| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylanblrc | Structured version Visualization version GIF version | ||
| Description: Syllogism inference combined with a biconditional. (Contributed by BJ, 25-Apr-2019.) |
| Ref | Expression |
|---|---|
| sylanblrc.1 | ⊢ (𝜑 → 𝜓) |
| sylanblrc.2 | ⊢ 𝜒 |
| sylanblrc.3 | ⊢ (𝜃 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| sylanblrc | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylanblrc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | sylanblrc.2 | . . 3 ⊢ 𝜒 | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → 𝜒) |
| 4 | sylanblrc.3 | . 2 ⊢ (𝜃 ↔ (𝜓 ∧ 𝜒)) | |
| 5 | 1, 3, 4 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: fntp 6580 foimacnv 6820 respreima 7041 fpr 7129 fnprb 7185 curry1 8086 fnwelem 8113 frrlem12 8279 tfrlem10 8358 oawordeulem 8521 oelim2 8562 oaabs2 8616 omabs 8618 ssdomg 8974 limenpsi 9122 dffi2 9381 gruina 10778 recmulnq 10924 reclem2pr 11008 climeu 15528 cosmul 16148 2ebits 16424 algcvgblem 16554 ismgmid 18599 mndideu 18679 ga0 19237 efgs1 19672 pzriprnglem4 21401 psdmvr 22063 distopon 22891 dfac14 23512 ptcmplem5 23950 sszcld 24713 itg11 25599 axlowdimlem13 28888 nbusgredgeu 29300 1trld 30078 s1chn 32943 cycpmconjslem1 33118 1stmbfm 34258 2ndmbfm 34259 bnj150 34873 f1resfz0f1d 35108 satfrel 35361 satf0n0 35372 bj-projval 36991 exidu1 37857 rngoideu 37904 refrelressn 38522 rfcnpre1 45020 fundcmpsurinjlem2 47404 gpgprismgr4cycllem11 48099 |
| Copyright terms: Public domain | W3C validator |