| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylanblrc | Structured version Visualization version GIF version | ||
| Description: Syllogism inference combined with a biconditional. (Contributed by BJ, 25-Apr-2019.) |
| Ref | Expression |
|---|---|
| sylanblrc.1 | ⊢ (𝜑 → 𝜓) |
| sylanblrc.2 | ⊢ 𝜒 |
| sylanblrc.3 | ⊢ (𝜃 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| sylanblrc | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylanblrc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | sylanblrc.2 | . . 3 ⊢ 𝜒 | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → 𝜒) |
| 4 | sylanblrc.3 | . 2 ⊢ (𝜃 ↔ (𝜓 ∧ 𝜒)) | |
| 5 | 1, 3, 4 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: fntp 6550 foimacnv 6788 respreima 7008 fpr 7096 fnprb 7151 curry1 8043 fnwelem 8070 frrlem12 8236 tfrlem10 8315 oawordeulem 8478 oelim2 8519 oaabs2 8573 omabs 8575 ssdomg 8933 limenpsi 9076 dffi2 9318 gruina 10720 recmulnq 10866 reclem2pr 10950 climeu 15469 cosmul 16089 2ebits 16365 algcvgblem 16495 s1chn 18534 ismgmid 18581 mndideu 18661 ga0 19218 efgs1 19655 pzriprnglem4 21430 psdmvr 22103 distopon 22932 dfac14 23553 ptcmplem5 23991 sszcld 24753 itg11 25639 axlowdimlem13 28953 nbusgredgeu 29365 1trld 30143 cycpmconjslem1 33164 1stmbfm 34345 2ndmbfm 34346 bnj150 34960 f1resfz0f1d 35230 satfrel 35483 satf0n0 35494 bj-projval 37113 exidu1 37969 rngoideu 38016 refrelressn 38689 rfcnpre1 45180 fundcmpsurinjlem2 47561 gpgprismgr4cycllem11 48267 |
| Copyright terms: Public domain | W3C validator |