Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sylanblrc | Structured version Visualization version GIF version |
Description: Syllogism inference combined with a biconditional. (Contributed by BJ, 25-Apr-2019.) |
Ref | Expression |
---|---|
sylanblrc.1 | ⊢ (𝜑 → 𝜓) |
sylanblrc.2 | ⊢ 𝜒 |
sylanblrc.3 | ⊢ (𝜃 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
sylanblrc | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylanblrc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | sylanblrc.2 | . . 3 ⊢ 𝜒 | |
3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → 𝜒) |
4 | sylanblrc.3 | . 2 ⊢ (𝜃 ↔ (𝜓 ∧ 𝜒)) | |
5 | 1, 3, 4 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: fntp 6495 foimacnv 6733 respreima 6943 fpr 7026 fnprb 7084 curry1 7944 fnwelem 7972 frrlem12 8113 wfrlem13OLD 8152 tfrlem10 8218 oawordeulem 8385 oelim2 8426 oaabs2 8479 omabs 8481 ssdomg 8786 limenpsi 8939 dffi2 9182 gruina 10574 recmulnq 10720 reclem2pr 10804 climeu 15264 cosmul 15882 2ebits 16154 algcvgblem 16282 ismgmid 18349 mndideu 18396 ga0 18904 efgs1 19341 distopon 22147 dfac14 22769 ptcmplem5 23207 sszcld 23980 itg11 24855 axlowdimlem13 27322 nbusgredgeu 27733 1trld 28506 cycpmconjslem1 31421 1stmbfm 32227 2ndmbfm 32228 bnj150 32856 f1resfz0f1d 33072 satfrel 33329 satf0n0 33340 bj-projval 35186 exidu1 36014 rngoideu 36061 rfcnpre1 42562 fundcmpsurinjlem2 44851 |
Copyright terms: Public domain | W3C validator |