| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylanblrc | Structured version Visualization version GIF version | ||
| Description: Syllogism inference combined with a biconditional. (Contributed by BJ, 25-Apr-2019.) |
| Ref | Expression |
|---|---|
| sylanblrc.1 | ⊢ (𝜑 → 𝜓) |
| sylanblrc.2 | ⊢ 𝜒 |
| sylanblrc.3 | ⊢ (𝜃 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| sylanblrc | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylanblrc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | sylanblrc.2 | . . 3 ⊢ 𝜒 | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → 𝜒) |
| 4 | sylanblrc.3 | . 2 ⊢ (𝜃 ↔ (𝜓 ∧ 𝜒)) | |
| 5 | 1, 3, 4 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: fntp 6577 foimacnv 6817 respreima 7038 fpr 7126 fnprb 7182 curry1 8083 fnwelem 8110 frrlem12 8276 tfrlem10 8355 oawordeulem 8518 oelim2 8559 oaabs2 8613 omabs 8615 ssdomg 8971 limenpsi 9116 dffi2 9374 gruina 10771 recmulnq 10917 reclem2pr 11001 climeu 15521 cosmul 16141 2ebits 16417 algcvgblem 16547 ismgmid 18592 mndideu 18672 ga0 19230 efgs1 19665 pzriprnglem4 21394 psdmvr 22056 distopon 22884 dfac14 23505 ptcmplem5 23943 sszcld 24706 itg11 25592 axlowdimlem13 28881 nbusgredgeu 29293 1trld 30071 s1chn 32936 cycpmconjslem1 33111 1stmbfm 34251 2ndmbfm 34252 bnj150 34866 f1resfz0f1d 35101 satfrel 35354 satf0n0 35365 bj-projval 36984 exidu1 37850 rngoideu 37897 refrelressn 38515 rfcnpre1 45013 fundcmpsurinjlem2 47400 gpgprismgr4cycllem11 48095 |
| Copyright terms: Public domain | W3C validator |