| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylanblrc | Structured version Visualization version GIF version | ||
| Description: Syllogism inference combined with a biconditional. (Contributed by BJ, 25-Apr-2019.) |
| Ref | Expression |
|---|---|
| sylanblrc.1 | ⊢ (𝜑 → 𝜓) |
| sylanblrc.2 | ⊢ 𝜒 |
| sylanblrc.3 | ⊢ (𝜃 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| sylanblrc | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylanblrc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | sylanblrc.2 | . . 3 ⊢ 𝜒 | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → 𝜒) |
| 4 | sylanblrc.3 | . 2 ⊢ (𝜃 ↔ (𝜓 ∧ 𝜒)) | |
| 5 | 1, 3, 4 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: fntp 6561 foimacnv 6799 respreima 7020 fpr 7108 fnprb 7164 curry1 8060 fnwelem 8087 frrlem12 8253 tfrlem10 8332 oawordeulem 8495 oelim2 8536 oaabs2 8590 omabs 8592 ssdomg 8948 limenpsi 9093 dffi2 9350 gruina 10747 recmulnq 10893 reclem2pr 10977 climeu 15497 cosmul 16117 2ebits 16393 algcvgblem 16523 ismgmid 18568 mndideu 18648 ga0 19206 efgs1 19641 pzriprnglem4 21370 psdmvr 22032 distopon 22860 dfac14 23481 ptcmplem5 23919 sszcld 24682 itg11 25568 axlowdimlem13 28857 nbusgredgeu 29269 1trld 30044 s1chn 32909 cycpmconjslem1 33084 1stmbfm 34224 2ndmbfm 34225 bnj150 34839 f1resfz0f1d 35074 satfrel 35327 satf0n0 35338 bj-projval 36957 exidu1 37823 rngoideu 37870 refrelressn 38488 rfcnpre1 44986 fundcmpsurinjlem2 47373 gpgprismgr4cycllem11 48068 |
| Copyright terms: Public domain | W3C validator |