| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylanblrc | Structured version Visualization version GIF version | ||
| Description: Syllogism inference combined with a biconditional. (Contributed by BJ, 25-Apr-2019.) |
| Ref | Expression |
|---|---|
| sylanblrc.1 | ⊢ (𝜑 → 𝜓) |
| sylanblrc.2 | ⊢ 𝜒 |
| sylanblrc.3 | ⊢ (𝜃 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| sylanblrc | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylanblrc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | sylanblrc.2 | . . 3 ⊢ 𝜒 | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → 𝜒) |
| 4 | sylanblrc.3 | . 2 ⊢ (𝜃 ↔ (𝜓 ∧ 𝜒)) | |
| 5 | 1, 3, 4 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: fntp 6547 foimacnv 6785 respreima 7004 fpr 7092 fnprb 7148 curry1 8044 fnwelem 8071 frrlem12 8237 tfrlem10 8316 oawordeulem 8479 oelim2 8520 oaabs2 8574 omabs 8576 ssdomg 8932 limenpsi 9076 dffi2 9332 gruina 10731 recmulnq 10877 reclem2pr 10961 climeu 15481 cosmul 16101 2ebits 16377 algcvgblem 16507 ismgmid 18558 mndideu 18638 ga0 19196 efgs1 19633 pzriprnglem4 21410 psdmvr 22073 distopon 22901 dfac14 23522 ptcmplem5 23960 sszcld 24723 itg11 25609 axlowdimlem13 28918 nbusgredgeu 29330 1trld 30105 s1chn 32971 cycpmconjslem1 33115 1stmbfm 34247 2ndmbfm 34248 bnj150 34862 f1resfz0f1d 35106 satfrel 35359 satf0n0 35370 bj-projval 36989 exidu1 37855 rngoideu 37902 refrelressn 38520 rfcnpre1 45017 fundcmpsurinjlem2 47403 gpgprismgr4cycllem11 48109 |
| Copyright terms: Public domain | W3C validator |