| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylanblrc | Structured version Visualization version GIF version | ||
| Description: Syllogism inference combined with a biconditional. (Contributed by BJ, 25-Apr-2019.) |
| Ref | Expression |
|---|---|
| sylanblrc.1 | ⊢ (𝜑 → 𝜓) |
| sylanblrc.2 | ⊢ 𝜒 |
| sylanblrc.3 | ⊢ (𝜃 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| sylanblrc | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylanblrc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | sylanblrc.2 | . . 3 ⊢ 𝜒 | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → 𝜒) |
| 4 | sylanblrc.3 | . 2 ⊢ (𝜃 ↔ (𝜓 ∧ 𝜒)) | |
| 5 | 1, 3, 4 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: fntp 6537 foimacnv 6775 respreima 6994 fpr 7082 fnprb 7137 curry1 8029 fnwelem 8056 frrlem12 8222 tfrlem10 8301 oawordeulem 8464 oelim2 8505 oaabs2 8559 omabs 8561 ssdomg 8917 limenpsi 9060 dffi2 9302 gruina 10704 recmulnq 10850 reclem2pr 10934 climeu 15457 cosmul 16077 2ebits 16353 algcvgblem 16483 s1chn 18521 ismgmid 18568 mndideu 18648 ga0 19205 efgs1 19642 pzriprnglem4 21416 psdmvr 22079 distopon 22907 dfac14 23528 ptcmplem5 23966 sszcld 24728 itg11 25614 axlowdimlem13 28927 nbusgredgeu 29339 1trld 30114 cycpmconjslem1 33115 1stmbfm 34265 2ndmbfm 34266 bnj150 34880 f1resfz0f1d 35150 satfrel 35403 satf0n0 35414 bj-projval 37030 exidu1 37896 rngoideu 37943 refrelressn 38561 rfcnpre1 45056 fundcmpsurinjlem2 47430 gpgprismgr4cycllem11 48136 |
| Copyright terms: Public domain | W3C validator |