| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylanblrc | Structured version Visualization version GIF version | ||
| Description: Syllogism inference combined with a biconditional. (Contributed by BJ, 25-Apr-2019.) |
| Ref | Expression |
|---|---|
| sylanblrc.1 | ⊢ (𝜑 → 𝜓) |
| sylanblrc.2 | ⊢ 𝜒 |
| sylanblrc.3 | ⊢ (𝜃 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| sylanblrc | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylanblrc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | sylanblrc.2 | . . 3 ⊢ 𝜒 | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → 𝜒) |
| 4 | sylanblrc.3 | . 2 ⊢ (𝜃 ↔ (𝜓 ∧ 𝜒)) | |
| 5 | 1, 3, 4 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: fntp 6597 foimacnv 6835 respreima 7056 fpr 7144 fnprb 7200 curry1 8103 fnwelem 8130 frrlem12 8296 wfrlem13OLD 8335 tfrlem10 8401 oawordeulem 8566 oelim2 8607 oaabs2 8661 omabs 8663 ssdomg 9014 limenpsi 9166 dffi2 9435 gruina 10832 recmulnq 10978 reclem2pr 11062 climeu 15571 cosmul 16191 2ebits 16466 algcvgblem 16596 ismgmid 18643 mndideu 18723 ga0 19281 efgs1 19716 pzriprnglem4 21445 psdmvr 22107 distopon 22935 dfac14 23556 ptcmplem5 23994 sszcld 24757 itg11 25644 axlowdimlem13 28933 nbusgredgeu 29345 1trld 30123 s1chn 32990 cycpmconjslem1 33165 1stmbfm 34292 2ndmbfm 34293 bnj150 34907 f1resfz0f1d 35136 satfrel 35389 satf0n0 35400 bj-projval 37014 exidu1 37880 rngoideu 37927 refrelressn 38542 rfcnpre1 45043 fundcmpsurinjlem2 47413 gpgprismgr4cycllem11 48104 |
| Copyright terms: Public domain | W3C validator |