![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylanblrc | Structured version Visualization version GIF version |
Description: Syllogism inference combined with a biconditional. (Contributed by BJ, 25-Apr-2019.) |
Ref | Expression |
---|---|
sylanblrc.1 | ⊢ (𝜑 → 𝜓) |
sylanblrc.2 | ⊢ 𝜒 |
sylanblrc.3 | ⊢ (𝜃 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
sylanblrc | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylanblrc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | sylanblrc.2 | . . 3 ⊢ 𝜒 | |
3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → 𝜒) |
4 | sylanblrc.3 | . 2 ⊢ (𝜃 ↔ (𝜓 ∧ 𝜒)) | |
5 | 1, 3, 4 | sylanbrc 582 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: fntp 6639 foimacnv 6879 respreima 7099 fpr 7188 fnprb 7245 curry1 8145 fnwelem 8172 frrlem12 8338 wfrlem13OLD 8377 tfrlem10 8443 oawordeulem 8610 oelim2 8651 oaabs2 8705 omabs 8707 ssdomg 9060 limenpsi 9218 dffi2 9492 gruina 10887 recmulnq 11033 reclem2pr 11117 climeu 15601 cosmul 16221 2ebits 16493 algcvgblem 16624 ismgmid 18703 mndideu 18783 ga0 19338 efgs1 19777 pzriprnglem4 21518 distopon 23025 dfac14 23647 ptcmplem5 24085 sszcld 24858 itg11 25745 axlowdimlem13 28987 nbusgredgeu 29401 1trld 30174 cycpmconjslem1 33147 1stmbfm 34225 2ndmbfm 34226 bnj150 34852 f1resfz0f1d 35081 satfrel 35335 satf0n0 35346 bj-projval 36962 exidu1 37816 rngoideu 37863 refrelressn 38480 rfcnpre1 44919 fundcmpsurinjlem2 47273 |
Copyright terms: Public domain | W3C validator |