![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylanblrc | Structured version Visualization version GIF version |
Description: Syllogism inference combined with a biconditional. (Contributed by BJ, 25-Apr-2019.) |
Ref | Expression |
---|---|
sylanblrc.1 | ⊢ (𝜑 → 𝜓) |
sylanblrc.2 | ⊢ 𝜒 |
sylanblrc.3 | ⊢ (𝜃 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
sylanblrc | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylanblrc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | sylanblrc.2 | . 2 ⊢ 𝜒 | |
3 | sylanblrc.3 | . . 3 ⊢ (𝜃 ↔ (𝜓 ∧ 𝜒)) | |
4 | 3 | biimpri 220 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
5 | 1, 2, 4 | sylancl 577 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 388 |
This theorem is referenced by: fntp 6242 foimacnv 6455 respreima 6655 fpr 6733 fnprb 6791 curry1 7601 fnwelem 7624 wfrlem13 7765 tfrlem10 7821 oawordeulem 7975 oelim2 8016 oaabs2 8066 omabs 8068 ssdomg 8346 limenpsi 8482 dffi2 8676 gruina 10032 recmulnq 10178 reclem2pr 10262 climeu 14767 cosmul 15380 2ebits 15650 algcvgblem 15771 ismgmid 17726 mndideu 17766 ga0 18193 efgs1 18613 distopon 21303 dfac14 21924 ptcmplem5 22362 sszcld 23122 itg11 23989 axlowdimlem13 26437 nbusgredgeu 26845 1trld 27665 1stmbfm 31163 2ndmbfm 31164 bnj150 31795 satf0n0 32188 frrlem12 32655 bj-projval 33826 exidu1 34576 rngoideu 34623 rfcnpre1 40695 funressnvmoOLD 42686 |
Copyright terms: Public domain | W3C validator |