![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylanblrc | Structured version Visualization version GIF version |
Description: Syllogism inference combined with a biconditional. (Contributed by BJ, 25-Apr-2019.) |
Ref | Expression |
---|---|
sylanblrc.1 | ⊢ (𝜑 → 𝜓) |
sylanblrc.2 | ⊢ 𝜒 |
sylanblrc.3 | ⊢ (𝜃 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
sylanblrc | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylanblrc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | sylanblrc.2 | . . 3 ⊢ 𝜒 | |
3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → 𝜒) |
4 | sylanblrc.3 | . 2 ⊢ (𝜃 ↔ (𝜓 ∧ 𝜒)) | |
5 | 1, 3, 4 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: fntp 6629 foimacnv 6866 respreima 7086 fpr 7174 fnprb 7228 curry1 8128 fnwelem 8155 frrlem12 8321 wfrlem13OLD 8360 tfrlem10 8426 oawordeulem 8591 oelim2 8632 oaabs2 8686 omabs 8688 ssdomg 9039 limenpsi 9191 dffi2 9461 gruina 10856 recmulnq 11002 reclem2pr 11086 climeu 15588 cosmul 16206 2ebits 16481 algcvgblem 16611 ismgmid 18691 mndideu 18771 ga0 19329 efgs1 19768 pzriprnglem4 21513 distopon 23020 dfac14 23642 ptcmplem5 24080 sszcld 24853 itg11 25740 axlowdimlem13 28984 nbusgredgeu 29398 1trld 30171 cycpmconjslem1 33157 1stmbfm 34242 2ndmbfm 34243 bnj150 34869 f1resfz0f1d 35098 satfrel 35352 satf0n0 35363 bj-projval 36979 exidu1 37843 rngoideu 37890 refrelressn 38506 rfcnpre1 44957 fundcmpsurinjlem2 47324 |
Copyright terms: Public domain | W3C validator |