉) = 3) ↔
〈“𝐴𝐵𝐶”〉 ∈ (𝑃 ↑m
(0..^3)))) | 
| 10 | 7, 8, 9 | mp2an 692 | . . . 4
⊢
((〈“𝐴𝐵𝐶”〉 ∈ Word 𝑃 ∧ (♯‘〈“𝐴𝐵𝐶”〉) = 3) ↔
〈“𝐴𝐵𝐶”〉 ∈ (𝑃 ↑m
(0..^3))) | 
| 11 | 4, 5, 10 | sylanblc 589 | . . 3
⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (𝑃 ↑m
(0..^3))) | 
| 12 |  | isleag.d | . . . . 5
⊢ (𝜑 → 𝐷 ∈ 𝑃) | 
| 13 |  | isleag.e | . . . . 5
⊢ (𝜑 → 𝐸 ∈ 𝑃) | 
| 14 |  | isleag.f | . . . . 5
⊢ (𝜑 → 𝐹 ∈ 𝑃) | 
| 15 | 12, 13, 14 | s3cld 14912 | . . . 4
⊢ (𝜑 → 〈“𝐷𝐸𝐹”〉 ∈ Word 𝑃) | 
| 16 |  | s3len 14934 | . . . 4
⊢
(♯‘〈“𝐷𝐸𝐹”〉) = 3 | 
| 17 |  | wrdmap 14585 | . . . . 5
⊢ ((𝑃 ∈ V ∧ 3 ∈
ℕ0) → ((〈“𝐷𝐸𝐹”〉 ∈ Word 𝑃 ∧ (♯‘〈“𝐷𝐸𝐹”〉) = 3) ↔
〈“𝐷𝐸𝐹”〉 ∈ (𝑃 ↑m
(0..^3)))) | 
| 18 | 7, 8, 17 | mp2an 692 | . . . 4
⊢
((〈“𝐷𝐸𝐹”〉 ∈ Word 𝑃 ∧ (♯‘〈“𝐷𝐸𝐹”〉) = 3) ↔
〈“𝐷𝐸𝐹”〉 ∈ (𝑃 ↑m
(0..^3))) | 
| 19 | 15, 16, 18 | sylanblc 589 | . . 3
⊢ (𝜑 → 〈“𝐷𝐸𝐹”〉 ∈ (𝑃 ↑m
(0..^3))) | 
| 20 | 11, 19 | jca 511 | . 2
⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉 ∈ (𝑃 ↑m (0..^3)) ∧
〈“𝐷𝐸𝐹”〉 ∈ (𝑃 ↑m
(0..^3)))) | 
| 21 |  | isleag.g | . . . . 5
⊢ (𝜑 → 𝐺 ∈ TarskiG) | 
| 22 |  | elex 3500 | . . . . 5
⊢ (𝐺 ∈ TarskiG → 𝐺 ∈ V) | 
| 23 |  | fveq2 6905 | . . . . . . . . . . . 12
⊢ (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺)) | 
| 24 | 23, 6 | eqtr4di 2794 | . . . . . . . . . . 11
⊢ (𝑔 = 𝐺 → (Base‘𝑔) = 𝑃) | 
| 25 | 24 | oveq1d 7447 | . . . . . . . . . 10
⊢ (𝑔 = 𝐺 → ((Base‘𝑔) ↑m (0..^3)) = (𝑃 ↑m
(0..^3))) | 
| 26 | 25 | eleq2d 2826 | . . . . . . . . 9
⊢ (𝑔 = 𝐺 → (𝑎 ∈ ((Base‘𝑔) ↑m (0..^3)) ↔ 𝑎 ∈ (𝑃 ↑m
(0..^3)))) | 
| 27 | 25 | eleq2d 2826 | . . . . . . . . 9
⊢ (𝑔 = 𝐺 → (𝑏 ∈ ((Base‘𝑔) ↑m (0..^3)) ↔ 𝑏 ∈ (𝑃 ↑m
(0..^3)))) | 
| 28 | 26, 27 | anbi12d 632 | . . . . . . . 8
⊢ (𝑔 = 𝐺 → ((𝑎 ∈ ((Base‘𝑔) ↑m (0..^3)) ∧ 𝑏 ∈ ((Base‘𝑔) ↑m (0..^3)))
↔ (𝑎 ∈ (𝑃 ↑m (0..^3))
∧ 𝑏 ∈ (𝑃 ↑m
(0..^3))))) | 
| 29 |  | fveq2 6905 | . . . . . . . . . . 11
⊢ (𝑔 = 𝐺 → (inA‘𝑔) = (inA‘𝐺)) | 
| 30 | 29 | breqd 5153 | . . . . . . . . . 10
⊢ (𝑔 = 𝐺 → (𝑥(inA‘𝑔)〈“(𝑏‘0)(𝑏‘1)(𝑏‘2)”〉 ↔ 𝑥(inA‘𝐺)〈“(𝑏‘0)(𝑏‘1)(𝑏‘2)”〉)) | 
| 31 |  | fveq2 6905 | . . . . . . . . . . 11
⊢ (𝑔 = 𝐺 → (cgrA‘𝑔) = (cgrA‘𝐺)) | 
| 32 | 31 | breqd 5153 | . . . . . . . . . 10
⊢ (𝑔 = 𝐺 → (〈“(𝑎‘0)(𝑎‘1)(𝑎‘2)”〉(cgrA‘𝑔)〈“(𝑏‘0)(𝑏‘1)𝑥”〉 ↔ 〈“(𝑎‘0)(𝑎‘1)(𝑎‘2)”〉(cgrA‘𝐺)〈“(𝑏‘0)(𝑏‘1)𝑥”〉)) | 
| 33 | 30, 32 | anbi12d 632 | . . . . . . . . 9
⊢ (𝑔 = 𝐺 → ((𝑥(inA‘𝑔)〈“(𝑏‘0)(𝑏‘1)(𝑏‘2)”〉 ∧
〈“(𝑎‘0)(𝑎‘1)(𝑎‘2)”〉(cgrA‘𝑔)〈“(𝑏‘0)(𝑏‘1)𝑥”〉) ↔ (𝑥(inA‘𝐺)〈“(𝑏‘0)(𝑏‘1)(𝑏‘2)”〉 ∧
〈“(𝑎‘0)(𝑎‘1)(𝑎‘2)”〉(cgrA‘𝐺)〈“(𝑏‘0)(𝑏‘1)𝑥”〉))) | 
| 34 | 24, 33 | rexeqbidv 3346 | . . . . . . . 8
⊢ (𝑔 = 𝐺 → (∃𝑥 ∈ (Base‘𝑔)(𝑥(inA‘𝑔)〈“(𝑏‘0)(𝑏‘1)(𝑏‘2)”〉 ∧
〈“(𝑎‘0)(𝑎‘1)(𝑎‘2)”〉(cgrA‘𝑔)〈“(𝑏‘0)(𝑏‘1)𝑥”〉) ↔ ∃𝑥 ∈ 𝑃 (𝑥(inA‘𝐺)〈“(𝑏‘0)(𝑏‘1)(𝑏‘2)”〉 ∧
〈“(𝑎‘0)(𝑎‘1)(𝑎‘2)”〉(cgrA‘𝐺)〈“(𝑏‘0)(𝑏‘1)𝑥”〉))) | 
| 35 | 28, 34 | anbi12d 632 | . . . . . . 7
⊢ (𝑔 = 𝐺 → (((𝑎 ∈ ((Base‘𝑔) ↑m (0..^3)) ∧ 𝑏 ∈ ((Base‘𝑔) ↑m (0..^3)))
∧ ∃𝑥 ∈
(Base‘𝑔)(𝑥(inA‘𝑔)〈“(𝑏‘0)(𝑏‘1)(𝑏‘2)”〉 ∧
〈“(𝑎‘0)(𝑎‘1)(𝑎‘2)”〉(cgrA‘𝑔)〈“(𝑏‘0)(𝑏‘1)𝑥”〉)) ↔ ((𝑎 ∈ (𝑃 ↑m (0..^3)) ∧ 𝑏 ∈ (𝑃 ↑m (0..^3))) ∧
∃𝑥 ∈ 𝑃 (𝑥(inA‘𝐺)〈“(𝑏‘0)(𝑏‘1)(𝑏‘2)”〉 ∧
〈“(𝑎‘0)(𝑎‘1)(𝑎‘2)”〉(cgrA‘𝐺)〈“(𝑏‘0)(𝑏‘1)𝑥”〉)))) | 
| 36 | 35 | opabbidv 5208 | . . . . . 6
⊢ (𝑔 = 𝐺 → {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ((Base‘𝑔) ↑m (0..^3)) ∧ 𝑏 ∈ ((Base‘𝑔) ↑m (0..^3)))
∧ ∃𝑥 ∈
(Base‘𝑔)(𝑥(inA‘𝑔)〈“(𝑏‘0)(𝑏‘1)(𝑏‘2)”〉 ∧
〈“(𝑎‘0)(𝑎‘1)(𝑎‘2)”〉(cgrA‘𝑔)〈“(𝑏‘0)(𝑏‘1)𝑥”〉))} = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ↑m (0..^3)) ∧ 𝑏 ∈ (𝑃 ↑m (0..^3))) ∧
∃𝑥 ∈ 𝑃 (𝑥(inA‘𝐺)〈“(𝑏‘0)(𝑏‘1)(𝑏‘2)”〉 ∧
〈“(𝑎‘0)(𝑎‘1)(𝑎‘2)”〉(cgrA‘𝐺)〈“(𝑏‘0)(𝑏‘1)𝑥”〉))}) | 
| 37 |  | df-leag 28855 | . . . . . 6
⊢
≤∠ = (𝑔 ∈ V ↦ {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ((Base‘𝑔) ↑m (0..^3)) ∧ 𝑏 ∈ ((Base‘𝑔) ↑m (0..^3)))
∧ ∃𝑥 ∈
(Base‘𝑔)(𝑥(inA‘𝑔)〈“(𝑏‘0)(𝑏‘1)(𝑏‘2)”〉 ∧
〈“(𝑎‘0)(𝑎‘1)(𝑎‘2)”〉(cgrA‘𝑔)〈“(𝑏‘0)(𝑏‘1)𝑥”〉))}) | 
| 38 |  | ovex 7465 | . . . . . . . 8
⊢ (𝑃 ↑m (0..^3))
∈ V | 
| 39 | 38, 38 | xpex 7774 | . . . . . . 7
⊢ ((𝑃 ↑m (0..^3))
× (𝑃
↑m (0..^3))) ∈ V | 
| 40 |  | opabssxp 5777 | . . . . . . 7
⊢
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ↑m (0..^3)) ∧ 𝑏 ∈ (𝑃 ↑m (0..^3))) ∧
∃𝑥 ∈ 𝑃 (𝑥(inA‘𝐺)〈“(𝑏‘0)(𝑏‘1)(𝑏‘2)”〉 ∧
〈“(𝑎‘0)(𝑎‘1)(𝑎‘2)”〉(cgrA‘𝐺)〈“(𝑏‘0)(𝑏‘1)𝑥”〉))} ⊆ ((𝑃 ↑m (0..^3)) × (𝑃 ↑m
(0..^3))) | 
| 41 | 39, 40 | ssexi 5321 | . . . . . 6
⊢
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ↑m (0..^3)) ∧ 𝑏 ∈ (𝑃 ↑m (0..^3))) ∧
∃𝑥 ∈ 𝑃 (𝑥(inA‘𝐺)〈“(𝑏‘0)(𝑏‘1)(𝑏‘2)”〉 ∧
〈“(𝑎‘0)(𝑎‘1)(𝑎‘2)”〉(cgrA‘𝐺)〈“(𝑏‘0)(𝑏‘1)𝑥”〉))} ∈ V | 
| 42 | 36, 37, 41 | fvmpt 7015 | . . . . 5
⊢ (𝐺 ∈ V →
(≤∠‘𝐺) = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ↑m (0..^3)) ∧ 𝑏 ∈ (𝑃 ↑m (0..^3))) ∧
∃𝑥 ∈ 𝑃 (𝑥(inA‘𝐺)〈“(𝑏‘0)(𝑏‘1)(𝑏‘2)”〉 ∧
〈“(𝑎‘0)(𝑎‘1)(𝑎‘2)”〉(cgrA‘𝐺)〈“(𝑏‘0)(𝑏‘1)𝑥”〉))}) | 
| 43 | 21, 22, 42 | 3syl 18 | . . . 4
⊢ (𝜑 →
(≤∠‘𝐺) = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ↑m (0..^3)) ∧ 𝑏 ∈ (𝑃 ↑m (0..^3))) ∧
∃𝑥 ∈ 𝑃 (𝑥(inA‘𝐺)〈“(𝑏‘0)(𝑏‘1)(𝑏‘2)”〉 ∧
〈“(𝑎‘0)(𝑎‘1)(𝑎‘2)”〉(cgrA‘𝐺)〈“(𝑏‘0)(𝑏‘1)𝑥”〉))}) | 
| 44 | 43 | breqd 5153 | . . 3
⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉(≤∠‘𝐺)〈“𝐷𝐸𝐹”〉 ↔ 〈“𝐴𝐵𝐶”〉{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ↑m (0..^3)) ∧ 𝑏 ∈ (𝑃 ↑m (0..^3))) ∧ ∃𝑥 ∈ 𝑃 (𝑥(inA‘𝐺)〈“(𝑏‘0)(𝑏‘1)(𝑏‘2)”〉 ∧ 〈“(𝑎‘0)(𝑎‘1)(𝑎‘2)”〉(cgrA‘𝐺)〈“(𝑏‘0)(𝑏‘1)𝑥”〉))}〈“𝐷𝐸𝐹”〉)) | 
| 45 |  | simpr 484 | . . . . . . . . . 10
⊢ ((𝑎 = 〈“𝐴𝐵𝐶”〉 ∧ 𝑏 = 〈“𝐷𝐸𝐹”〉) → 𝑏 = 〈“𝐷𝐸𝐹”〉) | 
| 46 | 45 | fveq1d 6907 | . . . . . . . . 9
⊢ ((𝑎 = 〈“𝐴𝐵𝐶”〉 ∧ 𝑏 = 〈“𝐷𝐸𝐹”〉) → (𝑏‘0) = (〈“𝐷𝐸𝐹”〉‘0)) | 
| 47 | 45 | fveq1d 6907 | . . . . . . . . 9
⊢ ((𝑎 = 〈“𝐴𝐵𝐶”〉 ∧ 𝑏 = 〈“𝐷𝐸𝐹”〉) → (𝑏‘1) = (〈“𝐷𝐸𝐹”〉‘1)) | 
| 48 | 45 | fveq1d 6907 | . . . . . . . . 9
⊢ ((𝑎 = 〈“𝐴𝐵𝐶”〉 ∧ 𝑏 = 〈“𝐷𝐸𝐹”〉) → (𝑏‘2) = (〈“𝐷𝐸𝐹”〉‘2)) | 
| 49 | 46, 47, 48 | s3eqd 14904 | . . . . . . . 8
⊢ ((𝑎 = 〈“𝐴𝐵𝐶”〉 ∧ 𝑏 = 〈“𝐷𝐸𝐹”〉) → 〈“(𝑏‘0)(𝑏‘1)(𝑏‘2)”〉 =
〈“(〈“𝐷𝐸𝐹”〉‘0)(〈“𝐷𝐸𝐹”〉‘1)(〈“𝐷𝐸𝐹”〉‘2)”〉) | 
| 50 | 49 | breq2d 5154 | . . . . . . 7
⊢ ((𝑎 = 〈“𝐴𝐵𝐶”〉 ∧ 𝑏 = 〈“𝐷𝐸𝐹”〉) → (𝑥(inA‘𝐺)〈“(𝑏‘0)(𝑏‘1)(𝑏‘2)”〉 ↔ 𝑥(inA‘𝐺)〈“(〈“𝐷𝐸𝐹”〉‘0)(〈“𝐷𝐸𝐹”〉‘1)(〈“𝐷𝐸𝐹”〉‘2)”〉)) | 
| 51 |  | simpl 482 | . . . . . . . . . 10
⊢ ((𝑎 = 〈“𝐴𝐵𝐶”〉 ∧ 𝑏 = 〈“𝐷𝐸𝐹”〉) → 𝑎 = 〈“𝐴𝐵𝐶”〉) | 
| 52 | 51 | fveq1d 6907 | . . . . . . . . 9
⊢ ((𝑎 = 〈“𝐴𝐵𝐶”〉 ∧ 𝑏 = 〈“𝐷𝐸𝐹”〉) → (𝑎‘0) = (〈“𝐴𝐵𝐶”〉‘0)) | 
| 53 | 51 | fveq1d 6907 | . . . . . . . . 9
⊢ ((𝑎 = 〈“𝐴𝐵𝐶”〉 ∧ 𝑏 = 〈“𝐷𝐸𝐹”〉) → (𝑎‘1) = (〈“𝐴𝐵𝐶”〉‘1)) | 
| 54 | 51 | fveq1d 6907 | . . . . . . . . 9
⊢ ((𝑎 = 〈“𝐴𝐵𝐶”〉 ∧ 𝑏 = 〈“𝐷𝐸𝐹”〉) → (𝑎‘2) = (〈“𝐴𝐵𝐶”〉‘2)) | 
| 55 | 52, 53, 54 | s3eqd 14904 | . . . . . . . 8
⊢ ((𝑎 = 〈“𝐴𝐵𝐶”〉 ∧ 𝑏 = 〈“𝐷𝐸𝐹”〉) → 〈“(𝑎‘0)(𝑎‘1)(𝑎‘2)”〉 =
〈“(〈“𝐴𝐵𝐶”〉‘0)(〈“𝐴𝐵𝐶”〉‘1)(〈“𝐴𝐵𝐶”〉‘2)”〉) | 
| 56 |  | eqidd 2737 | . . . . . . . . 9
⊢ ((𝑎 = 〈“𝐴𝐵𝐶”〉 ∧ 𝑏 = 〈“𝐷𝐸𝐹”〉) → 𝑥 = 𝑥) | 
| 57 | 46, 47, 56 | s3eqd 14904 | . . . . . . . 8
⊢ ((𝑎 = 〈“𝐴𝐵𝐶”〉 ∧ 𝑏 = 〈“𝐷𝐸𝐹”〉) → 〈“(𝑏‘0)(𝑏‘1)𝑥”〉 =
〈“(〈“𝐷𝐸𝐹”〉‘0)(〈“𝐷𝐸𝐹”〉‘1)𝑥”〉) | 
| 58 | 55, 57 | breq12d 5155 | . . . . . . 7
⊢ ((𝑎 = 〈“𝐴𝐵𝐶”〉 ∧ 𝑏 = 〈“𝐷𝐸𝐹”〉) → (〈“(𝑎‘0)(𝑎‘1)(𝑎‘2)”〉(cgrA‘𝐺)〈“(𝑏‘0)(𝑏‘1)𝑥”〉 ↔
〈“(〈“𝐴𝐵𝐶”〉‘0)(〈“𝐴𝐵𝐶”〉‘1)(〈“𝐴𝐵𝐶”〉‘2)”〉(cgrA‘𝐺)〈“(〈“𝐷𝐸𝐹”〉‘0)(〈“𝐷𝐸𝐹”〉‘1)𝑥”〉)) | 
| 59 | 50, 58 | anbi12d 632 | . . . . . 6
⊢ ((𝑎 = 〈“𝐴𝐵𝐶”〉 ∧ 𝑏 = 〈“𝐷𝐸𝐹”〉) → ((𝑥(inA‘𝐺)〈“(𝑏‘0)(𝑏‘1)(𝑏‘2)”〉 ∧
〈“(𝑎‘0)(𝑎‘1)(𝑎‘2)”〉(cgrA‘𝐺)〈“(𝑏‘0)(𝑏‘1)𝑥”〉) ↔ (𝑥(inA‘𝐺)〈“(〈“𝐷𝐸𝐹”〉‘0)(〈“𝐷𝐸𝐹”〉‘1)(〈“𝐷𝐸𝐹”〉‘2)”〉 ∧
〈“(〈“𝐴𝐵𝐶”〉‘0)(〈“𝐴𝐵𝐶”〉‘1)(〈“𝐴𝐵𝐶”〉‘2)”〉(cgrA‘𝐺)〈“(〈“𝐷𝐸𝐹”〉‘0)(〈“𝐷𝐸𝐹”〉‘1)𝑥”〉))) | 
| 60 | 59 | rexbidv 3178 | . . . . 5
⊢ ((𝑎 = 〈“𝐴𝐵𝐶”〉 ∧ 𝑏 = 〈“𝐷𝐸𝐹”〉) → (∃𝑥 ∈ 𝑃 (𝑥(inA‘𝐺)〈“(𝑏‘0)(𝑏‘1)(𝑏‘2)”〉 ∧
〈“(𝑎‘0)(𝑎‘1)(𝑎‘2)”〉(cgrA‘𝐺)〈“(𝑏‘0)(𝑏‘1)𝑥”〉) ↔ ∃𝑥 ∈ 𝑃 (𝑥(inA‘𝐺)〈“(〈“𝐷𝐸𝐹”〉‘0)(〈“𝐷𝐸𝐹”〉‘1)(〈“𝐷𝐸𝐹”〉‘2)”〉 ∧
〈“(〈“𝐴𝐵𝐶”〉‘0)(〈“𝐴𝐵𝐶”〉‘1)(〈“𝐴𝐵𝐶”〉‘2)”〉(cgrA‘𝐺)〈“(〈“𝐷𝐸𝐹”〉‘0)(〈“𝐷𝐸𝐹”〉‘1)𝑥”〉))) | 
| 61 |  | eqid 2736 | . . . . 5
⊢
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ↑m (0..^3)) ∧ 𝑏 ∈ (𝑃 ↑m (0..^3))) ∧
∃𝑥 ∈ 𝑃 (𝑥(inA‘𝐺)〈“(𝑏‘0)(𝑏‘1)(𝑏‘2)”〉 ∧
〈“(𝑎‘0)(𝑎‘1)(𝑎‘2)”〉(cgrA‘𝐺)〈“(𝑏‘0)(𝑏‘1)𝑥”〉))} = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ↑m (0..^3)) ∧ 𝑏 ∈ (𝑃 ↑m (0..^3))) ∧
∃𝑥 ∈ 𝑃 (𝑥(inA‘𝐺)〈“(𝑏‘0)(𝑏‘1)(𝑏‘2)”〉 ∧
〈“(𝑎‘0)(𝑎‘1)(𝑎‘2)”〉(cgrA‘𝐺)〈“(𝑏‘0)(𝑏‘1)𝑥”〉))} | 
| 62 | 60, 61 | brab2a 5778 | . . . 4
⊢
(〈“𝐴𝐵𝐶”〉{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ↑m (0..^3)) ∧ 𝑏 ∈ (𝑃 ↑m (0..^3))) ∧
∃𝑥 ∈ 𝑃 (𝑥(inA‘𝐺)〈“(𝑏‘0)(𝑏‘1)(𝑏‘2)”〉 ∧
〈“(𝑎‘0)(𝑎‘1)(𝑎‘2)”〉(cgrA‘𝐺)〈“(𝑏‘0)(𝑏‘1)𝑥”〉))}〈“𝐷𝐸𝐹”〉 ↔ ((〈“𝐴𝐵𝐶”〉 ∈ (𝑃 ↑m (0..^3)) ∧
〈“𝐷𝐸𝐹”〉 ∈ (𝑃 ↑m (0..^3))) ∧
∃𝑥 ∈ 𝑃 (𝑥(inA‘𝐺)〈“(〈“𝐷𝐸𝐹”〉‘0)(〈“𝐷𝐸𝐹”〉‘1)(〈“𝐷𝐸𝐹”〉‘2)”〉 ∧
〈“(〈“𝐴𝐵𝐶”〉‘0)(〈“𝐴𝐵𝐶”〉‘1)(〈“𝐴𝐵𝐶”〉‘2)”〉(cgrA‘𝐺)〈“(〈“𝐷𝐸𝐹”〉‘0)(〈“𝐷𝐸𝐹”〉‘1)𝑥”〉))) | 
| 63 | 62 | a1i 11 | . . 3
⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ↑m (0..^3)) ∧ 𝑏 ∈ (𝑃 ↑m (0..^3))) ∧
∃𝑥 ∈ 𝑃 (𝑥(inA‘𝐺)〈“(𝑏‘0)(𝑏‘1)(𝑏‘2)”〉 ∧
〈“(𝑎‘0)(𝑎‘1)(𝑎‘2)”〉(cgrA‘𝐺)〈“(𝑏‘0)(𝑏‘1)𝑥”〉))}〈“𝐷𝐸𝐹”〉 ↔ ((〈“𝐴𝐵𝐶”〉 ∈ (𝑃 ↑m (0..^3)) ∧
〈“𝐷𝐸𝐹”〉 ∈ (𝑃 ↑m (0..^3))) ∧
∃𝑥 ∈ 𝑃 (𝑥(inA‘𝐺)〈“(〈“𝐷𝐸𝐹”〉‘0)(〈“𝐷𝐸𝐹”〉‘1)(〈“𝐷𝐸𝐹”〉‘2)”〉 ∧
〈“(〈“𝐴𝐵𝐶”〉‘0)(〈“𝐴𝐵𝐶”〉‘1)(〈“𝐴𝐵𝐶”〉‘2)”〉(cgrA‘𝐺)〈“(〈“𝐷𝐸𝐹”〉‘0)(〈“𝐷𝐸𝐹”〉‘1)𝑥”〉)))) | 
| 64 |  | s3fv0 14931 | . . . . . . . . 9
⊢ (𝐷 ∈ 𝑃 → (〈“𝐷𝐸𝐹”〉‘0) = 𝐷) | 
| 65 | 12, 64 | syl 17 | . . . . . . . 8
⊢ (𝜑 → (〈“𝐷𝐸𝐹”〉‘0) = 𝐷) | 
| 66 |  | s3fv1 14932 | . . . . . . . . 9
⊢ (𝐸 ∈ 𝑃 → (〈“𝐷𝐸𝐹”〉‘1) = 𝐸) | 
| 67 | 13, 66 | syl 17 | . . . . . . . 8
⊢ (𝜑 → (〈“𝐷𝐸𝐹”〉‘1) = 𝐸) | 
| 68 |  | s3fv2 14933 | . . . . . . . . 9
⊢ (𝐹 ∈ 𝑃 → (〈“𝐷𝐸𝐹”〉‘2) = 𝐹) | 
| 69 | 14, 68 | syl 17 | . . . . . . . 8
⊢ (𝜑 → (〈“𝐷𝐸𝐹”〉‘2) = 𝐹) | 
| 70 | 65, 67, 69 | s3eqd 14904 | . . . . . . 7
⊢ (𝜑 →
〈“(〈“𝐷𝐸𝐹”〉‘0)(〈“𝐷𝐸𝐹”〉‘1)(〈“𝐷𝐸𝐹”〉‘2)”〉 =
〈“𝐷𝐸𝐹”〉) | 
| 71 | 70 | breq2d 5154 | . . . . . 6
⊢ (𝜑 → (𝑥(inA‘𝐺)〈“(〈“𝐷𝐸𝐹”〉‘0)(〈“𝐷𝐸𝐹”〉‘1)(〈“𝐷𝐸𝐹”〉‘2)”〉 ↔
𝑥(inA‘𝐺)〈“𝐷𝐸𝐹”〉)) | 
| 72 |  | s3fv0 14931 | . . . . . . . . 9
⊢ (𝐴 ∈ 𝑃 → (〈“𝐴𝐵𝐶”〉‘0) = 𝐴) | 
| 73 | 1, 72 | syl 17 | . . . . . . . 8
⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉‘0) = 𝐴) | 
| 74 |  | s3fv1 14932 | . . . . . . . . 9
⊢ (𝐵 ∈ 𝑃 → (〈“𝐴𝐵𝐶”〉‘1) = 𝐵) | 
| 75 | 2, 74 | syl 17 | . . . . . . . 8
⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉‘1) = 𝐵) | 
| 76 |  | s3fv2 14933 | . . . . . . . . 9
⊢ (𝐶 ∈ 𝑃 → (〈“𝐴𝐵𝐶”〉‘2) = 𝐶) | 
| 77 | 3, 76 | syl 17 | . . . . . . . 8
⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉‘2) = 𝐶) | 
| 78 | 73, 75, 77 | s3eqd 14904 | . . . . . . 7
⊢ (𝜑 →
〈“(〈“𝐴𝐵𝐶”〉‘0)(〈“𝐴𝐵𝐶”〉‘1)(〈“𝐴𝐵𝐶”〉‘2)”〉 =
〈“𝐴𝐵𝐶”〉) | 
| 79 |  | eqidd 2737 | . . . . . . . 8
⊢ (𝜑 → 𝑥 = 𝑥) | 
| 80 | 65, 67, 79 | s3eqd 14904 | . . . . . . 7
⊢ (𝜑 →
〈“(〈“𝐷𝐸𝐹”〉‘0)(〈“𝐷𝐸𝐹”〉‘1)𝑥”〉 = 〈“𝐷𝐸𝑥”〉) | 
| 81 | 78, 80 | breq12d 5155 | . . . . . 6
⊢ (𝜑 →
(〈“(〈“𝐴𝐵𝐶”〉‘0)(〈“𝐴𝐵𝐶”〉‘1)(〈“𝐴𝐵𝐶”〉‘2)”〉(cgrA‘𝐺)〈“(〈“𝐷𝐸𝐹”〉‘0)(〈“𝐷𝐸𝐹”〉‘1)𝑥”〉 ↔ 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑥”〉)) | 
| 82 | 71, 81 | anbi12d 632 | . . . . 5
⊢ (𝜑 → ((𝑥(inA‘𝐺)〈“(〈“𝐷𝐸𝐹”〉‘0)(〈“𝐷𝐸𝐹”〉‘1)(〈“𝐷𝐸𝐹”〉‘2)”〉 ∧
〈“(〈“𝐴𝐵𝐶”〉‘0)(〈“𝐴𝐵𝐶”〉‘1)(〈“𝐴𝐵𝐶”〉‘2)”〉(cgrA‘𝐺)〈“(〈“𝐷𝐸𝐹”〉‘0)(〈“𝐷𝐸𝐹”〉‘1)𝑥”〉) ↔ (𝑥(inA‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑥”〉))) | 
| 83 | 82 | rexbidv 3178 | . . . 4
⊢ (𝜑 → (∃𝑥 ∈ 𝑃 (𝑥(inA‘𝐺)〈“(〈“𝐷𝐸𝐹”〉‘0)(〈“𝐷𝐸𝐹”〉‘1)(〈“𝐷𝐸𝐹”〉‘2)”〉 ∧
〈“(〈“𝐴𝐵𝐶”〉‘0)(〈“𝐴𝐵𝐶”〉‘1)(〈“𝐴𝐵𝐶”〉‘2)”〉(cgrA‘𝐺)〈“(〈“𝐷𝐸𝐹”〉‘0)(〈“𝐷𝐸𝐹”〉‘1)𝑥”〉) ↔ ∃𝑥 ∈ 𝑃 (𝑥(inA‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑥”〉))) | 
| 84 | 83 | anbi2d 630 | . . 3
⊢ (𝜑 → (((〈“𝐴𝐵𝐶”〉 ∈ (𝑃 ↑m (0..^3)) ∧
〈“𝐷𝐸𝐹”〉 ∈ (𝑃 ↑m (0..^3))) ∧
∃𝑥 ∈ 𝑃 (𝑥(inA‘𝐺)〈“(〈“𝐷𝐸𝐹”〉‘0)(〈“𝐷𝐸𝐹”〉‘1)(〈“𝐷𝐸𝐹”〉‘2)”〉 ∧
〈“(〈“𝐴𝐵𝐶”〉‘0)(〈“𝐴𝐵𝐶”〉‘1)(〈“𝐴𝐵𝐶”〉‘2)”〉(cgrA‘𝐺)〈“(〈“𝐷𝐸𝐹”〉‘0)(〈“𝐷𝐸𝐹”〉‘1)𝑥”〉)) ↔ ((〈“𝐴𝐵𝐶”〉 ∈ (𝑃 ↑m (0..^3)) ∧
〈“𝐷𝐸𝐹”〉 ∈ (𝑃 ↑m (0..^3))) ∧ ∃𝑥 ∈ 𝑃 (𝑥(inA‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑥”〉)))) | 
| 85 | 44, 63, 84 | 3bitrd 305 | . 2
⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉(≤∠‘𝐺)〈“𝐷𝐸𝐹”〉 ↔ ((〈“𝐴𝐵𝐶”〉 ∈ (𝑃 ↑m (0..^3)) ∧
〈“𝐷𝐸𝐹”〉 ∈ (𝑃 ↑m (0..^3))) ∧ ∃𝑥 ∈ 𝑃 (𝑥(inA‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑥”〉)))) | 
| 86 | 20, 85 | mpbirand 707 | 1
⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉(≤∠‘𝐺)〈“𝐷𝐸𝐹”〉 ↔ ∃𝑥 ∈ 𝑃 (𝑥(inA‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑥”〉))) |