Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sylanblrc | Structured version Visualization version GIF version |
Description: Syllogism inference combined with a biconditional. (Contributed by BJ, 25-Apr-2019.) |
Ref | Expression |
---|---|
sylanblrc.1 | ⊢ (𝜑 → 𝜓) |
sylanblrc.2 | ⊢ 𝜒 |
sylanblrc.3 | ⊢ (𝜃 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
sylanblrc | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylanblrc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | sylanblrc.2 | . . 3 ⊢ 𝜒 | |
3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → 𝜒) |
4 | sylanblrc.3 | . 2 ⊢ (𝜃 ↔ (𝜓 ∧ 𝜒)) | |
5 | 1, 3, 4 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: fntp 6492 foimacnv 6730 respreima 6938 fpr 7021 fnprb 7079 curry1 7929 fnwelem 7957 frrlem12 8098 wfrlem13OLD 8137 tfrlem10 8203 oawordeulem 8362 oelim2 8403 oaabs2 8454 omabs 8456 ssdomg 8761 limenpsi 8913 dffi2 9152 gruina 10567 recmulnq 10713 reclem2pr 10797 climeu 15254 cosmul 15872 2ebits 16144 algcvgblem 16272 ismgmid 18339 mndideu 18386 ga0 18894 efgs1 19331 distopon 22137 dfac14 22759 ptcmplem5 23197 sszcld 23970 itg11 24845 axlowdimlem13 27312 nbusgredgeu 27723 1trld 28494 cycpmconjslem1 31409 1stmbfm 32215 2ndmbfm 32216 bnj150 32844 f1resfz0f1d 33060 satfrel 33317 satf0n0 33328 bj-projval 35174 exidu1 36002 rngoideu 36049 rfcnpre1 42524 fundcmpsurinjlem2 44812 |
Copyright terms: Public domain | W3C validator |